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Modeling surface processes and kinetics of compound layer
formation during plasma nitriding of pure iron
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aInstituto Tecnoĺogico y de Estudios Superiores de Monterrey, Campus Estado de México,
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Different approaches have been developed concerning growth description of the compact nitride layers, especially those produced by ammo-
nia. Nitriding by plasma uses a glow discharge technology to introduce nitrogen to the surface which in turn diffuses itself into the material.
During this process, the ion bombardment causes sputtering of the specimen surface.
This paper presents a mathematical model of compound layer formation during plasma nitriding of pure iron. The model takes into account
the erosion effect at the plasma-solid interface due to sputtering. This erosion effect is computer simulated and adjusted in order to consider
its contribution to the study of layer growth kinetics. The model is presented as a moving boundary diffusion problem, which considers the
observed qualitative behavior of the process.
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1. Introduction

Thermochemical nitriding treatments in several varieties of
steel are widely used in industry because of their broad ap-
plication range [1,2]. Nitriding can be performed with gases
containing ammonia [3-5] or with cyanide salts [6], as well as
by weakly ionized plasmas [1,2,7]. The nitrogen flow from
the surface to the bulk material leads to allotropic transfor-
mations that notably enhance the mechanical and chemical
properties of the workpiece. The combination of a compact
layer of nitrides, followed by a nitrogen diffusion zone in fer-
rite, results in an improved wear resistance, a significant in-
crease in hardness from the surface towards the interior of
the part, and in many cases in an improvement of fatigue re-
sistance. In general, interaction with other surfaces lead to
a decrease in friction coefficients, as well as to an improved
corrosion resistance [1,2]. Plasma assisted thermochemical
treatments allow diffusion to occur at low temperatures com-
pared to other processes, so that very low distortions are de-
veloped in the pieces. Additionally, these treatments produce
no pollutants [1,2,7].

Several authors have modeled the concomitant growth
of compact layers of nitrides in the Fe-N thermodynamic
system [8-23]. Concerning gas nitriding, taking into con-
sideration the important role of the nitrogen potential, and
thus its surface concentration, descriptions of the concomi-
tant growth of the layers have been carried out as a quasi-
steady state regime. In different models the displacement of
the interfaces is assumed to be parabolic for the whole pro-
cess. However, based on the moving boundary mathemat-
ical approximation it is not necessary to assumea priori a
parabolic regime [24-27].

At the surface of the workpiece, grain boundaries, dislo-
cations, and the orientation between the grains strongly affect
the nitrogen transport in the solid at the beginning of the pro-
cess. The formation of compact nitride layers highly depends
on the defective configuration at the vicinity of the surface.
Besides, a relevant aspect in the case of plasma nitriding is
the surface sputtering. Some authors have considered the ef-
fects of this phenomenon in the analysis of the compact layers
growth [28,29].

Considering a mass balance in each interface, taking into
account a complete model of the sputtering process from the
very beginning of the thermochemical treatment, whose rele-
vance is particularly important in ferrite, based both on soft-
ware simulations and experimental data, and without assum-
ing neither a parabolic growth nor another specific behaviora
priori , we have modeled the concomitant growth of compact
nitride layers, as well as the nitrogen concentration profile at
each phase, during ion nitriding in pure iron. The above men-
tioned elements provide a novel approach to the study of the
compound layer formation.

2. Statement of the problem

2.1. Surface erosion

In order to accurately develop the present model it is neces-
sary to previously determine the sputtering rate. However,
it cannot be assumed to be constant during the whole pro-
cess due to the surface evolution. Many parameters should
be taken into account to describe exactly this phenomenon
such as plasma characteristics, surface roughness evolution
and phase transitions in which iron nitrides are formed [28],
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among others. This is the reason why it would be inappro-
priate to compare this model with experiments reported in
literature [27] in which the conditions are not fully reported.

For practical purposes, an approximation based on differ-
ent regimes is carried out taking into consideration the quali-
tative description of the process given in the pertinent litera-
ture [27-29].

It is possible to determine the sputtering rate for the first
instants of the plasma nitriding process with the help of the
Stopping and Range of Ions in Matter(SRIM) software [29]
by running a specific simulation with the ion-energy distri-
bution function of the given plasma. However, this analysis
was specifically developed for pure iron. The sputtering rate
decreases as the nitrogen surface concentration increases, so
that once the nitride layer is formed and it has grown to a
thickness higher than the maximum ion implantation depth in
the bulk material, a steady-state regime lower than the initial
rate is reached due to the allotropic transformation. This rate
is modeled, for a transition period of time, through a fourth
degree polynomial to ensure that its profile is continuous and
smooth. The final value for this erosion rate was extracted
from literature [27] concerning similar nitriding processes.

