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Interfacial properties of inhomogeneous fluids for a smooth profile
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We analyze single- and multi-component simple fluids in a liquid-vapor coexistence state, which forms an arbitrarily curved interface. Using
an analytical approach, based upon density functional theory, we perform a power series expansion of the density profile on the principal
curvatures to calculate the grand potential that represents the free energy of the system. In addition, we derive microscopic expressions for
the interfacial properties. All results are in good agreement with other viewpoints at the level of surface tension and spontaneous curvature.
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1. Introduction Tools employed to describe fluid membranes can also be
used to describe the behavior of fluid interfaces, which may

The statistical mechanics description of two-dimensional exP€ formed in fluids of one or several components when they
tended objects is a topic of great relevance in condensed mail€ in aliquid-vapor coexistence state [8-10]. For monocom-
ter physics. The interest on it is due to the diversity of sysPOnent systems there exists a single interfacial region sepa-
tems that may be modeled in this fashion [1-4]. Among thoséating both the liquid and vapor homogeneous phases. How-
systems one can mention, for instance, micelles, microemufVer. for multicomponent systems there exist multiple inter-
sions, interfaces, and biological or artificial membranes. Thdacial regions: those formed within the same component, but
composition of such systems is diverse, ranging from simin different phases, and those from combinations of_ dn‘fgr-
ple to complex molecules. An important thermodynamical€Nt cOmponents where the phases are not necessarily differ-
property of such systems is surface tension, which may p&nt [11]. Although interfacial regions have been studied since
defined as the free energy per unit area and is a measure %0re than a century ago, th(_e|r structure and_conformatlon to
the energy cost for the system to maintain the surface exdifferent scales is still a topic of study; particularly in sys-
tended. In some cases the interfacial surface tension may §@ms formed by several components [12, 13]. There exists
lowered by adding surfactants (tensoactive agents), which aN&St literature on the theoretical an(_j experimental descrlpno.n
part of the amphiphilic family. The molecules in the interfa- Of these systems. On the theoretical context, two approxi-
cial region are formed by two parts; one polar or hydrophilicmation schemes may be basically |p|ent|f|ed:_ the one in equi-
(head) and the other non-polar or hydrophobic (tail). SurfacliPrium an_d the other Whe_,\n_ fluctuations are included. In the
tants adhere to the bulk phases leading to formation of soaf9rmer, driven forward originally by van der Waals [14], al-
films. At room temperature the amphiphilic bilayers showthough the exFernaI field is what generates the mterfaceZ itis
up generally as a fluid and form what is called a fluid mem_ngglected. Thl§ scheme'assum'es existence of a smooth intrin-
brane [5]. Under certain conditions these membranes closgiC interface with a density profile that interpolates smoothly
onto themselves forming bag-like structures which are knowP€tween the bulk-phase densities of the coexistence state. On
as vesicles. The elastic behavior of those systems is crucial #h€ other hand, in the scheme with fluctuations, driven for-
describe such structures. It is known that the relevant contriward by Buffet al. [15], the external field plays a crucial role
butions to the elastic energy of an homogeneous fluid men@S it controls fluctuations of the interface. It is assumed that
brane are those from surface tension and from flexion; whichhe interface is non-smooth, having small undulations due to

in its turn are determined by area and curvature of the merre@pillary waves. Within this viewpoint only the interfacial
brane. As in films formed by amphiphils surface tension islocal positions are considered as statistical variables and the

very small, or nearly null, the dominant contribution to its thickness of the interface is described as a result of the capil-
free energy is due to bending. Nevertheless, in many Syéary wave fluctuations of a step-like density profile. Each of

