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Quasiclassical approach to tunnel ionization in the non
relativistic and relativistic regimes
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Non relativistic and relativistic transition rates were observed for the deep tunnel regime for the case of a linear polarized laser field. The
contribution of the initial momentum of an ejected photoelectron, the ponderomotive potential and the linear Stark shift for the Ar atom
and its ions were taken into account. It was shown that, in both regimes, these processes have an influence on the transition rate behavior.
The curves obtained for the transition rate show that with increasing laser filed intensities and ion charge the influence of relativistic effects
increases.
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1. introduction

Studying of the photoionization of atomic and molecular sys-
tems is one of the important ways to investigate the charac-
teristic properties of the interaction of these systems with an
electromagnetic field. This provides many fundamental in-
sights into light-matter interactions and because of that it has
been the subject of many theoretical and experimental inves-
tigations over the years. As a result, many theories were de-
fined as the theoretical framework of these processes. Every-
thing started in 1964 with the Keldysh theory [1] that showed,
for the first time, that the tunnel effect and the multiphoton
ionization of atoms are two limiting cases of photoioniza-
tion. The theory is quasi classical meaning that an atom is
described quantum-mechanically whereas the laser field is
treated classically. Keldysh introduced the Keldysh param-
eter of adiabaticity, determined through the field strengthF ,
the frequencyω of the external field and the binding energy
Ei of the electron in the atom,γ = ω(2Ei)1/2/F (in the
atomic units) [1]. Tunneling ionization is the limiting case of
a photoionization process, when the dimensionless Keldysh
parameterγ ¿ 1.

Tunneling ionization of atoms occurs in an intense laser
field when the potential barrier of an atom is deformed in
a way that bound electrons can tunnel through this barrier
and “escape” from an atom easily. Tunneling plays a cen-
tral role in the interaction of matter with intense laser pulses.
Forγ ¿ 1 the multiphoton dynamics dominates. Soon after,
Perelomov, Popov and Terent’ev developed the new PPT the-
ory [2] to calculate the ionization rate for hydrogen like atoms
in a linearly and circularly polarized laser field. Twenty years
later Ammosov, Delone and Krainov derived the ADK the-
ory [3] for the case of tunneling ionization for arbitrary com-
plex atoms and atomic ions. This is still one of the commonly
used models for calculating the ionization rate.

The ionization process is directly determined by the elec-
tron binding energy. When an atom is placed in an intense

laser field this field influences the electron’s binding poten-
tial, perturbs it and makes it much higher than the unper-
turbed value. There are at least two reasons for this increase:
the linear Stark effect and the ponderomotive potential.

If an atom is placed in an external electric field, its energy
levels are altered. This phenomenon is essential and known
as the Stark effect. As the field increases, the states spread
out in energy and therefore have linear Stark effects even in
lower intensity fields.

The ponderomotive potential is caused by the quiver mo-
tion of an electron in an atom. The ponderomotive potential
is directly proportional to the laser field intensity, meaning
that its significance increases with increasing laser intensity.
Therefore, the description of ionization must take into ac-
count both effects.

2. Corrections of the ionization potential

The field free ionization potential of an atom can change un-
der laser irradiation. We observed two effects which change
the ionization potential and, at the same time, the tunnel-
ing rate in non relativistic and relativistic domains of laser
field intensities. In recent years (recently) modern laser sys-
tems are able to generate laser pulses with peak intensities
up to∼ 1022 Wcm−2. This progress in laser physics and
the laser technique enables numerous experiments opening
a window to the physical phenomena occurring in the rela-
tivistic domain. They became significant for intensities up to
∼ 1018 Wcm−2. We considered the deep tunneling regime,
where the Keldysh parameterγ ≤ 0.2. According to Reiss
[4] theγ → 0 limit also requires relativistic treatment.

An electron is always oscillating around its nucleus, but
we did not take into account this motion in our analysis.
We observed only electron motion in an oscillating electric
field. The physical picture of this motion is mathematically
described by the ponderomotive potential which represents
the time average kinetic energy of the electron oscillating
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in a laser field. We have an electron in a varying external
laser field and with a kinetic energy large enough so New-
tonian equations of classical physics~̈r = ~F(~r, t) could be
used (here and below, the atomic system of units is used
e = m = ~ = 1). ~F(~r, t) is the electric field vector at
the position of the electron. The field intensity should be
large along the beam axis, and should fall smoothly to zero at
some distance from the axis.~F(~r, t) can be decomposed into
a fast oscillation term modulated by a slowly varying ampli-
tude ~F (~r). For a linearly polarized field:

~̈r = ~F (~r) cos ωt. (1)