2.2. Mathematical model

The following mathematical model describes the layer
growth kinetics and nitrogen profile concentration at each
phase and diffusion zone during ion nitriding of pure iron.
The model represents a moving boundary value problem.
There has been an ongoing effort on the simulation of layer
growth kinetics and nitrogen concentration profiles in ion ni-
triding during the last decades [27,30-32]. These research
papers have yielded interesting results. However, usually,

severe conditions are imposed on the kinetics of the growth
process. Meanwhile, consistency and interrelationship of the
process data have not often been considered. These kinds of
restrictions have frequently diminished the accuracy and sig-
nificance of the obtained results.

The present model takes into account surface erosion
[27,30-32] and its effect on the problem in a slightly different
way. Moreover, in the mathematical setting of the problem,
the evolution of the diffusion zone is characterized through a
fictitious moving boundary. Both elements are introduced in
order to obtain a more accurate approach to the description
of the original problem.

The proposed model studies ion nitriding of pure iron
once the compound layer is already formed. This takes place
just after the incubation period and before the settlement of
the quasi-steady state of the layer growth. Hence, the plasma
nitriding process of pure iron is studied right after the incu-
bation of phasesε andγ ′. The growth of the concomitant
layers and the interfaces is characterized as a phenomenon
through Fick’s Second Law, mass balance at the interfaces,
and the corresponding solubility limits of each layer.

In building the mathematical model of the problem the
following assumptions are made:

- The surface erosion and layer growth occur in plane
fronts parallel to the specimen surface.

- Evolution of phases takes place under thermodynami-
cal equilibrium conditions.

- Mass balance at the interfaces considers equal specific
volumes.

- Flow is one-dimensional.

FIGURE 1. Nitrogen concentration profiles, layers, interfaces and plasma-metal boundary in iron at 803.15 K.
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- Diffusion coefficients are constant at each phase and
diffusion zone.

- The temperature at every point in the specimen is iden-
tical during the whole process.

Notice that in the present article there is noa priori as-
sumption on the parabolic layer growth.

Let t0 be the time from which layersε , γ ′ and diffusion
zoneα are assumed to be formed and begin to evolve. Let
us denote byξ0(t) the displacement of the surface in time
t > t0 respect to its original positionx = 0 for t = 0; and
ξ1(t) represents theε-layer thickness fort > t0. Let ξ2(t)
be the thickness of theγ ′- layer fort > t0. Also,ξ3(t) sym-
bolizes the thickness of the diffusion zone at timet > t0,
measured from the adjacent interface to a fictitious moving
boundary which is determined by a null flux condition on it.
Figure 1 illustrates the nitrogen concentration profiles, lay-
ers, diffusion zone and interfaces, including the plasma-solid
one.

Then, the model has the following form

∂C1

∂t
= D1

∂2C1

∂x2
, t > t0,

ξ0(t) < x < ξ0(t) + ξ1(t) (1)

∂C2

∂t
= D2

∂2C2

∂x2
, t > t0,

ξ0(t) + ξ1(t) < x < ξ0(t) + ξ1(t) + ξ2(t) (2)

∂C3

∂t
= D3

∂2C3

∂x2
, t > t0,

ξ0(t)+ξ1(t)+ξ2(t) < x < ξ0(t)+ξ1(t)+ξ2(t)+ξ3(t) (3)

WhereCi = Ci(x, t), i = 1, 2, 3 represent the nitro-
gen concentration at depthx for time t andDi , i = 1, 2, 3
are the effective diffusion coefficients at each phase and dif-
fusion zone. Then, (1)-(3) express the Fick’s Second Law at
each section.

Ci(x, t0) = f(x) , i = 1, 2, 3 (4)

Express the initial nitrogen concentration for the timet0.

C1(x, t)
∣∣
x = ξ 0(t) + = CS (5)

Represents the boundary condition on the surface.

