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Interaction of light with gravitational waves
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The physical properties of electromagnetic waves in the presence of a gravitational plane wave are analyzed. Formulas for the Stokes
parameters describing the polarization of light are obtained in closed form. The particular case of a constant amplitude gravitational wave is
worked out explicitly and it is shown that it produces a linear polarization of light.
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1. Introduction

The propagation of electromagnetic waves in a gravitational
field is an interesting problem in general, and it is particu-
larly relevant to the detection of gravitational waves by in-
terferometric methods [1] or by the polarization of the cos-
mic microwave background [2, 3]. Previous works on the
subject started with Plebanski’s article on the scattering of
electromagnetic waves by weak gravitational fields [4]. Elec-
tromagnetic waves in the field of a gravitational wave were
studied by Mashhoon and Grishchuk [5] in a general context.
Exact but purely formal solutions of Einstein’s equations for
interacting electromagnetic and gravitational waves were ob-
tained by Sibgatullin [6] and Biniet al. [7]. More recently,
electromagnetic waves in the background of a gravitational
wave (described by the Ehlers-Kundt metric [8]) were ana-
lyzed by the present author [9].

The aim of the present paper is to work out a general for-
malism which describes the polarization of light produced by
a gravitational wave. The formalism, as developed in Sec. 2,
is based on the formal equivalence between an anisotropic
medium and a gravitational field. The main result is a gen-
eral formula for the Stokes parameters, which are directly ob-
servable quantities. As an example of application, a constant
amplitude gravitational wave is considered in Sec. 3 and it is
shown that it linearly polarizes an initially unpolarized light.

2. Electromagnetic and gravitational field

The metric of a plane gravitational field propagating in thez
direction is (see,e.g., [10])

ds2 = −dt2+(1+f) dx2+(1−f) dy2+2g dx dy+dz2, (1)

wheref(u) and g(u) are functions of the null coordinate
u = t − z (in this article we setc = 1). Since the gravi-
tational field is assumed to be weak, only first order terms in
f andg need be considered.

The Maxwell equations in curved space-time are formally
equivalent to these same equations in flat space-time, with
electric and magnetic polarizationsP andM due to the grav-

itational field [4]. The relations between electric and mag-
netic field vectorsE andH, and electric displacement and
magnetic inductionD andB are the usual ones,

D = E + 4πP, H = B− 4πM, (2)

and the Maxwell equations imply

E = −∇Φ− Ȧ , B = ∇×A, (3)

where the scalar and vector potentials,Φ andA, satisfy the
equations

¤Φ = −4π∇ ·P (4)

¤A = 4π(Ṗ +∇×M), (5)

with the Lorentz gauge conditioṅΦ +∇ ·A = 0.
Now, for the metric (1) in particular, it follows that

4πP = G ·E (6)

4πM = G ·B, (7)

whereG is a dyad with components:

Gab =




f g 0
g −f 0
0 0 0


 . (8)

In flat space-time, an electromagnetic plane wave is given
byE(0) = Ee−iωt+k·r andB(0) = Be−iωt+k·r, whereE and
B are constant vectors such that

ωB = k× E, ωE = −k×B, (9)

k is the wave vector andω = |k| the frequency of the wave.
The important point is that, if terms of second order inGab

are neglected,P andM depend only on the unperturbed elec-
tric and magnetic fields,E(0) andB(0), and, accordingly, we
can set

4πP = G · E e−iωt+ik·r (10)

4πM = G ·B e−iωt+ik·r. (11)
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It is now convenient to define

h±(u) = f(u)∓ ig(u),

so that

G · E = h+(u)E+e+ + h−(u)E−e− (12)

G ·B = h+(u)B+e+ + h−(u)B−e− , (13)

where
e± = ex ± iey

and
E± =

1
2
(Ex ± iEy)

B± =
1
2
(Bx ± iBy).