tems surface tension is not negligible and the correspondinkﬂese viewpoints yields independent results for the width of
energy contribution must be included [6, 7]. the interfacial region.
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On the one hand the equilibrium scheme, in all versionsmechanics nature of the free energy and the interfacial coef-
is unable to capture the fact that the interface thickness dificients for an interface that is arbitrarily deformed, for sys-
verges as gravity goes to zero. The fluctuation scheme, olems composed of one or several components. Specifically,
the other hand, cannot account for the divergence of the innve consider a mean field approximation for the free energy
terfacial thickness, on the scale of the bulk correlation lengthof the interfacial region, which is the simplest approximation
when the system approaches the critical temperature. Nevetie describe the coexistence state of a simple fluid. The re-
theless, it has been proved that far from the critical pointsulting energy functional can be expressed as a sum of two
predictions for the interfacial properties from both schemegerms, each containing local and non-local information re-
agree [16, 17]. We consider that these two viewpoints arspectively [16,19]. Our aim is to determine the grand po-
complementary, and enrich comprehension of interfacial phetential of an arbitrarily deformed interface for a smooth den-
nomena. In any of the situations previously described, ifsity profile. To proceed we use DFT following the route of
one deals with amphiphilic membranes or fluid interfacesthe stress tensor, and assume that the interface behaves as
either with or without surface tension, the free energy carbidimensional elastic continuous medium. The Gibbs divid-
be represented in general by the Helfrich phenomenologicahg surface is then fixed properly, and the density profile is

model [18] expanded in powers of the principal curvatures. Finally, a
local approximation for the surface is performed, which in-
Qg = /dSh — 2kcoH + kH? + RK], (1) directly affects the interaction potential, and the microscopic

expressions for the surface are obtained. The results we ob-
whereds is the area element of the interfadé,= (1/R,)+  tain are in complete agreement with previous works and with
(1/Ry) andK = 1/R, R, are the mean and Gaussian local the most relevant quantities from other viewpoints. The most
curvatures respectively witk; and R, being the principal relevant features in our work, which distinguish it from those
radii of curvature on a given point in the surface. The co-Previously cited, can be summarized as: (i) we start from
efficients are in its turnzy the surface tension; and the ~ an exact expression for the free energy at the level of mean
bending constants, ang the spontaneous curvature. Thesefield [10], (ii) instead of using normal coordinates, we carry
parameters are intrinsic properties of the media under studgut a local approximation for the surface, and (iii) by using
which, in particular for interfacial surfaces, should have athe corresponding expression for the energy, the analysis is
representation in terms of microscopic quantities. For thedeneralized to an arbitrary number of components [22].
analysis of our system, we consider an ab-initio microscopic ~ This paper is organized as follows. In Sec. 2 we briefly
approach to derive independently the “Helfrich equivalent’outline the general aspects from this viewpoint. Section 3
and then identify the surface properties [10]. Following thisis devoted to the monocomponent system. There we con-
route, and some variants, fluid interfaces having simple gesider all relevant developments and results. Next, we carry
ometries as spherical or cylindrical for different approxima-0ut an analogous analysis but for the multicomponent system
tions of the density profile have been studied [19]. There exin Sec. 4, where in addition we obtain properties for the dif-
ists consensus respect to the points of agreement and discrdptent surfaces. In Sec. 5 we compare our results with the
ancy on the microscopic expressions predicted for the surfad®ost relevant works, and finally, in Sec. 6 we draw some
properties [9, 19]. Nevertheless, when it comes to describconcluding remarks.
ing the behavior of an interface given as a surface arbitrarily
cu_rved ina microsco_pic conte>.<t, the gnalysis is more com2  Stress Tensor Theory
plicated. Much technical effort is required to carry out perti-
nent approximations and only a few have adventured on thihe description of the system may be carried out using the
task. A pioneer approximation in this context was carried oufact that the free energy representing the interface of a mono-
by R. P. K. Zia; in which the normal coordinates were in- component simple fluid in a liquid-vapor coexistence state,
troduced for the first time to investigate the behavior of theaccording to DFT, can be written as [23-25]
interface [20]. A drawback from this work is that the approx-
imation was carried out on t'he squared gradient t'heory, algo Qlp(7)] = Flp(7)] + /df[’u — Vit (M) p(7), )
known as drum model, and is a known fact that this model is
unable to correctly describe interfacial properties. In a |ate(/vhereF[p(F)] is the intrinsic Helmholtz free energy, is
work, S. Dietrichet al. use density functional theory (DFT) the chemical potential, anid.; is the external potential. To
as a basis to analyze a more microscopic model for both gptain the equilibrium value for the density profije,, it is
monocomponent and a binary system. Their study is aimeflecessary to minimize the grand potential density functional
at obtaining an effective Hamiltonian in each case [11, 21]gnq solve the resulting Euler-Lagrange (E-L) equation. Al-
In order to obtain the interfacial properties, these authors agernatively, the E-L equation can be manipulated to identify