C1(x, t)
∣∣
x = (ξ 0(t)+ξ 1(t)) − = C1

min (6a)

C2(x, t)
∣∣
x = (ξ 0(t)+ξ 1(t)) + = C2

max (6b)

Indicate the jump at the interface betweenε andγ ′ with
solubility limits C1

min andC2
max.

C2(x, t)
∣∣
x = (ξ 0(t)+ξ 1(t)+ξ2(t)) − = C2

min (6c)

C3(x, t)
∣∣
x = (ξ 0(t)+ξ 1(t)+ξ2(t)) + = C3

max (6d)

Represent the jump at the interface betweenγ ′ andα
with solubility limits C2

min andC3
max.

C3(x, t)
∣∣
x = (ξ 0(t)+ξ 1(t)+ξ2(t)+ξ 3(t)) − = C0 (6e)

Stands for the nitrogen concentration at the fictitious
moving boundary which separates the diffusion zone from
the substrate.

Moreover,

ξ′1(t) =
−D1

∂C1
∂x

∣∣
x= (ξ 0(t)+ξ 1(t)) − + D2

∂C2
∂x

∣∣
x= (ξ 0(t)+ξ 1(t)) +

C1
min − C2

max

− ξ′0(t) (7)

ξ′2(t) =
−D2

∂C2
∂x

∣∣
x= (ξ 0(t)+ξ 1(t)+ξ 3(t)) − + D3

∂C3
∂x

∣∣
x= (ξ 0(t)+ξ 1(t)+ξ3 (t)) +

C2
min − C3

max

− ξ′0(t)− ξ′1(t) (8)

Whereξ′0(t) , ξ′1(t) , ξ′2(t) , ξ′3(t) stand for the deriva-
tives of ξ0(t) , ξ1(t) , ξ2(t) , ξ3(t) respectively, represent
the mass balance (Stefan condition) at each interface.

∂C3

∂x
(x, t)

∣∣
x = (ξ 0(t)+ξ 1(t)+ξ2(t)+ξ 3(t)) − = 0 (9)

Describes the flux null condition at the fictitious moving
boundary which divides the diffusion zone from the substrate.
This contrasts with (7) and (8), which express the mass bal-
ance at the interfaces between the layers. It means that be-
yond this fictitious moving border there is no nitrogen diffu-
sion.

Finally,

ξi(t0) = xi, i = 1, 2, 3 (10)

Denote the thicknesses of layer and diffusion zone for
time t0.

Meanwhile, the separationξ0(t) from the original surface
caused by the surface erosion is modeled through

ξ0(t)=





β1 t, 0 ≤ t ≤ t0

a t4+b t3+c t2+d t+e, t0 ≤ t ≤ t1

β2 t+f, t1 ≤ t

(11)

β1 denotes the sputtering rate obtained through the SRIM
simulation for the ferritic phase and remains constant in
[0,t0]. This rate is assumed to be a decreasing function of
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time in [t0 , t1] until it becomes constant again fromt1 on, at
a sputtering rateβ2. The decreasing section ofξ0(t) is mod-
eled through a fourth order polynomial fit in[t0 , t1], which
represents the behavior of the surface erosion. This fourth
order polynomial enables a smooth transition of the surface
displacement for the elapsing time between sputtering rates
β1 andβ2.

3. Solution of the mathematical model

In such a way, the model (1)-(11) describes the layer and
diffusion zone growth kinetics in the transient stage: lay-
ers are completely formed and evolve to a quasi-steady state
following a moving boundary diffusion pattern inCi(x, t),
i = 1, 2, 3, where Stefan conditions are prescribed at the
interfacesξ0(t) + ξ1(t), ξ0(t) + ξ1(t) + ξ2(t) . The solution
to problem (1)-(11) is sought using Goodman’s method (heat
balance integral method HBIM [33-35]).

Concentration profilesCi(x, t) , i = 1, 2, 3 are repre-
sented by

C1(x, t) = C1
min + a1(t)(ξ0(t)

+ ξ1(t)− x) + b1(t)(ξ0(t) + ξ1(t)− x)2 (12)

ξ0(t) < x < ξ0(t) + ξ1(t) , t > t0

C2(x, t) = Cmin
2 + a2(t)(ξ0(t) + ξ1(t) + ξ2(t)− x)

+ b2(t)(ξ0(t) + ξ1(t) + ξ2(t)− x)2 (13)

ξ0(t) + ξ1(t) < x < ξ0(t) + ξ1(t) + ξ2(t) , t > t0

C3(x, t) = Cmax
3 + a3(t)(ξ0(t) + ξ1(t) + ξ2(t)− x)

+ b3(t)(ξ0(t) + ξ1(t) + ξ2(t)− x)2 (14)

ξ0(t) + ξ1(t) + ξ2(t) < x < ξ0(t) + ξ1(t)

+ ξ2(t) + ξ3(t) , t > t0

It meansCi(x, t), i = 1, 2, 3 are to be found as analyti-
cal approximate solutions to (1)-(11).