As the light frequency from the optical range is very big,
we can picture our electron wiggling slightly around the cen-
tral position at the optical frequency. This picture is mathe-
matically described if one adds a slow drift term, and a slow
amplitude modulation, to the standard rapidly oscillating si-
nusoidal solution of this problem:

~r(t) = ~α(t) + ~β(t) cos ωt, (2)

where~α(t) is the coordinate of the position of the electron
and~β(t) the amplitude of the wiggling motion. The temporal
variations ofα, β take place in a time interval much longer
than one optical cycle. That means we can expand~F (~r) in a
series inβ and keep the first two terms in the expansion:

~F (~α(t) + ~β(t) cos ωt)

= ~F (~α) + (~β · ∇)~F (~α) cos ωt + · · · . (3)

Substituting Eq. (2) and Eq. (3) into Eq. (1) we obtain:

~̈α− ω2~β(t) cos ωt = [~F (~α(t))

+ (~β · ∇)~F (~α(t)) cos ωt] cos ωt. (4)

On the right hand side of Eq. 4 we have the term which in-
cludescos2 ωt, a factor very rapidly oscillating at frequency
ω. After averaging over the rapid oscillation at frequencyω
will be equivalent in gain to the term on the left hand side
which does not contain thecos ωt factor, so we obtain:

〈~̈α〉 =
1

2T

T∫

0

(~β · ∇)~F (~α)dt. (5)

There is also a correspondence between the remaining
two terms multiplied bycosωt:

〈~β〉 = − 1
ω2
〈~F (~α)〉. (6)

Sinceα, β andF are slowly varying quantities compared
to the optical frequency, their average values over an optical
cycle do not change, thus we can remove the average sign in
Eq. (5) and Eq. (6):

~̈α =
1

4ω2
∇(~F 2). (7)

Equation 7 indicates that under the influence of the laser
field, ignoring the rapid oscillatory term, the movement of the
slow-varying term is driven by an effective force:

~f = − 1
4ω2

∇(~F 2) (8)

~f is normally referred to as the ponderomotive force which
points along the gradient of the intensity. If the laser field is
non-time-varying, this force is a conservative one, and can be
associated with a potential given by:

Up =
F 2

4ω2
, (9)

or, in a standard system of units:

Up =
e2F 2

4meω2
. (10)

From Eq. 9 follows that with increasing of the laser field
intensity the influence of the ponderomotive potential on the
field free ionization potentialEi becomes larger and it be-
comes more significant. Increase of the laser field intensity
also leads to the relativistic domain and for these intensities
the relativistic ponderomotive potential may be written in the
following form U rel

p =
√

c4 + 2c2Up − c2 [5], wherec is the
speed of light andUp is the nonrelativistic ponderomotive po-
tential (see the Eq. 9). To account for the ponderomotive po-
tential we replaced the ground bound stateEi with the shifted
energyEief = Ei +Up = Ei +F 2/4ω for the nonrelativistic
andErel

ief = Ei + U rel
p = Ei +

(√
c4 + 2c2Up − c2

)
for the

relativistic domain.
As we already mentioned when an atom is placed in an

external electrical field its energy levels undergo a splitting
proportional to the field intensity. This effect is known as
the linear Stark effect and unlike the weak fields where it
may be neglected in a strong laser field that is not the case.
Using the perturbation theory approximation the shifted ion-
ization potential can be represented in the following form
Eief = Ei + ESt = Ei + αF 2/4 [6], whereESt is the shift
caused by the linear Stark effect andα is the static polariz-
ability of the atom. It is convenient to use the perturbation
theory for describing the aforementioned effects because of
its simplicity and the availability of experimental data for po-
larizabilities for atoms and ions [7].

Having both effects in mindi.e. the shift caused by the
ponderomotive potential and the linear Stark effect, the effec-
tive ionization potentialEief, for the nonrelativistic (Eq. 11)
and relativistic (Eq. 12) laser field intensity, can be expressed
as:

Eief = Ei + Up + ESt = Ei + F 2/4ω + αF 2/4, (11)

Erel
ief = Ei + U rel

p + ESt

= Ei +
√

c4 + 2c2Up − c2 + αF 2/4. (12)
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FIGURE 1. The effective ionization potential,Erel
ief (dot-dashed line

represents the ionization potential corrected with the ponderomo-
tive shift and the solid line when corrected with the ponderomotive
and the Stark shift).

The presence of additional terms leads to increasing of
the ionization potential (Fig. 1) which means that more pho-
tons or a stronger laser field is necessary for the photoioniza-
tion process. For the intensity∼ 1020 Wcm−2 this increase
is approximately 13%. Figure 1 shows that with increase of
the laser field intensity the Stark shifted potential grows and
this is in accordance with theoretical predictions.

