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Brownian motion of a colloidal particle immersed in a
polymeric solution near a rigid wall

B. L. Arenas-Ǵomez and M. D. Carbajal-Tinoco
Departamento de F́ısica, Centro de Investigación y de Estudios Avanzados del IPN,
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By using three-dimensional digital video microscopy (DVM-3D), we study the displacement of a Brownian particle immersed in a polymeric
solution located near a rigid wall. The technique takes advantage of the diffraction pattern generated by a fluorescent particle that is found
below the focal plane of an optical microscope. The particle is then tracked from the analysis of a sequence of digitized images to reconstruct
its trajectory, which provides relevant information about the properties of the system. In a first stage, we obtain the mean square displacement
(MSD) of a spherical probe dissolved in a viscoelastic solution. This MSD is then used to determine the elastic and viscous moduli of the
suspension. Such measurements are consistent with bulk measurements performed by means of two techniques, namely, diffusing wave
spectroscopy and mechanical rheology. Near the rigid wall, the motion of the probe particle can be split in two directions,i.e., parallel and
perpendicular to the surface. For short times (but still in the Brownian regime), such motion can be characterized by means of two distance
dependent friction coefficients. We observe deviations of the measured friction coefficients in comparison with the Newtonian behavior.
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1. Introduction

The study of the mechanical properties of complex fluids
has been the subject of intense research during the last two
decades. Such properties are very important for industrial
processes of foods, cosmetics and paints, and also for under-
standing the microrheology of certain biological systems. In
1995, Mason and Weitz [1] presented a new method for mea-
suring the viscoelastic properties of fluids through the deter-
mination of the mean square displacement (MSD)〈∆r2(t)〉
of a probe particle immersed in the fluid under study. Their
measurements were done by using diffusing wave spec-
troscopy as well as dynamic light scattering. From that mo-
ment, a variety of methods associated with such proposal
have been utilized to characterize the mechanical properties
of small systems like the cytoplasm of living cells [2,3] or to
describe the hydrodynamic interactions between a spherical
particle and a hard wall [4] or a soft interface [5].

In this paper, we propose the use of a three-dimensional
extension of video microscopy to study the MSD of a col-
loidal particle dispersed in polymeric solutions. In Fig. 1,
we draw the main components of DVM-3D. The colloidal
sample (Sample) consists of fluorescent beads suspended in
aqueous solutions that contain variable concentrations of dis-
solved polyacrylamide at a fixed ionic strength. More im-
portant, the solute concentrations are so small that, in all
cases under study, the measured refraction index (at optical
frequencies)n is equal to1.33 at room temperature. As a re-
sult, the optical path remains unchanged for all samples. An
optical microscope (Olympus BX-60) is represented by an
objective (Objective, in Fig. 1), which is a long working dis-
tance objective (LMPlanFl with M=100 and NA=0.8, M and

NA being the magnification and the numerical aperture, re-
spectively). The microscope has an adapted monochromatic
CCD camera (Cohu 7712 of1004× 1004 pixels with 10 bits
per pixel at 30 fps) that delivers digital images to be pro-
cessed and analyzed. In order to control vertical displace-
ments with a high degree of accuracy (of a few nanometers),
the objective is mounted to a piezoelectric device (Physik In-
strumente E-662, LVPZT piezo amplifier/servo) whose pur-
pose is a precise motion of the objective used to calibrate
the system. Once calibrated, we compare the results of the
MSD obtained through DVM-3D with equivalent measure-
ments done with other methods. In the following section, we
discuss about the preparation of the different types of sam-
ples, the calibration process as well as the validation of our
technique.

2. Experimental Section

2.1. Samples preparation

We compounded polymeric solutions of polyacrylamide
(Sigma) of molecular weightMw = 5− 6× 106 gr/mol. The
polymeric solutions are prepared by dissolving the polyacry-
lamide in distilled deionized water of resistivity 18.2 MΩ·cm
(Barnstead). All solutions are prepared by weight. The solu-
tions are stirred at 40◦C for two weeks until all components
are completely dissolved. Otherwise, the concentrations of
our solutions are always above the known overlap concen-
tration, i.e., c∗ = 7 × 10−3 %(w/w) [6]. It is well known
that the intermolecular interactions between polyacrylamide
chains are not negligible, eventually leading to viscoelastic
effects and to gels at higher concentrations.
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FIGURE 1. Schematic drawing of the main components of the tech-
nique DVM-3D (see text). The microscope objective is focused on
a focal plane (FP) located atZ = 0. Fluorescent microspheres
found at the distancesZ1 andZ2 below the FP give rise to diffrac-
tion patterns characterized by an external ring of radiusRi (i =1,
2). If Z1 > Z2 thenR1 > R2.