count for the smooth variation of the density profile, include force-balance equation for a continuum medium in equilib-
its deformation due to curvature, and use normal coordinategym [19, 26, 27]

to introduce an adapted parametrization for the profile near
the interface. In the present work we analyze the statistical V.o = poVVexs, 3)
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where o is the stress tensor ang V.. (7) is the external neous region. Eq. (5) is a completely general expression
force per unit area. This conservation equation implies exthat may be used to derive surface properties, at the micro-
istence of a stress tensor, which contains information of thecopic level, of any surface. Such derivations are carried out
whole system. That is, information on the bulk homogeneousn Sec. 3 for a curved interface.

phases as well as on the interfacial region. Although this

guantity is not unique, because a term with zero divergencg.1. Fluid Mixture

may be always added, within this theory it is the starting point

for the calculation of relevant physical properties. Here weWWe now provide a brief description, analogous to that at
employ the most general expression known in literature, dethe beginning of this section, but for the system contain-
rived from a non-local field theory, and model the systeming an arbitrary number of components [22]. Let us, there-
as a continuous medium [16, 28]. By convenience, and tdore, consider a grand canonical density functional for the
carry out a detailed analysis, we separate the stress tensofomponent fluid consisting of molecules of different con-
in two contributions: one for the homogeneous region andtituents interacting via a spherically symmetric potential; to
the other for the inhomogeneous one. The microscopic exbe introduced in explicit form ShOft'y. The expression for this
pression that results for the interfacial contribution within thegrand potential functional is

van der Waals approximation for the monocomponent fluid is

given by [10] Qo (7)., p' (M) = Flp' (7)., p"(7)]
- 1 +§j/w Vi), ©)
(7) dX po(7 — (1 = A)i)
[ ]
whereF[p' (), ..., pt(7)] is the intrinsic Helmholtz free en-

X (Pl V gpo(F+ Ar")

—

ergy of the Whole system;,L Vi (), and p'(F) are the
chemical potential, the external potential, and the density
_ lvu/ dr /d>\ po(F— (1 = N)7a(7") profile of thei-th component respectively. Molecules from
2 different constituents are related each other through an inter-
. L L action potential which depends on the level of approximation
X 1[ro,Vupo (7' + A7) =1, Vapo(F+ A7) (4)  under consideration. Throughout this study we assume an

This quantity depends exclusively on the density profile andapprommanon at the level of mean field, which is introduced
explicitly later on.

on the interaction potential, and is independent of the interfa- T iib densit file f h »
cial geometry. In fact, the geometry is defined by the density e equilibrium density profile for each compongftis
obtained following the same procedure as in the monocom-

rofile itself Superscripta and$ on the stress tensor denote
b P P s ponent system. The difference, in this case, being the appear-

its cartesian components; is the interaction potential be- . :
tween particles, which is short-ranged, ané a parameter ance of a system afcoupled E-L equations whose solution

that relates two fluid points on the interfase. Our goal is toES m06re c%m?]llcatlzd thEpr|C|tIy, it 'Z nec;sLsary tot m|n|Tn;]|ze
determine the grand potential for an arbitrarily curved geom- g. (6); which yields the corresponding equation. Then