When an atom is “exposed” to the external laser field
its Coulomb potential is deformed and as a result the bar-
rier through which the electron can tunnel is formed. The

resulting potential is the so-called effective potential. The
correction of the ionization potential changes the value of the
effective potentialUeff (see The Fig. 2). In the parabolic
coordinates, as a function of variableη and the corrected ion-
ization potentialEi (see the Eq. 11 and 12) this potential can
be expressed in the form

Ueff=− (2n2 + |m|+ 1)(2(Ei + F 2/4ω + αF 2/4))
1
2

η

− Fη

2

for the nonrelativistic case and for the relativistic case in the
form

U rel
eff =−

(2n2+|m|+1)
(
2

(
Ei+

√
c4+2c2Up−c2+αF 2/4

)) 1
2

η

−Fη

2

where n2 is the parabolic andm is the magnetic quan-
tum number of the initial state. From all possible values
of parabolic quantum numbern2 only n2 max is interesting
to us because the contribution of all others is negligible;
n2 max = n∗ − 1 wheren∗ is the effective quantum num-
ber,n∗ = Z/(2Ei).

FIGURE 2. (a) The effective potentialU rel
eff for the fixed laser field intensity at the value ofI = 1018 Wcm−2 andη(0,2.5), (b) Shown

maximum from (a). For both graphs the following notation is used: dot-dashed for the ionization potential without corrections, solid line for
the ionization potential corrected with the ponderomotive shift and dashed line with the ponderomotive and the Stark shift, respectively.

TABLE I. The tunneling distances.

The laser field The tunneling distance [a.u.]

intensity Wcm−2 Rd = Ei
F

Rd = (Ei+F2/4ω)
F

Rd = (Ei+F2/4ω+αF2/4)
F

1014 10.7397 10.9763 11.126

Rd = Ei
F

Rd = (Ei+F2/4ω)
F

Rrel
d =

(
Ei+

(√
c4+2c2Up−c2

)
+αF2/4

)

F

1018 0.107397 23.7738 38.7371
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As we can see from Fig. 2 the potential barrier is increas-
ing making the tunneling process harder and at the same time
the transition rate decreases.

Here it is convenient to show how increasing of the laser
field intensity influences the tunneling distance,Rd = Ei/F
[8]. It is assumed that an electron in the classical Coulomb
well moves back and forwards along one chosen axis. With
the aforementioned corrections of the ionization potential
the tunneling distance can be written the following form as
Rd = (Ei +F 2/4ω +αF 2/4)/F for the nonrelativistic, and

Rrel
d =

(Ei + (
√

c4 + 2c2Up − c2) + αF 2/4)
F

for the relativistic domain. The results obtained for the
two chosen laser field intensities, one from the nonrela-
tivistic (1014 Wcm−2) and one from the relativistic domain
(1018 Wcm−2) are shown in Table I.

As can be seen from Table I, the influences of additional
processes which certainly occur in an atom are more signif-
icant in the relativistic domain. But, no matter how small,
they also exist in the nonrelativistic domain.

3. Correction of the transition rates

From all aforementioned it follows that these corrections of
the ionization potential must be incorporated into an expres-
sion for the tunneling rate in order to obtain a more precise
picture of the tunnel ionization process.

Krainov’s expression for the relativistic transition rate [9]
is given by formula:

Wrel = WnonrelExp

[
−2Eeγ

3

3ω
− E2

eγ

c2ω

]
, (13)

whereEe is the kinetic energy of ejected electrons. This
equation is obtained based on the Landau-Dykhne formula
[9] (with exponential accuracy):

Wif Exp[−2Im

t0∫

0

(Ef (t) + Ei)dt], (14)

whereEf (t) is the relativistic energy for a free electron in the
laser field [10] andEi is the ionization energy for the initial
state. This formula is also valid for the relativistic case when
the aforementioned condition concerning the photon energy
should be exchanged for a milder requirement that it must be
small compared to the kinetic energy of the ejected electron.
The classical relativistic motion of charged particles in a laser
field is assumed. According to Eq. 13 the non relativistic part
of the expression has an important influence on the general
rate behavior. We first considered non relativistic ionization
probability,Wnonrel in the frame of a widely used ADK the-
ory with the correction for non zero initial momentum of the
photoelectron

Wnonrel =
(

4z3e

Fn4

)2n−1

Exp

[
− 2Z3

3Fn3
− p2

0γ
3

3ω

]
(15)

FIGURE 3. (a) Non relativistic tunnel transition rates,Wnonrel

(b) Non relativistic tunnel yields,Ynonrel. The laser field inten-
sity = 1014 − 1016 Wcm−2 , the fixed parabolic coordinate at
valueη = 150 andZ = 1. For both graphs the following no-
tation is used: solid line without any correction of the tunnel rate
(yield), dashed line with a correction for the initial momentum of
the ejected electron, dot-dashed line with a correction for the pon-
deromotive shift and dotted line with a correction for the pondero-
motive and the Stark shift.