Setting the first order corrections to the potentials in the
forms

Φ(1) = φ(u) e−iωt+ik·r,

A(1) = A(u) e−iωt+ik·r,

it follows that

¤Φ(1) = −2i(ω − kz)φ ′(u) e−iωt+k·r

= −4π∇ ·P, (14)

¤A(1) = −2i(ω − kz)A ′(u) e−iωt+k·r

= 4π(Ṗ +∇×M), (15)

where the primes denote derivation with respect tou. These
last equations can be integrated separating+ and− compo-
nents:

φ(1) = φ
(1)
+ + φ

(1)
− ,

A(1) = A(1)
+ + A(1)

− .

It follows that

φ
(1)
± =

1
(ω − kz)

k±E±H±e−iωt+ik·r, (16)

and

A(1)
± =

1
(ω − kz)

{ i

2
[E±(H ′

± − iωH±)± iB±

× (H ′
± − ikzH±)

]
e± ∓ iB±k±H±ez

}
e−iωt+ik·r, (17)

where we have defined

H ′
±(u) = h±(u)

and
k± =

1
2
(kx ± iky).

Accordingly, the first order correction to the electric field
vector can be written as the sum of two terms,E(1)

+ andE(1)
− ,

such that

E(1)
± =

(E±M± ± iB±N±
)
e−iωt+ik·r, (18)

where

M± ≡ M∓e± + M±zez − ik±
ω − kz

H±k,

N± ≡ N∓e± + N±zez,

with

M∓ = − i

2(ω − kz)
(
H ′′
± − 2iωH ′

± − ω2H±
)

, (19)

M±z =
k±

ω − kz
H ′
±, (20)

and

N∓=− i

2(ω−kz)
(
H ′′
± − i(ω+kz)H ′

± − ωkzH±
)

, (21)

N±z =
k±

ω − kz
(H ′

± − iωH±). (22)

Define now two orthonormal vectors perpendicular tok:

ε1 =
1

k⊥
ez × k,

ε2 =
1

ωk⊥
(ω2ez − kzk), (23)

wherek⊥ = (k2
x + k2

y)1/2, and also a circular polarization
basis, which is conveniently chosen as

ε± = ε2 ± iε1. (24)

The matrix of the Stokes parameters, as defined in general
in the Appendix, can be written in the formS + ∆S, where
S is the corresponding matrix in flat space-time and∆S is
the first order correction produced by the gravitational wave.
Explicitly:

∆S =
(

ε+ ·E(1)

ε− ·E(1)

)

×
(
(ε+ ·E(0))∗, (ε− ·E(0))∗

)
+ h. c. (25)

Setting∆S ≡ ∆S+ + ∆S− and using Eqs. (A.4) and (A.6)
in the Appendix, it follows with some straightforward matrix
algebra that

∆S± =
1
2

(
ε+ · e± ε+ · ez

ε− · e± ε− · ez

) (
M∓ N∓
M±z N±z

)

×
(

ε− · e± ε+ · e±
±ε− · e± ∓ε+ · e±

)
S+ h.c., (26)

where, according to our previous definitions (23) and (24),

ε+ · e± = 2
∓ω − kz

ωk⊥
k±,

ε− · e± = 2
±ω − kz

ωk⊥
k±,

ε± · ez =
k⊥
ω

. (27)
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In particular, we can choose without loss of generality the
coordinates system such that the vectork lies in the(x, z)
plane, that isky = 0 andk± = 1

2kx. In this case, Eq. (26)
takes the simpler form:

∆S± =
1

2ω2

(∓ω − kz kx

±ω − kz kx

)(
M∓ N∓
M±z N±z

)

×
(±ω − kz ∓ω − kz

ω ∓ kz ω ± kz

)
S+ h.c. (28)

3. Constant amplitude gravitational wave

As an example of application of the general formula given
above, consider a constant amplitude sinusoidal gravitational
wave, such as one generated by a periodically varying con-
figuration of massive bodies (see,e.g., Landau and Lif-
shitz [10]). Accordingly we set

H± = h0e
∓iΩu∓iα, (29)

whereh0 is a real valued constant,Ω is the frequency of the
wave andα is a constant phase. In this particular case:

M∓ =
i

2(ω − kz)
(Ω± ω)2H± , (30)

M±z = ∓ik±
Ω

ω − kz
H±, (31)

and

N∓ =
i

2(ω − kz)
(Ω± ω)(ω ± kz)H± , (32)