etry by considering a smooth profile. Evidently, one expectén a:nalo?y to thel r:]onocompcinentttref\tm(tarr]\t fwe C‘Z”Y out
to obtain more precise results and extra contributions abseREINENt manipulations so as to write it as the force-balance

for a step-like profile. We assume that each paiirt space equation
is described by a semi-orthogonal trigle(), £1 (), 2 (7)), SF . o )
W|th A7) = Vpo(7)/| Vpo(F) | being the normal vector and o Vo (1) = V{[1" = Ve (M]po (M)}
ta (), a = 1,2 tangent vectors to the surface. They are such Po
thati() - £a (%) = 0, with @ = 1,2 andiy(7) - £x(7) # 0. = PH(F)V Ve (7). )
Notice that the normal vector is deflned only in the inhomo-
geneous region, wheiépg (i) # 0. This partial balance is not sufficient to represent the conser-

The free energy of the whole system is obtained by in-vation equation of the whole system. The appropriate result
tegrating the normal component of the stress tensor over ai§ obtained from Eq. (7) by summing over all components.
space. This normal component may be also separated in twthat yields
contributions: one due to the homogeneous region and the
other due to the inhomogeneous one [27]. As we are inter-
ested only in the interfacial region, we use the fact that the Vo= Z'OO
corresponding grand potential can be obtained from

whereo now denotes the stress tensor of the fluid mixture,
Qsloo(®)] = - [ dio (7

(MV Vet () 8)

(5)  which is symmetric by nature of the system [28]. This quan-
tity contains information on both, the homogeneous phases
wherecl is the microscopic stress tensor of the inhomoge-and the interfacial region. However, it is not unique as one
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may always add a term with vanishing divergence and the exthe quantityL (7 | pg, - - -, pb) —ZE:I piH(7)pb (F) = w(F|
ternal force per unit area remains invariant. To proceed, we}, ..., p) is identified as the grand potential density; that
separate the stress tensor in two contributions: one for eadh, minus the pressure in an uniform fluid [28]. The first term
region, corresponding to homogeneous and inhomogeneoirs brackets in Eq. (14) is the contributian,, correspond-
densities ing to the bulk homogeneous phases, whereas the remaining
o=0y+0g, (9) partis that from the interfacial regions, recognizable be-
causeVpo(7) # 0 there. In this theory the non-local func-
tional F'[p()] enters just as an ingredient. We assume that the
mean field approximation is sufficient to capture all relevant
t details of the fluid mixture in the liquid-vapor coexistence
UO_W( [va"'va])ID . . . .
state. Higher order approximations to the free energy yield
I ¢ more detailed information, as they allow to measure correla-
= | f(7[pos - po]) Z —Vea(™)po |1, (10)  tions between different points. Nevertheless, this information
=1 is relevant when the system presents long-range fluctuations,
with | being the unit tensor, and the contribution from thewhich occurs as it approaches to the critical point.
interfacial regiong g, that satisfies the relationship Once again the free energy of the system may be obtained
by integrating the normal component of the stress tensor over
the whole space. The separation of the stress tensor intro-
duced before implies that the grand potential may also be
separated in two contributions [22]. The contribution from
(7, [po, b)) (11)  the bulk homogeneous phases may be considered known. In
many cases it corresponds to terms of pressure by volume, or
In addition, we introduce the densities of grand po-to the free energy of a hard sphere system. On the other hand,

where o is the homogeneous contribution from the bulk
phases of all components, given as

Vpo (™)

t
V-os(i) = Z
—Vf

tential and Helmholtz free energy (7, [p, ..., ph]) and  the microscopic expression for the free energy of the interfa-
F(7, 15, - - -, pb)), defined respectively through cial region is the most relevant physical quantity, which we
will investigate for inhomogeneous systems. The fact that all
Qlpd, ..., ph] = /dr w(7 [ph, ..., P5)), (12)  surface properties may be derived from this contribution, lead
us to concentrate exclusively on it. Our starting point is the
1 ¢ ¢ exact result )
Flohooooob] = [ a5 lobe i) @3 S a5