The unknowns are nowai(t), bi(t) , ξi(t) , i = 1, 2, 3.
Note that statements (12)-(14) guarantee the fulfillment of the
jump conditions (6a), (6c) and (6d) at the interfaces. Also,
from the decreasing behavior ofCi(x, t), i = 1, 2, 3 as
functions of the space variable for fixed times and Fick’s Sec-
ond Law it follows thatai(t) > 0, bi(t) > 0 i = 1, 2, 3.

Conditions (5), (6b) y (6d) become

C1
min + a1(t)ξ1(t) + b1(t)ξ2

1(t) = CS (15)

C2
min + a2(t)ξ2(t) + b2(t)ξ2

2(t) = C2
max (16)

C3
max − a3(t)ξ3(t) + b3(t)ξ2

3(t) = C0 (17)

Null flux condition (9) takes the form

a3(t)− 2b3(t) ξ3(t) = 0 (18)

The use of Stefan conditions at each interface yield

a1(t)
C1

min − C2
max

(
D1a1(t)−D2a2(t)

− 2D2b2(t)ξ2(t)
)

= 2D1b1(t) (19)

a2(t)
C2

min − C3
max

(D2a2(t)−D3a3(t)) = 2D2b2(t) (20)

Mass balance integrals at each phase and diffusion zone
produce the following three non-linear ODE in the same un-
knowns as the previous polynomials equations.

(
CS − C1

min

)
ξ
′
0(t) +

(
1
2

a
′
1(t) +

1
3
b
′
1 (t) ξ1(t)

)
ξ2
1(t)

+ (a1(t) + b1(t) ξ1(t)) ξ1(t) ξ
′
1(t) = 2D1b1ξ1(t) (21)

(
C2

max − C2
min

) (
ξ
′
0(t) + ξ

′
1(t)

)

+
(

1
2
a
′
2(t) +

1
3
b
′
2(t)ξ2(t)

)
ξ2
2(t)

+ (a2(t) + b2(t)ξ2(t)) ξ2(t)ξ
′
2(t) = 2D2b2(t)ξ2(t) (22)

(
C3

max − C0

) (
ξ
′
0(t) + ξ

′
1(t) + ξ

′
2(t) + ξ

′
3(t)

)

−
(

1
2
a
′
3(t)−

1
3
b
′
3(t)ξ3(t)

)
ξ2
3(t)

− (a3(t)− b3(t)ξ3(t)) ξ3(t)ξ
′
3(t) = 2D3b3(t)ξ3(t) (23)

Equations (15)-(23) form a system of differential-
algebraic equations (DAE) inai(t), bi(t), ξi(t), i = 1, 2, 3.
A detailed deduction of this system is found in the Appendix.
In solving the resulting DAE system, initial conditions for
the unknown are to be prescribed. Initial conditions forξi(t),
i = 1, 2, 3 could be obtained using experimental results,
once the layers are already formed at timet0. Meanwhile, ini-
tial conditions for the coefficientsai(t), bi(t), i = 1, 2, 3 at
time t0 could be found from the polynomial equations (15)-
(20).

In such a way, the initial conditions found as indicated
above, guarantee that the solutions (12)-(14) approximately
satisfy the initial condition (4) of the original problem.

4. Numerical results and discussion

A strategy for solving the DAE system is to differentiate the
polynomial equations (15) - (20) in order to get ordinary dif-
ferential equations in the same unknowns. The new equations
and the remaining three (21)-(23) form an ODE system sub-
jected to the corresponding initial conditions, which is nu-
merically solved.
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FIGURE 2. (a) Nitrogen concentration profiles fort = 240 s andt = 36,000 s. (b) Log-log plot of a), which provides a better view of the
diffusion zone.