In the case of video microscopy measurements, a low
concentration of fluorescent polystyrene spheres of diame-
ter 1µm and size polydispersity of 3% (Duke Scientific) is
added to the polymeric solution. These spherical particles
are only used as probes. We note that the original colloidal
suspension is stabilized by charge, therefore, we add 10 mM
of NaCl to screen any electrostatic interaction. The mixture
is agitated to ensure homogeneity and the resulting suspen-
sion is confined between two cleaned glass plates (a slide
and a cover slip). The distances between the glass plates are
600 µm and300 µm for bulk and near wall measurements,
respectively. The system is sealed with epoxy resin (Epotek)
to avoid evaporation and flows. In the case of light scattering
experiments, we used particles of diameter 2µm (of same
polydispersity) at a fixed volume fractionφ = 0.021. The so-
lutions are also stirred (with their corresponding electrolyte)
and put in rectangular cuvettes (Hellma). The samples are
allowed to equilibrate, for at least 30 min, in contact with a
circulating bath at 24◦C.

2.2. Digital video microscopy in three dimensions

The polymeric solutions containing fluorescent beads are ob-
served through the microscope under fluorescent illumina-
tion. According to the properties of the dyes that are inter-
calated in these beads, we use a fluorescence filter cube with
the following characteristics. Excitation filter: 420-440 nm,
dichromatic mirror: 455 nm, and emission filter:≥ 475 nm.
When a spherical fluorescent particle of about 1µm in di-

ameter is found below the focal plan (FP), we can take ad-
vantage of its diffraction pattern to determine its depth with
respect to the FP (see Fig. 1). On the other hand, if the flu-
orescent bead is located above the FP, its diffraction pattern
can be described as a single blurry disc that provides use-
less information for the determination of its depth. The main
idea was first introduced by Parket al. to perform local mea-
surements of the temperature [7]. The microscope optics and
the CCD camera actually detect a cross section of the point
spread function [7, 8], which can be described by means of
Kirchhoff’s diffraction integral,

I(xd, yd, ∆z)=
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here, (xd, yd) is the detector position,∆z is the distance
to the FP (also known as defocus distance),k is the wave
number,ρ is the normalized radius in the exit pupil, and
W (∆z, ρ) is a phase aberration function. It is not easy to
accurately use Eq. (1), because it is difficult to estimate
W (∆z, ρ). Nonetheless, this integral predicts a finite num-
ber of concentric rings. More important, the last ring is the
brightest and its size changes monotonically as a function of
the separationZi between the sphere and the FP, as sketched
in Fig. 1.

Instead of using Eq. (1), we opted to do an experimental
calibration of the system that turns out to be more accurate
than the results extracted from such equation. This calibra-
tion, however, is only useful for our specific optical setup
(in other words, each optical system requires its own cali-
bration). We performed a series of vertical scans by taking
advantage of the piezoelectric device (eventually, it is possi-
ble to do the scan by means of the fine adjustment knob of
the microscope [10]). Each scan consists of a given num-
ber of snapshots (> 100) of a fluorescent microbead that is
fixed to the glass slide. The images are taken with a sepa-
ration of 0.1µm and moving in the upper direction (for the
first image, the FP is placed inside the slide). Then, the digital
images are analyzed with a specialized software (IDL or Mat-
lab) that locates the center of the particle and also the external
ring (when it appears). An angular jpg is done to enhance the
shape of the rings. We define the radiusR of the last ring as
the position of its local maximum intensity (see the inset of
Fig. 2). In order to accurately determine such position, we
fit about 12 surrounding points with a Gaussian function. In
Fig. 2, we plot the experimental radiusR as a function of the
distanceZ, which is the separation between the center of the
sphere and the FP. The experimental curve is properly fit with
an exponential function of the formR = a1 exp[a2Z] + a3,
with a1, a2, anda3 being fitting constants. We should men-
tion that we actually require the distanceZ as a function of
R to determine Brownian trajectories, therefore, we use the
inverse functionZ = ln[(R− a3)/a1]/a2 in our algorithms.
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FIGURE 2. The angular averaged diffraction pattern is plotted in
the inset, where the radiusR of the external ring is defined as the
position of the last maximum. The experimental measurements of
R are plotted as a function of the separationZ between the center
of the particle and the FP. An exponential fit to the experimental
data is also shown.