By considering the system as a continuum medium and Usyhere the expression fors depends on the free energy ap-
ing general symmetry arguments, a non-local field theory hagroximation and captures information on th&omponent
been constructed which predicts the following expression foéystem As previously mentioned, we consider an approx-
the stress tensor [22, 28] imation at the level of mean field, which proposes the

: Helmholtz free energy as
() = (f(*[ 0 -y ) t
a r T, pOa'“va cxt pO 1
i=1 Z/drfpof')—i-QZZ/dr
t 1 =1 j=1
- dF//d)\rgViFJr)\F’ P o (7 — 1) pf (7) 02 (7

Z/ | eV AT < [ - TaAE), e
SLo(F— (1= N7 | pb,..., pb) with ©;; being the interaction potential between two

AGES D) molecules of arbitrary componentand;. The first term in

0

this expression contains information only on the system local
t contribution, which can be for an ideal gas or hard spheres.
+V, Z/df"/d)\ Ar}; The second captures the non-local behavior of the system,
= which is the most relevant contribution to describe its liquid-
vapor coexistence state. By introducing this approximation
% (rLVapB(FJr AF') — 1, 0 (F -+ AF’)) into the strgss ten;or, Eg. (14), :_:md identifying the contribu-
tion to the interfacial region, we find

6LO(F_ (1_)‘)7?/|p675p6) 1 : X
S0 (7 + A7) : (14) 0P (7) = -5 Z/ dF’/d)\pg(F— (1—N)7")
i 0
There exists a direct relation between concepts from La- o P
grangian mechanics and equilibrium statistical mechanics. x i (1" )ro, Vg oo (7' + A7)
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1 ~ - /N2 - —/\2 ~ — —/\2
1 , Wls+ (P =)+ (F—7))=0(s+ (7 —7)
32V [ [ ans - -na) ( ) = t
ij 0 + (Rn —21)* + (R, — 22)°

1l [1, Vgl (FHNF) — 1, Vaph (FEXF)]. (17) — 2Ry = 21)(R,, = 22)i7) - 7/ (7)) (20)

We perform a general analysis, for the system composed of
an arbitrary numbet of components, for which there ex- Also, for this dividing surface, the density profile is expanded
ists a variety of interaction potentials;; between pairs of and introduced into the interaction potential. The grand po-
molecules. As all interactions, either between molecules ofential then becomes
the same or different constituents, are possible, there is a total

of ¢(t + 1)/2 interaction potentials, which implies existence

of an equivalent number of coexistence regions. ng—l/dS(r ) / dzl/dS(r') / dz
4 " "

oo

— 00

3. Interfacial Free Energy and Curvature Ex- .
pansion for the Density Profile X /ds A7) - 7 (P (3 (7 — 7))+ (R — 21)?
0

We consider an arbitrarily curved interface for a density pro-

file that depends exclusively on the normal coordinate. By us- (R, — 2)% = 2(Rn — 21)(R!, — 20) - ﬁ/)

ing Egs. (4) and (5) we get to the general microscopic grand " " "

potential [10] % { (2o (22) + HIph (21)6 () + (1)) (22)]
H?[pg(21)p(22) + ' (21) P (22) + pa(21) pp (22)]

QS[pO(F)]:—i/dF/dF’/ds +
0 +

Klph(21)ph(22) + ph(21)0) (22)] }- (21)
X Vpo(i) - V'po(F)ls + (7= 7)), (18)

This result, exact at the level of mean field, describes the bethat is, a function of the principal curvatures of the system
havior of an arbitrarily curved interface in equilibrium. All @nd of the diverse contributions from the density profile. A
details of the interfacial region are there contained as it dedrawback is that it also depends on two surface integrals. To
pends on the full profile of the curved interface. In order toOPtain explicit forms for the microscopic expressions of the
obtain explicit expressions for surface properties it is necessurface properties, it is necessary to approximate one of these
sary to approximate the density profile and the surface rep-
resenting the interfacial region. The aim in this study is to
perform the most general approximation to the density pro-
file within this scheme.

