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Mapping of solutions of the Hamilton—Jacobi equation by an
arbitrary canonical transformation
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It is shown that given an arbitrary canonical transformation and an arbitrary Hamiltonian, there is a naturally defined mapping that sends any
solution of the Hamilton—Jacobi (HJ) equation into a solution of the HJ equation corresponding to the new Hamiltonian.
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Se muestra que dadas una transfor@raciarbnica arbitraria y una hamiltoniana arbitraria, existe una apbeedefinida en forma natural
que enva cualquier solu@n de la ecuadn de Hamilton—Jacobi (HJ) en una sofutide la ecuaéin de HJ correspondiente a la nueva
hamiltoniana.

Descriptores: Ecuacon de Hamilton—Jacobi; transformaciones@ainas.

PACS: 45.20.Jj; 02.30.Hg; 02.20.Qs

1. Introduction be defined by means of a partial differential equation analo-
gous to the HJ equation, with the generating function of the
In the framework of classical mechanics, the Hamilton—transformations in place of the Hamiltonian, but the effect of
Jacobi (HJ) equation constitutes a very useful tool in thea single canonical transformation was not determined there.
solution of the equations of motion. For a given Hamilto-  In this paper we find the effect of an arbitrary canoni-
nian, any complete solution of the corresponding HJ equatiogal transformation (not necessarily an element of a continu-
yields the general solution of the Hamilton equations (seeQus group of transformations) on an arbitrary solution of the
e.g, Ref. 1). The form of the Hamilton equations is pre- HJ equation (not necessarily complete) corresponding to a
served by any canonical transformation, but the expressiohlamiltonian that can depend on the time. As we shall show
of the Hamiltonian may be modified and, therefore, the formbelow, this effect can be derived in a simple manner and the
of the HJ equation is also affected by a canonical transformaesults of Refs. 2 and 3 are readily reproduced from the gen-
tion. A natural question is: how can we relate the solutionseral expression obtained here.
of the HJ equations corresponding to the two Hamiltonians?  In Sec. 2 the main results are established and in Sec. 3

As remarked in Ref. 2, in a canonical transformation, theSeveral examples are given.
original coordinatesg;, may be functions of the new coor-
dinates, the new momenta, and the time= ¢;(Q;, P;,t), 2. Solutions of the HJ equation and canonical
whereas a solution§(q¢;, t), of the HJ equation depends on transformations
the coordinates and the time only, so that, a solution of the
HJ equation corresponding to the new Hamiltonian cannot b&he HJ equation corresponding to a given Hamiltonian of a
obtained fromS(g¢;, t) by simply substituting the; as func-  system withn degrees of freedont{ (¢;, p;, t), is the partial

tions of Q;, P;, andt. differential equation
In Ref. 2 the required relation was found in the restricted oS 0S
case where the canonical transformation does not involve the H | g, g t]+ T 0. (1)

time and the Hamiltonians do not depend on the time. Furs ; .

. ; . If we perform a canonical transformatia; = Q;(q;,p;,1t),
thermore, the solutions of the HJ equations considered therlg_ — Py(q;,p;.t), the Hamiltoniand (g, pr, ¢) has to be re-
are of the formS(g;,t) = W(¢;) — Et, which do exist for A AN di- Di;

time-independent Hamiltonians, but form a restricted class oplaced by a new one(Qs, P4, t), which gives rise to an-
other HJ equation

solutions. / /
In Ref. 3 it was shown that given a Hamiltonian that can K (Qi, 857t> + 05 =0, 2
depend on the time andame-parameter groupf canonical 9Q; ot

transformations that may involve the time, the action of theand we want to find a way of constructing a solut&iQ;, ¢)
group of transformations on a solution of the HJ equation camf Eq. (2) from each solutiof(q¢;, t) of Eqg. (1). To this end,
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we start by pointing out a useful characterization of the soluis canonical if and only if there exists some functibrsuch

tions of the HJ equatiorct. also Ref. 4). that

Proposition 1. Any solution, S(g;,t), of the HJ equa- P,dQ; — Kdt — (pidg; — Hdt) = dF, (10)
tion (1) defines a surface (a submanifold) of the extended

phase space, given by where K is the new Hamiltonian. Note that the functiéh

8 appearing on the right-hand side of Eq. (10) is a generating
= , (3)  function of the canonical transformation (9) only if the

9q; variables(g;, Q;) can be used as coordinates of the phase
i =1,2,...,n, onwhich the linear differential form;dg; —  SPace, in other words, only if the sg;, Q) is functionally

Hdt is exact (with summation over repeated indices); in factindependent for a fixed value of This condition is not sat-
isfied in the case of the transformations (11) and (22). As is

p;dg; — Hdt = dS. (4)  well known, if (¢;,@;) cannot be used as coordinates, there
exist other combinations of variables that can be used as co-
Conversel_y, a submanifold of the extended phase space, givjjginates of the phase space and, by means of a Legendre
by n functions transformation, one can obtain a genuine generating function
pi = Fi(gj,1), ®)  fromF (seege.g, Ref. 1, Chap. 9); however, as we shall show

on which the differential fornp;dg; — Hdt is exact, defines Pelow [Eq. (15)], the relevant function i, even if it is not a
(up to an additive constant) a solution of the HJ equationgenerating function of the canonical transformation.