N±z = −ik±
ω ± Ω
ω − kz

H± . (33)

Now, in most practical casesΩ ¿ ω and, accordingly,
terms of orderΩ/ω can be neglected. In this case, the above
equations further simplify to

M∓ =
iω2

2(ω − kz)
H± , (34)

M±z = 0, (35)

and

N∓ = ± i

2(ω − kz)
ω(ω ± kz)H± , (36)

N±z = −ik±
ω

ω − kz
H± . (37)

After substitution in Eq. (28), the first order correction to the
Stokes parameters turns out to be

∆S = ∆S+ + ∆S− = − i

4(ω − kz)

(
3k2

x(H+ + H−) (ω + kz)2H+ + (ω − kz)2H−

−(ω − kz)2H+ − (ω + kz)2H− k2
x(H+ + H−)

)
S+ h.c. (38)

Now, in the particularly important case of unpolarized
light, the averaged Stokes parameters are

〈
si

〉
= 0, i = 1, 2, 3

and
〈
s0

〉
is just the intensity of the wave. In this case, it fol-

lows from Eq. (38) that

∆
〈
s0

〉
= 0, ∆

〈
s3

〉
= 0, (39)

and

〈
s1

〉
+ i

〈
s2

〉
=

〈
s0

〉 h0

2(ω − kz)

×
[
2ωkz sin θ + i(ω2 + k2

z) cos θ
]
, (40)

whereθ = Ωu + α. These are precisely the conditions for
a light beam to be linearly polarized (as can be seen, for in-
stance, from the definition of the Poincaré sphere; see,e.g.,
Born and Wolf [12]).

4. Concluding remark

The main result of this article is the formula given by
Eq. (26), or its simplified form (28). This formula is based

on the general expressions for the electromagnetic potentials
and electric field given in Sec. 2, and it permits to calculate
the Stokes parameters of light in the presence of a gravita-
tional wave. An application of the present formalism to the
case of a constant amplitude gravitational wave shows that an
unpolarized electromagnetic wave acquires a linear polariza-
tion, with the direction of polarization varying in synchrony
with the gravitational wave. This result is consistent with the
one obtained in Ref. 9.

Appendix

A: Stokes parameters

Given the electric fieldE of a plane electromagnetic wave
propagating in thek direction, the polarization can be de-
scribed by the Stokes parameters constructed from the two
scalar productsE · ε±, whereε± are two complex vectors
defined by (23) and (24). Superscript(0) for the unperturbed
field are dropped in the present appendix.

The Stokes parameters are defined as

s0 =
1
2
(|ε+ ·E|2 + |ε− ·E|2)

Rev. Mex. Fis.60 (2014) 253–256



256 S. HACYAN

s1 + is2 = (ε+ ·E)∗(ε− ·E)

s3 =
1
2
(|ε+ ·E|2 − |ε− ·E|2) , (A.1)

following the notation of Jackson [11] (except for a factor
√

2
in the definition ofε±). This can be written in matrix form as

S ≡
(

s0 + s3 s1 − is2

s1 + is2 s0 − s3

)

=
(

ε+ ·E
ε− ·E

) (
(ε+ ·E)∗ , (ε− ·E)∗

)
. (A.2)

Using the relationsωB = k × E andωE = −k ×B in
combination with (23) and (24), it follows that

ε± ·E =
ω

k⊥
(Ez ± iBz), (A.3)

and therefore

S =
2ω2

k2
⊥

(
(Ez + iBz)
(Ez − iBz)

)

× (
(Ez + iBz)∗ , (Ez − iBz)∗

)
. (A.4)

Also

E =
ω

2k⊥
[(Ez − iBz)ε+ + (Ez + iBz)ε−],

iB =
ω

2k⊥
[−(Ez − iBz)ε+ + (Ez + iBz)ε−], (A.5)

and since

E = E−e+ + E+e− + Ezez,

with a similar expression forB, it follows that

(
E±
±iB±

)
=

ω

4k⊥

×
(

ε− · e± ε+ · e±
±ε− · e± ∓ε+ · e±

)(
Ez + iBz

Ez − iBz

)
. (A.6)
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