In order to estimate the uncertainty of the measured coor-
dinates, we captured some image sequences of particles that
are fixed to the glass wall and we averaged their positions,
which resulted slightly different between them due to fluctu-
ations in the detection system. Accordingly, we obtained the
following standard deviations,∆X = ∆Y = 0.015 µm and
∆Z = 0.09 µm. A larger uncertainty in the vertical direction
is a consequence of the indirect procedure used to determine
the Z coordinate. These three standard deviations together
with the frame separation of 1/30 s impose the lower limits in
space and time of the technique. For certain properties, like
the MSD, the contribution of∆Z can be easily removed since
it is not originated by a diffusion process (e.g., see Sec. 3.2).
On the other hand, the upper space limit is estimated at about
100µm and the long times are only limited by the RAM ca-
pacity of the acquisition computer. In our case, we analyzed
series of 2000 images. Once having the Cartesian coordinates
of a colloidal particle, we can obtain its trajectory from a se-
quence of images. A comparison with the results of known
techniques is first envisaged.

2.3. Diffusing wave spectroscopy

In order to test DVM-3D, we utilized a multiple scatter-
ing technique known as diffusing wave spectroscopy (DWS)
that consists of a laser beam striking a slab formed by an
opaque sample. The sample contains the polymeric solu-
tion under study and also a high concentration of probe
particles (uniform spheres). The particle motion is stud-
ied over length scales shorter than the wavelength of the
laser (514.5 nm, in our case). The photons inside the sam-
ple are treated as random walkers, meanwhile, the transport
of light through the slab is studied as a diffusive process.

The diffusion approximation is valid over distances longer
than the transport mean free pathl∗. The way we detect
the intensity of single speckle spots of the scattered light is
very similar to the case of dynamic light scattering (DLS).
Such measurements allow us to determine time correlation
functions. Within this approximation, a total correlation
function is obtained by summing over the contributions of
all paths that are weighted with the appropriate distribution
of paths as a function of the slab’s geometry. We use an
optical arrangement for DWS in transmission geometry, as
shown in Ref. [11]. The intensity autocorrelation function
g(2)(t) = 〈I(t)I(0)〉/〈I(0)〉2 is determined by measuring
the scattered light intensity. On the other hand, the field
autocorrelation functiong(1)(t) = 〈E(t)E∗(0)〉/〈E(0)〉2
is related to g(2)(t) through the Siegert relation
g(2)(t) = 1+β|g(1)(t)|2, where the parameterβ is an instru-
mental factor obtained by collection optics.

During the measurement, the spherical probes are free to
move around the same local region of the fluid, therefore,
we can assume that the scattering process is diffusive. In the
transmission geometry, the thickness of the slab isL À l∗.
Once the light strikes the slab, it travels a distance∼ l∗. After
that, its propagation direction is randomized. The expression
of time averaged field correlation functiong(1)(t) has an ex-
act form for this particular geometry [9],

g(1)(t) =
L/l∗+4/3
δ∗+2/3

(
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)

(
1 + 4

9x2
)
sinh

[
L
l∗x

]
+ 4
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[
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wherex =
[
k2〈∆r2(t)〉]1/2

and δ∗ = z0/l∗, with z0 be-
ing the distance into the sample from the incident surface to
the place where the diffuse source is found. We have a de-
pendence in the MSD〈∆r2(t)〉 of the probe particles that
can be obtained by using a numerical inversion from Eq. (2).
We utilized a home-made instrument for DWS and a slab of
thicknessL = 2.5 mm [11]. The transport mean free path of
light l∗ of the sample is measured by means of an integrat-
ing sphere (Oriel) [12]. The mean value for our samples is
l∗ = 270 nm.

3. Results and discussion

We performed measurements of the MSD in the bulk and also
near a wall by means of the techniques described in the pre-
vious sections.

3.1. Bulk properties

The MSD〈∆r2(t)〉 of an isolated particle provides interest-
ing information about the diffusion of such probe through
a given fluid. If the fluid has a Newtonian behavior,
〈∆r2(t)〉 ∼ D0t, which is Einstein’s celebrated result [13],
whereD0 = kBT/ξ0 is the Stokes-Einstein diffusion coeffi-
cient. Here,ξ0 = 6πaη, a is the radius of the sphere,kBT
is the thermal energy, andη is the shear viscosity of the sol-
vent. On the other hand, the treatment of a viscoelastic fluid
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requires the use of a generalized approach that can be char-
acterized by a complex shear modulusG∗(ω) with ω being a
frequency of shearing. The real partG′(ω) is called the elas-
tic storage modulus, whereas, the imaginary part ofG′′(ω) is
known as the viscous loss modulus. Both moduli satisfy the
Kramers-Kronig relations and can be expressed as [14],

G′(ω) = G(ω) cos[πα(ω)/2],

G′′(ω) = G(ω) sin[πα(ω)/2], (3)

with

G(ω) =
kBT

πa〈∆r2(1/ω)〉Γ[1 + α(ω)]
, (4)

here, 〈∆r2(1/ω)〉 is the magnitude of〈∆r2(t)〉 eval-
uated at t = 1/ω, Γ is the gamma function, and
α(ω) = [∂ ln〈∆r2(t)〉/∂ ln t]|t=1/ω.