Di

(The solution is the functio’ determined by Eq. (4).) For instance, the transformation
It may be noticed that the functioly appearing in
Egs. (1), (3), and (4) may contain some parameters (as in Q=q-Vt, P=p—-mV, (11)
the case of a complete solution), but this is not essential at
this point. For example, if the Hamiltonian is taken as wherem andV” are constants, is canonical since
e ;ﬁ kg, ®) PdQ — Kdt — (pdg — Hdt)
m

i - - =(p—mV)(dg — Vdt) — pdg + (H — K)dt
wherek is a constant, then, on the two-dimensional subman-

ifold of the extended phase space defined by = —Vpdt —mVdqg +mV?3dt + (H — K)dt
kt? =d(-mVq) + (=Vp+mV?+ H — K)dt,
pP=—=>
2
which shows that the new Hamiltonian must be
we have
2 244 K=H-V V? ty=H-VP 1), (12
pdq—Hdt:k;dq_(kSt_ktq>dt p+m +¢() +¢() ( )
m
whereg(t) is an arbitrary function of only, and
N o(t) y y.
o 2 40m ) - t
Hence, the function F=-mVq- /¢(“)d“' (13)
kt?qg Kt . . S .
§=9_ (7) Whereas the differential formydg; — Hdt (and, similarly,
2 40m P,dQ, — Kdt) is exact only on some submanifolds of the ex-

is a solution, without arbitrary parameters, of the HJ equatended phase space (of dimension not greater thanl),
tion for the Hamiltonian (6). However, for each value of the the combination”;dQ; — Kdt — (p;dg; — Hdt) is exact in

constant, the equation open neighborhoods of the extended phase space (that is, in
) (2n 4+ 1)-dimensional regions). Hence, from Eq. (10) we see
p= ki +a, 8 that, if p;dg; — Hdt is an exact differential on some subman-
2 ifold of the extended phase space, tHeAQ; — Kdt is also

defines a two-dimensional submanifold of the extended phas@*act on that submanifold. Thus, 5f(¢;, ¢) is a solution of
space, on which the differential formlg — Hdt is exact. In ~ the HJ equation (1), then
this case one obtains a complete solution of the HJ equation,

which is related to the fact that the collection of submani- PdQ; — Kdt =d(S+ F) (14)
folds (8) covers all the extended phase space. ) ) N

On the other hand, the coordinate transformation on the submanifold (3) and, according to Proposition 1,

Qi = Qi(g;,pj, 1), P; = Pi(q;,pj,1), ()] S'=S+F (15)
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is a solution of the HJ equation (2), provided that the right-transformations on a solution of the HJ equation defined
hand side of Eq. (15) is expressed in terms of ¢heandt, by Eq. (20).
eliminating the other variables by means of Egs. (3) and (9). | order to derive Eq. (20), we note that if both sides

For instance, in thg case of the Hamiltonian (6) and theys Eq. (10) (including the original coordinates p;) are ex-
canonical transformation (11), from Eq. (12) we find that, pressed as functions 6f;, P,, ¢, anda, then, taking the par-

choosingp(t) = kVt* —mV?/2, tial derivative with respect te,,
P2
K= — ko, (16) % , ,
: (), (), ()
which has the form of the original Hamiltonian (6), with only Q.pt QP Q.pt
g andp replaced byQ and P, respectively, and from (13), N (8H> &= d (8F>
) da B da ’
3 2 Q,Pt Q,P,t
F=—mVq— k‘;t + m‘; t 17)
) where we have made use of the notat{ofida) g, p,. to em-
Thus, making use of Egs. (15), (7), and (11), phasize tha€);, P;, andt are held constant in the differentia-
, thq k2t5 k,VtS mv2t tion. ThUS,
S'=———-—-—mVqg— +
2 40m 3 2

O(H — K) op; 9
kt? E2t° VS mV2t <> dt— ( dg;+ dp;
K KT v BVE . @8 da ) o da ) o p, 90 ) o p

2 40m 6 2
) on(®)
da ) o py "\ O 0.P1 '

which is a solution of the HJ equation corresponding to the _ d
Hamiltonian (16);S’ contains the paramet&f and is a com-
plete solution.

