
RESEARCH Revista Mexicana de Fı́sica60 (2014) 301–304 JULY-AUGUST 2014

Mapping of solutions of the Hamilton–Jacobi equation by an
arbitrary canonical transformation
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It is shown that given an arbitrary canonical transformation and an arbitrary Hamiltonian, there is a naturally defined mapping that sends any
solution of the Hamilton–Jacobi (HJ) equation into a solution of the HJ equation corresponding to the new Hamiltonian.
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Se muestra que dadas una transformación cańonica arbitraria y una hamiltoniana arbitraria, existe una aplicación definida en forma natural
que env́ıa cualquier solución de la ecuación de Hamilton–Jacobi (HJ) en una solución de la ecuación de HJ correspondiente a la nueva
hamiltoniana.

Descriptores: Ecuacíon de Hamilton–Jacobi; transformaciones canónicas.

PACS: 45.20.Jj; 02.30.Hq; 02.20.Qs

1. Introduction

In the framework of classical mechanics, the Hamilton–
Jacobi (HJ) equation constitutes a very useful tool in the
solution of the equations of motion. For a given Hamilto-
nian, any complete solution of the corresponding HJ equation
yields the general solution of the Hamilton equations (see,
e.g., Ref. 1). The form of the Hamilton equations is pre-
served by any canonical transformation, but the expression
of the Hamiltonian may be modified and, therefore, the form
of the HJ equation is also affected by a canonical transforma-
tion. A natural question is: how can we relate the solutions
of the HJ equations corresponding to the two Hamiltonians?

As remarked in Ref. 2, in a canonical transformation, the
original coordinates,qi, may be functions of the new coor-
dinates, the new momenta, and the time,qi = qi(Qj , Pj , t),
whereas a solution,S(qi, t), of the HJ equation depends on
the coordinates and the time only, so that, a solution of the
HJ equation corresponding to the new Hamiltonian cannot be
obtained fromS(qi, t) by simply substituting theqi as func-
tions ofQi, Pi, andt.

In Ref. 2 the required relation was found in the restricted
case where the canonical transformation does not involve the
time and the Hamiltonians do not depend on the time. Fur-
thermore, the solutions of the HJ equations considered there
are of the formS(qi, t) = W (qi) − Et, which do exist for
time-independent Hamiltonians, but form a restricted class of
solutions.

In Ref. 3 it was shown that given a Hamiltonian that can
depend on the time and aone-parameter groupof canonical
transformations that may involve the time, the action of the
group of transformations on a solution of the HJ equation can

be defined by means of a partial differential equation analo-
gous to the HJ equation, with the generating function of the
transformations in place of the Hamiltonian, but the effect of
a single canonical transformation was not determined there.

In this paper we find the effect of an arbitrary canoni-
cal transformation (not necessarily an element of a continu-
ous group of transformations) on an arbitrary solution of the
HJ equation (not necessarily complete) corresponding to a
Hamiltonian that can depend on the time. As we shall show
below, this effect can be derived in a simple manner and the
results of Refs. 2 and 3 are readily reproduced from the gen-
eral expression obtained here.

In Sec. 2 the main results are established and in Sec. 3
several examples are given.

2. Solutions of the HJ equation and canonical
transformations

The HJ equation corresponding to a given Hamiltonian of a
system withn degrees of freedom,H(qi, pi, t), is the partial
differential equation

H

(
qi,

∂S

∂qi
, t

)
+

∂S

∂t
= 0. (1)

If we perform a canonical transformation,Qi = Qi(qj , pj , t),
Pi = Pi(qj , pj , t), the HamiltonianH(qi, pi, t) has to be re-
placed by a new one,K(Qi, Pi, t), which gives rise to an-
other HJ equation

K

(
Qi,

∂S′

∂Qi
, t

)
+

∂S′

∂t
= 0, (2)

and we want to find a way of constructing a solutionS′(Qi, t)
of Eq. (2) from each solutionS(qi, t) of Eq. (1). To this end,
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we start by pointing out a useful characterization of the solu-
tions of the HJ equation (cf. also Ref. 4).
Proposition 1. Any solution, S(qi, t), of the HJ equa-
tion (1) defines a surface (a submanifold) of the extended
phase space, given by

pi =
∂S

∂qi
, (3)

i = 1, 2, . . . , n, on which the linear differential formpidqi−
Hdt is exact (with summation over repeated indices); in fact,

pidqi −Hdt = dS. (4)

Conversely, a submanifold of the extended phase space, given
by n functions

pi = Fi(qj , t), (5)

on which the differential formpidqi −Hdt is exact, defines
(up to an additive constant) a solution of the HJ equation.
(The solution is the functionS determined by Eq. (4).)

It may be noticed that the functionS appearing in
Eqs. (1), (3), and (4) may contain some parameters (as in
the case of a complete solution), but this is not essential at
this point. For example, if the Hamiltonian is taken as

H =
p2

2m
− ktq, (6)

wherek is a constant, then, on the two-dimensional subman-
ifold of the extended phase space defined by

p =
kt2

2
,

we have

pdq −Hdt =
kt2

2
dq −

(
k2t4

8m
− ktq

)
dt

= d
(

kt2q

2
− k2t5

40m

)
.