The experimental values ofCS , Ci
max, Ci

min, Di,
i = 1, 2, 3 are taken from [36]:

CS = 27.211 at. %, C1
min = 24.460 at. %,

C2
max = 19.959 at. %, C2

min = 19.649 at. %

C3
max = 0.28 at. %,

C0 = 0 at. %,

D1 = 1.7385× 10−14 m2/s,

D2 = 1.1525× 10−13 m2/s,

D3 = 5.6646× 10−12 m2/s
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FIGURE 3. Nitrogen concentration profiles for each phase at different times. (a)ε phase fort = 2, 4, 6, 8, 10 h. (b)γ’ phase fort = 2, 4, 6,
8, 10 h. (c)α phase fort = 2, 6, 10 h..

Rev. Mex. Fis.60 (2014) 257–268



MODELING SURFACE PROCESSES AND KINETICS OF COMPOUND LAYER FORMATION DURING PLASMA. . . 263

Computer simulations allow to set

t0 = 120 s, ξ 1(120) = 10−7 m,

ξ 2(120) = 10−6 m, ξ 3(120) = 10−3 m,

β1 = 3.998× 10−10 m/s

β2 = 1.3889× 10−10 m/s

The initial conditions are found to be:

a1(120) = 2.24347× 107, a2(120) = 307773 ,

a3(120) = 560

b1(120) = 5.07531× 1013, b2(120) = 2.22658× 109,

b3(120) = 280000

Computing was performed on a PC at 2.4 GHz using
Mathematica version 8. The results of the numerical experi-
ments yield:

- The numerical solution of the ODE system initial prob-
lem associated to equations (15)-(23) with the pre-
scribed initial conditions.

- The behavior of the layer thicknesses and interfaces.

- The nitrogen concentration profiles at each phase and
diffusion zone.

- Curve fitting of the layers and diffusion zone thick-
nesses.

FIGURE 4. Evolution of the different interfaces depths. (a) Layer interfaces and sputtered depth. (b) Layer interfaces, fictitious boundary
and the sputtered depth in a log-log plot.
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Figure 2 shows the nitrogen concentration profiles in lay-
ersε, γ’ and diffusion zone for the variable erosion regime
proposed in this work. It is observed the expected behavior
for different times according to reference data at 530◦C. In
Fig. 2b, log-log curves allow to appreciate the thickness of
the diffusion zone.

In Fig. 3 the evolution of the concentration profiles is
shown for each layer and diffusion zone at different times.
The qualitative behavior of the concentration profiles is sim-
ilar to the observed response for different nitriding regimes
(with or without the sputtering phenomenon).

Figure 4 exhibits the erosion profile and its influence in
the kinetics of the interfaces. From figure 4b it is significant
to point out that the behavior of the fictitious boundary, which
divides the diffusion zone from the substrate as introduced in
the model following Goodman’s method, is not parabolic.

Figure 5 shows the profiles of the compound layer
thickness for different sputtering rate regimes: no erosion,
Marciniak’s constant, variable (proposed in this paper), and
SRIM constant erosion rates. The thickness kinetics of the
compound layer under variable erosion rate, as proposed in
this work, is bounded by the thickness kinetics of the comp-

FIGURE 5. Evolution of the nitride compound layer thickness with different sputtering rate regimes: no erosion, Marciniak’s constant,
variable and SRIM’s constant erosion rate for (a) short times and (b) large times.
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ound layer modeled with constant erosion rates upon where
the present model is built. As it can be seen, for long periods
of time the variable sputtering rate effect becomes negligi-
ble as the compound layer thickness clearly approaches the
Marciniak’s constant erosion profile. It is worth to mention
that this figure exhibits that the compound layer thicknesses
considering sputtering are significantly narrower than the one
with no erosion. The noticed behavior is in full agreement
with the conclusion of other authors [20].

5. Conclusions

The layer growth kinetics during plasma nitriding of pure iron
could be studied considering different stages associated to the
formation a coalescence ofγ ′−Fe 4 N1−x y ε−Fe 2 N1−z

precipitates.
The present work addresses the description of the layer

growth kinetics and nitrogen concentration profiles once the
layers are formed, and evolve following a moving boundary
pattern. The research presents

- A correctly stated mathematical model of the problem,
which takes into account the surface erosion.

- The adequacy and consistency of the mathematical
model with the mass transfer mechanism (Fick’s Sec-
ond Law and mass-balance at the interfaces) and the
relevant information of the problem (diffusion coeffi-
cients and nitrogen solubility limits.