2.1. Connection with previous results Letting
In the case where the Hamiltonidi#i does not depend on B oF 0q;
. . : G=—-|—=— —p; (21)
t and the canonical transformation (9) does not involve the da ) o py e} QP
time, choosingk = H, the functionF, on the right-hand o o
side of Eqg. (10), does not depend frthen, making use of we have
the fact that the HJ equation (1) admits solutions of the form
S(qi,t):W(qi)—Et (19) (8}71) _ 3G7 (3q1> :75G,
oa 0.Pt dq; ox O.P.t Ip;
whereFE is a constant, from Eq. (15) we obtain a solution of
the HJ equation (2), hence, making use of Eq. (15), we have
S"'=W + F — Et,
05’ 08 [(0q; (23
which is also of the form (19)§" = W' — Et, with da ) g py 02 \da) g p, Oa ) g py
W'=W +F, :pz(a%‘) +<8F)
' ' Oa ) g py Oa ) g py
as given in Eq. (14) of Ref. 2.
As we shall show, in the case where the Hamiltonian =G,

H may depend om and we have a one-parameter group of
canonical transformations generated by some fundfiate-  as was to be shown. (Compare with the derivation given in
fined on the extended phase space, the funcifogiven by  Ref. 2, for the time-independent case.)

Eq. (15) satisfies the partial differential equation In the example considered above, the transforma-

ol t) + 05" _ tions (11) form a one-parameter group with the parameter be-

50, 90 = O (20)  ing V. According to Egs. (11), (17) and (21), the generating
¢ function of the group i€:(Q, P,t) = mQ —tP +kt3/3, and
whereq is the parameter of the group, with the initial con- one readily verifies that the expression (18) satisfies Eqg. (20).
dition S’|,—¢ = S (assuming that forr = 0 the canoni- Since K and H have the same form, replacin@ by ¢ in

cal transformation generated lay reduces to the identity). the expression (18) one obtains a complete solution of the HJ
In Ref. 3, the action of a one-parameter group of canonicaéquation forH.

G (Qi,
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3. Further examples is canonical and Eq. (10) shows that we can take

In this section we give two additional examples of the use of K=qQ,
Eq. (15). We begin with the Hamiltonian

9 9 o with FF = PQ — (Q/w) sin(wP) cos(wP). Hence, the HJ
—2'ytp7 + eQ’yt mw-q

H=c¢ 5 equation forK is given by
!
wherev is a constant, which corresponds to a damped har- Q+ 05" _ 0, (23)
monic oscillator. The coordinate transformation ot

whosegeneralsolution is given bys” = —Qt+ f(Q), where

— a7t — ot
@=c"q, P=e"p (22) f(Q) is anarbitrary function of @ only. Choosing
is canonical and from Eq. (10) one finds that the new Hamil- g
tonian can be taken as = —Q(t —to),
K P2 mw?Q? P wheret, is a constant, we obtain a complete solution of the
T 2m 5 TP HJ equation (23), and from Eq. (15), taking into account that

_ / _ _ i
with F — 0. (See the discussion after Eq. (10).) P =05'/6Q = to — t, we obtain

By contrast withH, the Hamiltoniank does not depend g MW o2, ‘¢
explicitly on ¢ and therefore the HJ equation fé&f admits T4 anfw(t —to)].

separable solutions of the form . L .
P Note that this function is thproductof separated functions

S'=—FEt+ f(Q), of ¢ andt.

whereFE is a separation constant afficatisfies

df
a0 ~ —myQ & /2mE — m?(w? — ?)Q?, As shown in Refs. 2 and 3, and in the example given in Sec. 2,

) ) o making use of a constant of motion, one can add a parameter
thus, a (complete) solution of the HJ equation fbis given g 5 given solution of the HJ equation.

4. Concluding remarks

by The association of the solutions of the HJ equation with
certain submanifolds of the extended phase space allows us

S=—-Et— ymewqg to readily establish the general relation (15), avoiding the

lengthy computations employed in Refs. 2 and 3. This as-

¢ sociation offers a way of studying the representation of the

+ / V2mE —m?(w? — 4?)u? du. group of canonical transformations on the principal function
S and to understand the structure of the set of solutions of the

It may be noticed that this function is not separable Rer  HJ equation for a given Hamiltonian.

'vtq

separable. Apart from its intrinsic interest in the Hamiltonian formu-
As a final example we consider the standard Hamiltonianation, the results derived here and in Refs. 2 and 3 seem rel-
for a simple harmonic oscillator, evant in connection with the representation of the canonical
5 9 9 transformations in quantum mechanics, owing to the relation-
= 2]'; + mw2 4 ship between the HJ equation and the ®dimger equation.
m

The coordinate transformation
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