In regard to the experimental comparison of both tech-
niques, in Fig. 3 we present measurements of〈∆r2(t)〉a for
polyacrylamide in aqueous solutions at the polymer concen-
trations of 0.2 % and 0.5 %. Both curves were obtained from
the average of 150 and 104 trajectories, respectively. First,
we should mention that the MSD is multiplied by the radius
a to remove the dependence on the size of the probe parti-
cle. Although both techniques cover different time scales,
the curves of DWS and DVM-3D are consistent for the two
systems under study, as it can be noted in such figure. In a
more stringent test for DVM-3D, in Fig. 4 we plot the mod-
uli G′(ω) andG′′(ω) that are derived from the MSDs of the
two approaches under study, through Eqs. (3) and (4). More-
over, in the same Fig. we include the results determined by
using mechanical rheology for both moduli [16]. In this case,
the polyacrylamide concentration is 0.5 %. As it can be no-
ticed, the curves obtained within DVM-3D and mechanical
rheology are in reasonable agreement for the two moduli.

FIGURE 3. Mean square displacement (MSD) multiplied by the ra-
dius of the sphere measured by means of two techniques, namely,
DWS and DVM-3D (see text). The systems under study are aque-
ous solutions of polyacrylamide at the polymer concentrations of
0.2 % and 0.5%.

FIGURE 4. Elastic and viscous moduliG′(ω) andG′′(ω) obtained
for the polyacrylamide solution of 0.5 %. The experiments were
performed with three techniques,i.e., DWS (circles), mechanical
rheology (continuous lines), and DVM-3D (squares).

This kind of agreement is usually found in the literature when
similar systems to ours are studied with different techniques
[15]. Furthermore, the results determined through DWS of
G′(ω) andG′′(ω) provide an extension, in the frequency do-
main, of the two moduli. In the same figure, it can be ob-
served that the viscous behavior predominates over the elastic
response, in other wordsG′′(ω) > G′(ω), which is expected
due the low polymer concentration of the solution under anal-
ysis.

Otherwise, we can mention that both DWS and DVM-
3D have advantages and shortcomings with respect to the
other one. For example, the frequency range that can be stud-
ied within DWS (from102 to 2 × 104 rad/s) is considerably
higher than the covered range of DVM-3D (i.e., from 0.3 to
30 rad/s). In the first system, the scattered light is collected by
photomultiplier tubes (Thorn EMI) and the signals are pro-
cessed in a multitau correlator (ALV), which is able to solve
higher frequencies than the scanning frequency of our CCD
device. Additionally, DWS is useful to describe turbid liq-
uids, while DVM-3D requires the use of transparent samples.
On the other hand, DWS provides bulk properties, in contrast
to DVM-3D that can also be used to study specific regions of
the sample, as explained in the next subsection.

3.2. Diffusion near a rigid a wall

We are interested in describing the Brownian motion of a mi-
crosphere immersed in an aqueous solution of 0.2 % poly-
acrylamide and moving near a glass wall. As illustrated in
Fig. 5, the movement of the particle can be split in two direc-
tions, namely, parallel and perpendicular to the wall that are
characterized by their corresponding diffusion coefficients
D‖(h) andD⊥(h), both depending on the distanceh between
the center of the sphere and the hard surface. In the same fig-
ure, we also represent a sphere that is fixed to the wall due to
van der Waals forces and whose purpose is to reveal the exact
position of the interface.
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FIGURE 5. Schematic representation of the Brownian motion of
a particle located near a hard interface. The movement is sepa-
rated in two contributions, namely, parallel and perpendicular to
the wall that are characterized by the diffusion coefficientsD‖(h)
andD⊥(h). A particle fixed to the glass wall is also represented
(see text).

FIGURE 6. MSD in the parallel direction of a 1µm diameter sphere
immersed in a polyacrylamide solution of 0.2 %. Here, we define
〈∆r2〉‖ = (〈∆x2〉+ 〈∆y2〉)/2. The MSD curves are plotted as a
function of time for five different separations to the wall (h = 1, 2,
3, 4, and 5µm).