Hence, the function

S =
kt2q

2
− k2t5

40m
(7)

is a solution, without arbitrary parameters, of the HJ equa-
tion for the Hamiltonian (6). However, for each value of the
constanta, the equation

p =
kt2

2
+ a, (8)

defines a two-dimensional submanifold of the extended phase
space, on which the differential formpdq −Hdt is exact. In
this case one obtains a complete solution of the HJ equation,
which is related to the fact that the collection of submani-
folds (8) covers all the extended phase space.

On the other hand, the coordinate transformation

Qi = Qi(qj , pj , t), Pi = Pi(qj , pj , t), (9)

is canonical if and only if there exists some functionF such
that

PidQi −Kdt− (pidqi −Hdt) = dF, (10)

whereK is the new Hamiltonian. Note that the functionF
appearing on the right-hand side of Eq. (10) is a generating
function of the canonical transformation (9) only if the2n
variables(qi, Qi) can be used as coordinates of the phase
space, in other words, only if the set(qi, Qi) is functionally
independent for a fixed value oft. This condition is not sat-
isfied in the case of the transformations (11) and (22). As is
well known, if (qi, Qi) cannot be used as coordinates, there
exist other combinations of variables that can be used as co-
ordinates of the phase space and, by means of a Legendre
transformation, one can obtain a genuine generating function
from F (see,e.g., Ref. 1, Chap. 9); however, as we shall show
below [Eq. (15)], the relevant function isF , even if it is not a
generating function of the canonical transformation.

For instance, the transformation

Q = q − V t, P = p−mV, (11)

wherem andV are constants, is canonical since

PdQ−Kdt− (pdq −Hdt)

= (p−mV )(dq − V dt)− pdq + (H −K)dt

= −V pdt−mV dq + mV 2dt + (H −K)dt

= d(−mV q) + (−V p + mV 2 + H −K)dt,

which shows that the new Hamiltonian must be

K = H − V p + mV 2 + φ(t) = H − V P + φ(t), (12)

whereφ(t) is an arbitrary function oft only, and

F = −mV q −
t∫
φ(u)du. (13)

Whereas the differential formpidqi−Hdt (and, similarly,
PidQi−Kdt) is exact only on some submanifolds of the ex-
tended phase space (of dimension not greater thann + 1),
the combinationPidQi −Kdt − (pidqi −Hdt) is exact in
open neighborhoods of the extended phase space (that is, in
(2n + 1)-dimensional regions). Hence, from Eq. (10) we see
that, if pidqi−Hdt is an exact differential on some subman-
ifold of the extended phase space, thenPidQi −Kdt is also
exact on that submanifold. Thus, ifS(qi, t) is a solution of
the HJ equation (1), then

PidQi −Kdt = d(S + F ) (14)

on the submanifold (3) and, according to Proposition 1,

S′ = S + F (15)
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is a solution of the HJ equation (2), provided that the right-
hand side of Eq. (15) is expressed in terms of theQi andt,
eliminating the other variables by means of Eqs. (3) and (9).

For instance, in the case of the Hamiltonian (6) and the
canonical transformation (11), from Eq. (12) we find that,
choosingφ(t) = kV t2 −mV 2/2,

K =
P 2

2m
− ktQ, (16)

which has the form of the original Hamiltonian (6), with only
q andp replaced byQ andP , respectively, and from (13),

F = −mV q − kV t3

3
+

mV 2t

2
. (17)

Thus, making use of Eqs. (15), (7), and (11),

S′ =
kt2q

2
− k2t5

40m
−mV q − kV t3

3
+

mV 2t

2

=
kt2Q

2
− k2t5

40m
−mV Q +

kV t3

6
− mV 2t

2
, (18)

which is a solution of the HJ equation corresponding to the
Hamiltonian (16);S′ contains the parameterV and is a com-
plete solution.

2.1. Connection with previous results

In the case where the HamiltonianH does not depend on
t and the canonical transformation (9) does not involve the
time, choosingK = H, the functionF , on the right-hand
side of Eq. (10), does not depend ont, then, making use of
the fact that the HJ equation (1) admits solutions of the form

S(qi, t) = W (qi)− Et, (19)

whereE is a constant, from Eq. (15) we obtain a solution of
the HJ equation (2),

S′ = W + F − Et,

which is also of the form (19),S′ = W ′ − Et, with

W ′ = W + F,

as given in Eq. (14) of Ref. 2.
As we shall show, in the case where the Hamiltonian

H may depend ont and we have a one-parameter group of
canonical transformations generated by some functionG de-
fined on the extended phase space, the functionS′ given by
Eq. (15) satisfies the partial differential equation

G

(
Qi,

∂S′

∂Qi
, t

)
+

∂S′

∂α
= 0, (20)

whereα is the parameter of the group, with the initial con-
dition S′|α=0 = S (assuming that forα = 0 the canoni-
cal transformation generated byG reduces to the identity).
In Ref. 3, the action of a one-parameter group of canonical

transformations on a solution of the HJ equation wasdefined
by Eq. (20).