- The study and solution of the mathematical model us-
ing Goodman’s method (heat balance integral method).

- The approximate analytical solutions are obtained
without a priori assumptions on the layer growth,
avoiding the use of pre-established solutions of the dif-
fusion equations which are not directly related to the
studied problem.

- The results of the present model qualitatively agree
with the research of other authors [20,30-32]. Never-
theless, in the present work the modeling of the sput-
tering rate is based on a computer simulation of the
ionic implantation through SRIM. This approach en-
riches the study of the layer kinetics during ion nitrid-
ing of pure iron.

- The curve fitting of the obtained layer growth exposes
the qualitative behavior observed by other authors [20]:
“initially the nitride layer grows rapidly, but the rate
falls below the parabolic law after longer times”.

The consideration of the above mentioned elements pro-
vides a novel and original approach to the study of the com-
pound layer formation and kinetics during plasma nitriding
of pure iron. The obtained results allow further research, and
qualitative and quantitative understanding of nitriding pro-
cesses.

Appendix

Next, a detailed deduction of (19)-(23) is presented. See also
[24].

From condition 6a) it follows

dC1(x, t)
dt

|x=(ξ0(t)+ξ1(t))
−

=
∂C1(x, t)

∂x
(ξ′0(t) + ξ′1(t))|x= (ξ 0 (t)+ξ 1 (t)) −

+
∂C1 (x, t)

∂t x=(ξ0(t)+ξ1(t))
− = 0

Which yields

−a1(t) (ξ′0(t) + ξ′1(t)) + 2D 1b1(t) = 0 (A.1)

On the other hand, the mass balance condition (7) leads
to

ξ′1(t) =
1

C 1
min − C 2

max

[
D 1a1(t)

−D 2

(
a2(t) + 2b2 ξ

(
2t)

) ]
− ξ′0(t) (A.2)

Combining (A1) with (A2) the algebraic Eq. (19) is ob-
tained

a1(t)
C1

min − C2
max

(
D1a1(t)−D2a2(t)

− 2D2b2(t)ξ2(t)
)

= 2D1b1(t) (A.3)

Analogously, from 6c) and mass balance condition (8),
the algebraic Eq. (20) can be inferred

a2(t)
C2

min − C3
max

(D2a2(t)−D3a3(t)) = 2D2b2(t) (A.4)

ODE (21)-(23) are deducted using mass balance integral
along each phase and diffusion zone.

Then, Fick’s Second Law in phaseε, whereξ0(t) < x <
ξ0(t) + ξ1(t), is accomplished in average as

ξ 0(t)+ξ 1(t)∫

ξ 0(t)

∂C 1

∂t
dx =

ξ 0(t)+ξ 1(t)∫

ξ 0(t)

D1
∂2C 1

∂x2
dx (A.5)

This mass balance integral can be calculated as follows.

ξ 0(t)+ξ 1(t)∫

ξ 0(t)

∂C 1

∂t
dx

=
d

dt




ξ 0(t)+ξ 1(t)∫

ξ 0(t)

C1(x, t) dx




− C1
min(ξ′0(t) + ξ′1(t)) + CS ξ′0(t) (A.6)
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Which, employing (12), turns into

ξ 0(t)+ξ 1(t)∫

ξ 0(t)

∂C 1

∂t
dx =

(
a′1(t)

2
+

b′1(t)
3

ξ1(t)
)

ξ2
1(t) + (a1(t) + b1(t)ξ1(t)) ξ1(t) ξ′1(t) +

(
CS − C1

min

)
ξ′0(t) (A.7)

Furthermore
ξ 0(t)+ξ 1(t)∫

ξ 0(t)

D1
∂2C 1

∂x2
dx = D1

[
∂C1(x, t)

∂x
| x = (ξ 0(t)+ξ 1(t))

− − ∂C1(x, t)
∂x

|x = ξ 0(t) +

]
(A.8)

Again, thanks to (12), it leads to

ξ 0(t)+ξ 1(t)∫

ξ 0(t)

D1
∂2C 1

∂x2
dx = D1 [−a1(t) + a1(t) + 2b1(t)ξ1(t)] = 2D1b1(t)ξ1(t) (A.9)

Combining (A7) with (A9) the referred ODE (21) is obtained

(
CS − C1

min

)
ξ
′
0(t) +

(
1
2

a
′
1(t) +

1
3
b
′
1 (t) ξ1(t)