We start by writing the volume element as
dr = dS(rp)dr,, where the surface elemedt depends
on the metric under consideration. By decomposing vectors
in their normal and tangent components respectively, the ex-
pression for the interaction potential gets slightly modified.
After this, we fix the Gibbs dividing surface by assuming it
located at-,, = R,,, and then expand the density profile about
this surface. Explicitly, we use, = R,, + z and propose an
expansion in powers of the principal curvatures of the form

po(Tn) = p(Ry + 2)
p— 2 G
= po(2) + p1(2)H + p2(2) H* + p3(2) K, (19) FIGURE 1. Schematic picture showing the local approximation for

where H and K are the mean and Gaussian curvatures re_sun‘aceS about a poinfP. PointsP andQ are located by vectors

spectivel is the density profile of the local plane. and and+’ respectively, and the normal vectors to the surface at those
P ¥:Po y p ) P ’ points arer and#’. Point P is chosen as the origin of the local
pPay & = 1,2.3, are corrections to the profile due to cur-

i . ) coordinate system wheredg lies outside the tangent plane. Its
vatures. Within this representation the volume element bepiection onto this tangent plane has coordindtes)). The ra-

comesdS(ry,)dr, = dS(R,)dz. The interaction potential is  dius of location of the Gibbs dividing surface is/t. The distance
also affected by this choice of Gibbs dividing surface. Nowfrom @ to the local plane (projection 6f ontor) is R — R, = (,

its argument has the dependence with ¢ seen from the local system as a paraboloid.
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integrals. This may be accomplished by choosing two ardividing surface as seen from the local coordinate system. By
bitrary points on the surface, located by vectgrand 7, using this parametrization, the metric on the surface becomes
and taking one of them as the origin of the new coordinatey = 1 + x2/R? + y?/R3. A normal vector to the surface
system, with its horizontal plane being the tangent plane tat Q is # = (—V(,1)/,/g, which is easily obtained from
the surface at such point [10, 29, 30]. The distance that seghe quadratic approximation. Then, by choosing the normal
arates these points is of the order of the interaction potenvector to the surface @ asn = k, the product of normals
tial range,i.e. the length-scale over which a molecule is becomes: -7’ =1/,/g.

related to others. Although this separation could be small, Evidently, election of the Gibbs dividing surface as well
only one of the points lies on the tangent plane. Figure las manipulations on the density profile depend only on the
shows this setting where the poiRt, located by, is cho- normal components. This choice of local coordinate sys-
sen as the origin of the local coordinate system. The othetem, in addition, make the tangent components of vectors
point, @, located by7’, has in-plane coordinatés, y). De-  # and’ have coordinates; = (0,0) and7}, = (z,y),
noting the magnitudes of the normal components of vectorespectively. From this we find the approximation to the
positionsi and7’ asR,, and R/, respectively, the difference productn - 7/, in terms of the radii of curvature, given as
between these components, as measured from the local sys- 7' ~ 1 — 1/2 (2?/R? + y*/R}). We employ this result
tem, isR, — R, = ¢ = 1/2 (/R + y?/R;), which cor-  to approximate the argument of the interaction potential and
responds to the heigljtof the arbitrary poinf’ on the Gibbs  then power expand it, in terms of the inverse radii of curva-
| ture, about the valug+ 22 + y2 + (21 — 22)%. This yields

@(s (7 — 72 4 (Ry — 21)2 + (R, — 22)% — 2(Rn — 21)(R!, — 22)it - n) - d)(s (7 =72+ (21— 20)?