In order to derive Eq. (20), we note that if both sides
of Eq. (10) (including the original coordinatesqi, pi) are ex-
pressed as functions ofQi, Pi, t, andα, then, taking the par-
tial derivative with respect toα,

−
(

∂K

∂α

)

Q,P,t

dt−
(

∂pi

∂α

)

Q,P,t

dqi − pid
(

∂qi

∂α

)

Q,P,t

+
(

∂H

∂α

)

Q,P,t

dt = d
(

∂F

∂α

)

Q,P,t

,

where we have made use of the notation(∂/∂α)Q,P,t to em-
phasize thatQi, Pi, andt are held constant in the differentia-
tion. Thus,

(
∂(H −K)

∂α

)

Q,P,t

dt−
(

∂pi

∂α

)

Q,P,t

dqi+
(

∂qi

∂α

)

Q,P,t

dpi

= d

[(
∂F

∂α

)

Q,P,t

+ pi

(
∂qi

∂α

)

Q,P,t

]
.

Letting

G ≡ −
(

∂F

∂α

)

Q,P,t

− pi

(
∂qi

∂α

)

Q,P,t

(21)

we have

(
∂pi

∂α

)

Q,P,t

=
∂G

∂qi
,

(
∂qi

∂α

)

Q,P,t

= −∂G

∂pi
,

hence, making use of Eq. (15), we have

(
∂S′

∂α

)

Q,P,t

=
∂S

∂qi

(
∂qi

∂α

)

Q,P,t

+
(

∂F

∂α

)

Q,P,t

= pi

(
∂qi

∂α

)

Q,P,t

+
(

∂F

∂α

)

Q,P,t

= −G,

as was to be shown. (Compare with the derivation given in
Ref. 2, for the time-independent case.)

In the example considered above, the transforma-
tions (11) form a one-parameter group with the parameter be-
ing V . According to Eqs. (11), (17) and (21), the generating
function of the group isG(Q,P, t) = mQ− tP +kt3/3, and
one readily verifies that the expression (18) satisfies Eq. (20).
SinceK and H have the same form, replacingQ by q in
the expression (18) one obtains a complete solution of the HJ
equation forH.
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3. Further examples

In this section we give two additional examples of the use of
Eq. (15). We begin with the Hamiltonian

H = e−2γt p2

2m
+ e2γt mω2q2

2
,

whereγ is a constant, which corresponds to a damped har-
monic oscillator. The coordinate transformation

Q = eγtq, P = e−γtp (22)

is canonical and from Eq. (10) one finds that the new Hamil-
tonian can be taken as

K =
P 2

2m
+

mω2Q2

2
+ γPQ,

with F = 0. (See the discussion after Eq. (10).)
By contrast withH, the HamiltonianK does not depend

explicitly on t and therefore the HJ equation forK admits
separable solutions of the form

S′ = −Et + f(Q),

whereE is a separation constant andf satisfies

df

dQ
= −mγQ±

√
2mE −m2(ω2 − γ2)Q2,

thus, a (complete) solution of the HJ equation forH is given
by

S = −Et− 1
2
mγe2γtq2

±
eγtq∫ √

2mE −m2(ω2 − γ2)u2 du.

It may be noticed that this function is not separable norR-
separable.

As a final example we consider the standard Hamiltonian
for a simple harmonic oscillator,

H =
p2

2m
+

mω2q2

2
.

The coordinate transformation

q =
1
ω

√
2Q

m
cos(ωP ), p =

√
2mQ sin(ωP ),

is canonical and Eq. (10) shows that we can take

K = Q,

with F = PQ − (Q/ω) sin(ωP ) cos(ωP ). Hence, the HJ
equation forK is given by

Q +
∂S′

∂t
= 0, (23)

whosegeneralsolution is given byS′ = −Qt+f(Q), where
f(Q) is anarbitrary function ofQ only. Choosing

S′ = −Q(t− t0),

wheret0 is a constant, we obtain a complete solution of the
HJ equation (23), and from Eq. (15), taking into account that
P = ∂S′/∂Q = t0 − t, we obtain

S = −mω

2
q2 tan[ω(t− t0)].

Note that this function is theproductof separated functions
of q andt.

4. Concluding remarks

As shown in Refs. 2 and 3, and in the example given in Sec. 2,
making use of a constant of motion, one can add a parameter
to a given solution of the HJ equation.

The association of the solutions of the HJ equation with
certain submanifolds of the extended phase space allows us
to readily establish the general relation (15), avoiding the
lengthy computations employed in Refs. 2 and 3. This as-
sociation offers a way of studying the representation of the
group of canonical transformations on the principal function
S and to understand the structure of the set of solutions of the
HJ equation for a given Hamiltonian.

Apart from its intrinsic interest in the Hamiltonian formu-
lation, the results derived here and in Refs. 2 and 3 seem rel-
evant in connection with the representation of the canonical
transformations in quantum mechanics, owing to the relation-
ship between the HJ equation and the Schrödinger equation.
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