We study both the parallel and the perpendicular diffu-
sion of the sphere. In other respects, the following analysis
emerges from the average of 350 trajectories. In Fig. 6, we
plot the MSD as a function of five different values ofh. As
it can be observed, the Brownian motion is progressively re-
stricted as the particle gets closer to the wall. As a result,
the initial slope of the MSD is smaller whileh decreases.
This behavior is qualitatively similar to the case addressed
in Ref. [4], in which the probes were located in an identical
geometry but only solubilized in pure water with 10 mM of
NaCl. In such work, the authors found a quite good agree-
ment between the experimental measurements and the theory
for Newtonian fluids that states the following dependence on
h [17],

ξ‖(h)
ξ0

=
D0

D‖(h)
= 1− 8

15
ln(1− γ)

+ 0.029γ + 0.04973γ2 − 0.1249γ3 + · · · , (5)

FIGURE 7. MSD in the perpendicular direction of a spherical bead
diffusing at five different distances of a rigid wall. The system
has the same general features that are described in Fig. 6. In this
case,〈∆r2〉⊥ = 〈∆z2〉. In all cases, we have subtracted the non-
negligible intercept of each curve, which is about 0.007µm2 (and
of course,

√
0.007 ' ∆Z).

FIGURE 8. Distance dependent friction coefficient in the paral-
lel direction that is normalized with the bulk friction coefficient
ξ‖(h)/ξs determined from the experimental data of the polyacry-
lamide solution of 0.2 % (symbols) and the theoretical curve for a
Newtonian fluid (continuous line).

here,ξ‖(h) is the friction coefficient in the parallel direction
andγ = a/h. The corresponding expression for the friction
coefficient in the perpendicular direction is [18],

ξ⊥(h)
ξ0

=
D0

D⊥(h)
=

4
3

sinhα

∞∑
n=1

n(n + 1)
(2n− 1)(2n + 3)

×
[

2 sinh(2n + 1)α + (2n + 1) sinh 2α

4 sinh2(n + 1
2 )α− (2n + 1)2 sinh2 α

− 1

]
, (6)

whereα = cosh−1(γ−1). With the purpose of investigating
the behavior of our viscoelastic solution, we determine the
initial slope of a series of MSDs that are dependent on the
distanceh (see Fig. 6) and we normalize the corresponding
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FIGURE 9. Distance dependent friction coefficient in the perpen-
dicular direction that is normalized with the bulk friction coefficient
ξ⊥(h)/ξs. The experimental conditions are identical to those de-
scribed in Fig. 8 (experimental data in symbols). The theoretical
curve corresponds to the Newtonian case (continuous line).

diffusion coefficientsD‖(h) with Ds, which is the bulk self-
diffusion coefficient (of course,Ds = D0 in the ideal case).
In Fig. 7, we plot a series of MSDs in the perpendicular di-
rection for the same conditions of Fig. 6. As it can be ob-
served, the five curves are qualitatively similar to the parallel
case and they allow us to determine the diffusion coefficients
D⊥(h)/Ds. In Figs. 8 and 9, we plot the experimental data
of ξ‖(h)/ξs andξ⊥(h)/ξs, respectively. As a reference, we
also draw the theoretical curves obtained from Eqs. (5) and
(6). It can be noticed, in both figures, that there is a signifi-
cant difference (i.e., beyond the error bars) between Newto-
nian and non-Newtonian fluids. In spite of the normalization

with the bulk values, there is a considerable increment in the
two friction coefficients near the wall for the viscoelastic fluid
when compared to the Newtonian case.

4. Conclusions

The three-dimensional extension of video microscopy
(DVM-3D) has been briefly described in some other pa-
pers [4, 5]. In the present work, we provide enough details
that allow its implementation in a regular laboratory of soft
condensed matter or biophysics. Moreover, we validate the
results obtained from it, in comparison to the experimen-
tal data obtained through DWS, which is a well established
technique. From another point of view, the information ex-
tracted from both approaches complement each other, since
they cover different time intervals.

We took advantage that DVM-3D can be used in very spe-
cific regions of the sample, which could be quite interesting
in the study of biological systems. In our case, we utilized
DVM-3D to characterize the Brownian motion of a colloidal
particle immersed in a viscoelastic fluid and located near a
hard interface. As a result, we found that the friction coef-
ficients in the parallel and perpendicular directions are en-
hanced by the presence of the rigid wall. As far as we know,
this is an open question from the theoretical viewpoint.
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