R B2 = B~ B) =52 47 = 2P ) (e ) 4 (1 2)Y)
S ) £ (s ) = () G ()
i %QH(S”Q Y ZQ)Q) {(Zl - 22)(1221 - Jy%22> * 41;(13;21 * Jy;)zr +o (22)

It will be shown later on in this section that this approximation is sufficient to capture the most relevant details of the system
and to obtain the terms containing physical meaning.

As we are interested only in the most relevant contributions to the surface, terms with curvatures larger sinaif, or
equivalently larger than the inverse radii of curvature squared, will be ignored. By also considerid§ (gt = /gdzdy,
we get to an expression for the grand potential in terms of the differaneezs

Q0= 1 dS(R,) i dz i dx i d i dz oods O(s+ 22+ + (21 — 22)%) 1@/(S 22+ y? + (21 — 22)?)
4/ _4 _4 _4 y_é 0/ X{ + +y° + +4 + +y° +
‘ (j:l ; g)} [pg@l)pg(@) - HIp (1) pb(z2) + s (210 (22)] + H2 [0 (1) ph(22) + (210} (22) + ph(z1)ph(22)]
T Ko (21)ph(22) +pa<zl>pg<z2>]} -3/ d5(R). / i / i / i, [ @z / ds (21 z2>(f:1 " jf;)
X {@’(34—3:2 +P (1 —=)?) + %”’(84—372 +y? + (21 — 22)*) (21 — 22)(;21 + ]y;) +]

x {PB(Zl)PB(Zz) + H[py (21)po(22) + po(21) 1 (22)] + H?[p(21)p5(22) + p1 (21)p] (22) + piy(21) 06 (22)]

+ K[p53(21)po(22) + po(21)p5(22)] | = Qo + Qzy 2, (23)

Notice the separation in two contributions: The first integral, that welalls independent of the differenee — z,. However
the second one, here denofeg _ .., is proportional, up to quadratic terms,24p— zo. We first work the tern§2, to identify its
contribution to the free energy of the interfacial region. The aim is to express this quantity in terms of the interaction potential,
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and not on its derivative. We expect it to depend explicitly on the curvatures. Its expression is easily identified from Eq. (23)
and reads

oo (oo}

Qo= — / /dzlfdx/dy/dZQ/ { sttty +(21722)2)+ia/

T )| [ (en) + Ht )b ) + e ea)

(s+ 22 +y* + (21 — 22)%) x (R1 8

+ H?[ph(21)p5(22) + ph(21)p] (22) + po(21)ph (22)] + K5 (21)pp(22) + Pé(zl)ﬂlg(@)]} : (24)

Integrations respect to andy may be easily carried out. Then, by using the relation between radii of curvature and principal
curvatureS,RZ + # + ﬁ =H? - %K, one finds the expression 6, in powers of the principal curvatures
2

Qo = —i /dS(Rn)Z dzlz dzs |:27'&'070d7“’l“3(:)(7“2 + (21 — 22)?) — —w/drr O(r? + (21 — 22) )(H2 — ;LK)}

x [PB(Zl)PG(Zz) + H[py (21)p0(22) + po (1)1 (22)] + H?[p(21)p5(22) + p1(21)p1 (22) + piy(21) 06 (22))]

T KTo()ph(z2) + pz)(zl)pg(zg@ | (25)

We now concentrate on those terms that depend on the differgneezs, which could imply a dependence on the Gibbs
dividing surface. This contribution, correct to quadratic order on the inverse radii of curvature, may be read directly from
Eq. (23)

Qyey = — /dS /dzl/da:/dy/dz'g/dsx Z1 — 2o (R—|—]y%){&/(s+m2+y2+(z1—22)2)
1 2
0

b3 ot g =) - ) () | [ + o))