)
ξ2
1(t) + (a1(t) + b1(t) ξ1(t)) ξ1(t) ξ1

′
(t) = 2D1b1ξ1(t) (A.10)

Fick’s Second Law in phaseγ ′, whereξ0(t) + ξ1(t) < x < ξ0(t) + ξ1(t) + ξ2(t), in average yields

ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

∂C 2

∂t
dx =

ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

D2
∂2C 2

∂x2
dx (A.11)

Similarly

ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

∂C 2

∂t
dx =

d

dt




ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

C2(x, t) dx




− C2
min (ξ′0(t) + ξ′1(t) + ξ′2(t)) + C2

max (ξ′0(t) + ξ′1(t)) (A.12)

Now, thanks to expressionC2(x, t) in (13) it follows that

ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

∂C 2

∂t
dx =

(
a′2(t)

2
+

b′2(t)
3

ξ2(t)
)

ξ2
2(t)

+ (a2(t) + b2(t)ξ2(t)) ξ2(t) ξ′2(t) +
(
C2

max − C2
min

)
( ξ′0(t) + ξ′1(t) ) (A.13)

Moreover
ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

D2
∂2C 2

∂x2
dx = D2

[
∂C2(x, t)

∂x
| x = (ξ 0(t)+ξ 1(t)+ξ 2(t))

− − ∂C2(x, t)
∂x

|x =( ξ 0(t)+ξ 1(t) )+

]
(A.14)

Which can be rewritten, employing (13), as

ξ 0(t)+ξ 1(t)+ξ 2(t)∫

ξ 0(t)+ξ 1(t)

D2
∂2C 2

∂x2
dx = D2 [−a2(t) + a2(t) + 2b2(t)ξ2(t)] = 2D2b2(t)ξ2(t) (A.15)

Now, the combination of (A13) y (A15) leads to ODE (22)

(
C2

max − C2
min

) (
ξ
′
0(t) + ξ

′
1(t)

)
+

(
1
2
a
′
2(t) +

1
3
b
′
2(t)ξ2(t)

)
ξ2
2(t)

+ (a2(t) + b2(t)ξ2(t)) ξ2(t)ξ
′
2(t) = 2D2b2(t)ξ2(t) (A.16)
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Finally at the diffusion zone, whereξ0(t) + ξ1(t) < x < ξ0(t) + ξ1(t) + ξ2(t) the mass balance integral becomes

ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

∂C 3

∂t
dx =

ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

D3
∂2C 3

∂x2
dx (A.17)

Analogously

ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

∂C 3

∂t
dx =

d

dt




ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

C3(x, t) dx




− C0 (ξ′0(t) + ξ′1(t) + ξ′2(t) + ξ′3(t)) + C2
max (ξ′0(t) + ξ′1(t) + ξ′2(t)) (A.18)

And the expression (14) ofC3(x, t) produces

ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

∂C 3

∂t
dx =

(
−a′3(t)

2
+

b′3(t)
3

ξ3(t)
)

ξ2
3(t)

+ (−a3(t) + b3(t)ξ3(t)) ξ3(t) ξ′3(t) +
(
C3

max − C0

)
( ξ′0(t) + ξ′1(t) + ξ′2(t) + ξ′3(t) ) (A.19)

On the other hand

ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

D3
∂2C 3

∂x2
dx = D3

×
[
∂C3(x, t)

∂x
| x = (ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t))

− − ∂C3(x, t)
∂x

|x =( ξ 0(t)+ξ 1(t)+ξ 2(t) )+

]

And the use of (14) gives

ξ 0(t)+ξ 1(t)+ξ 2(t)+ξ 3(t)∫

ξ 0(t)+ξ 1(t)+ξ 2(t)

D3
∂2C 3

∂x2
dx = D3 [−a3(t) + a3(t) + 2b3(t)ξ3(t)] = 2D3b3(t)ξ3(t) (A.20)

In the end, ODE (23) is obtained from (A19) y (A20)

(
C3

max − C0

) (
ξ
′
0(t) + ξ

′
1(t) + ξ

′
2(t) + ξ

′
3(t)

)
−

(
1
2
a
′
3(t)−

1
3
b
′
3(t)ξ3(t)

)
ξ2
3(t)

− (a3(t)− b3(t)ξ3(t)) ξ3(t)ξ
′
3(t) = 2D3b3(t)ξ3(t) (A.21)
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