[11] (see Fig. 3). Herep0 denotes the longitudinal compo-
nent of the initial momentum,Z is the ion charge and n the
principal quantum number. Selection of the ADK theory is
in accordance with the fact that this theory for rare gas atoms
such as Ar, Kr and Xe just forγ < 0.5 fits experimental
results [12]. We incorporated corrections of the ionization
potential in the expression for the momentum of the ejected
photoelectron

p0 =
1
2

√
ω
√

2(Ei + F 2/4ω + αF 2/4)
γ

η − 1

− 1

η

√
ω
√

2(Ei+F 2/4ω+αF 2/4)

γ η − 1

, (16)

whereω is the frequency of the electromagnetic laser field
andF is the electric field strength. It is found that the ob-
served physical picture can be best described using parabolic
coordinates [13]. The parabolic coordinates are defined as
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ξ = r+z, η = r−z andφ = arctan(y/x) whereξ, η ∈[0,∞]
andφ ∈[0,2π].

The obtained tunnel rates and appropriate yields,

Y =
∫

τ

Wdt,

are shown in Fig 3.
It can be seen that the ponderomotive potential has a

more significant influence on the photoionization yield (see
Fig. 3(b)).

Now it was interesting to observe how the tunnel rate be-
haves for larger laser field intensities,i.e. for values belong-
ing to the relativistic domain. So we returned to Eq. 2. It is
assumed that the major number of photoelectrons is focused
along the polarization axis and that the electrons have mod-
erate values of kinetic energiesEe =

√
p2
0c

2 + c4 − c2 [9],
c = 137.02 is the speed of light in atomic units. We trans-
formed this expression into the following form:

Ee=

√√√√√√√√√




1
2

√√√√ω
√

2
(
Ei+

√
c4+2c2Up−c2+αF 2/4

)

γ
η−1− 1

η

√
ω

√
2
(

Ei+
√

c4+2c2Up−c2+αF 2/4
)

γ η−1




2

c2+c4−c2 . (17)

FIGURE 4.Relativistic transition rateWrel for the ion chargeZ = 1, 5, 10 respectively, the laser field intensityI = 1018 − 1021 Wcm−2

and the fixed parabolic coordinate at value ofη = 0.25. For all graphs the following notation is used: solid line without any correction of
the tunnel rate (yield), dashed line with a correction for the initial momentum of ejected electron, dot-dashed line with a correction for the
ponderomotive shift and dotted line with a correction for the ponderomotive and the Stark shift.

FIGURE 5. The relativistic tunnel transition rate,Wrel, for the
ion charge,Z = 1, 5, 10, the laser field intensityI = 1018 −
1021 Wcm−2 andη(0.1,0.3).

In Eq. 17 we expressed the initial momentum taking
into account the correction for the ionization potential (see
Eq. 16).

We observed the relativistic transition rate based on
Eq. 13 for the argon atom which is irradiated with a Ti-
sapphire laser ofλ = 800 nm. Intensities are up to
1018 Wcm−2. Figure 4 shows the dependence between the
transition rate and the laser field intensities forZ = 1, 5, 10.

From Fig. 4 it is obvious that for all values of ion charges,
Z = 1, 5, 10 incorporation of the momentum, ponderomo-

tive potential and the linear Stark shift leads to decreasing
of the transition rate. Part of the laser pulse energy is used
for increasing the momentum, ponderomotive potential and
the Stark shift of ejected electrons living smaller amounts of
light quanta available for ionization of the remaining elec-
trons. But forZ = 10 the relativistic effects become more
significant and behavior of the transition rate is different. The
transition rate increases along the whole observed interval of
laser field intensities. This is completely in accordance with
the theoretical predictions. As one more illustration we give
the dependence of the relativistic tunnel transition rate from
the laser intensities and parabolic coordinateη for the ionic
charge statesZ = 1, 5, 10.

4. Conclusion

In this paper we analyzed tunnel ionization of atoms and ions.
The ponderomotive potential and the Stark shift were taken
into account. Nonrelativistic and relativistic treatment of the
transition rate was used. The results of our theoretical anal-
ysis show that some usually neglected effects have an influ-
ence on the nonrelativistic as well as on the relativistic tunnel
ionization rate.
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