N —

+ pp(21) P (22)] + H?[py(21) ph(22) + p(21) P} (22) + ph(21) ply(22)]
T Kh(z)ph(z2) + ps<zl>p;,<zQ>1} ol (26)

where now2"__ andQ®__ denote contributions linear and guadratic on the difference z; respectively; each requiring

zZ1—22 zZ1—22

a separate analysis as their dependence on the interaction potential is different. The first term is

2
Q(le) o /dS n /dzl/dx/dy/sz/dsx 21 — 2o (R——F%) "(s4 22 +y* + (21 — 22)?)
1 2

X {pf)(zl)pé(@) + HI[p' (21) 05 (22) + po(21)p1 (22)] + H?[pp(21) py(22) + 1 (21) 01 (22) + py(21) ppy(22)]

T Ky (a1 () + pa<zl>p’3<zZ>1} , 27)

in which, analogously to the previous term, we perform the integrationsio&edy independently. Maintaining the contribu-
tion to quadratic order on the curvatures we find

1 o0 oo o0
O, =~ [dS(R) [ o [z [ x - )@ (7 4 (1 - )

0

X {PG(Zl)PS(@) + H{[p} (21)po(22) + P6(21)P3(22)]} : (28)
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This expression can be interpreted as the first order term in the series expansion of the two-point correlation function, which
gets canceled out by symmetry. Introducing appropriate changes of variables, this expression can be manipulated further t
realise that it cancels indeed. It is important to mention that throughout these manipulations, the principal curvatures are taker
as constants, which is so because the Gibbs dividing surface has been fixed in advance. We now look at the term that depenc
guadratically on the differencg — 25

oo oo oo oo

1 3 2 2.2 1
Qg),zz =-1 /dS(Rn) / dz / dx / dy / dzg/ds X (21 — 22)2<%1 + %2) 3 (s + 22 +y* 4 (21 — 22)?)
—oo —o0 —0o0 —00 0

X [pé(%)p{)@) + H(p (21)p0(22) + p(21) 1 (22)] + H?[pf(21)p(22) + 1 (21) P (22) + pi(21) P (22)]

T Ko ()b (z2) + pa<zl>pg<zQ>J] . (29)

Once again, we evaluate the integrals avandy, and maintain only quadratic order contributions on the curvatures to get
37_‘_ o0 o0 o0 )
Qg),% =1 (H2 — fK /dS / dz / dzs /drr3 x (21 — 22)% @(r? 4 (21 — 22)?)pl(21)pp(22).  (30)
— 00 0o 0

This contribution can be interpreted as the second order term in the series expansion of the two-point correlation function,
which is non-zero by symmetry. By adding all contributions we obtain the final result

Qg = _g/dS(Rn) / dz / dzz{/drr?’@(?”Q + (21— 22)%) o (1) ph (22) + HIph (21)ph (22) + p(21)6h (22)]
o+ H2 [0} (21)p)(22) + (210 (22) + ph(z1) b (22)] + Klph(z1)(22) + ph (1) ph(22)]]

_|_

ool w

(oo}
[ = 222 = 0 4 (o - ) (B~ ) )i (31)
0

Observe that the order in the approximation of this microscopic free energy is the same as in the expansion of the interactior
potential (22).

Equation (31) provides the most general expression for an arbitrarily curved surface and for a smooth density profile within
this approximation scheme; which is consistent with the limit case of a step-like density profile. The result is also consistent
with that obtained for spherical and cylindrical surfaces using a smooth profile. Microscopic expressions for the interfacial
properties are obtained by direct comparison of the previous expression with Eq. (1). Thus, for this system

v = _g /dZ1 / dz2/drr w(r + (21 —Zz) )Po(Zl)Po(Z2) (32)
—0o0 0
Ko = Z /d21 /dz2/d”n (r? + (21 — 22)*) [ (21)p0 (22) + 6 (21)p] (22)], (33)
K= _g /dzl / dzz/d (21 = 22)) o (21) P (22) + P (21)p) (22) + i (1) i (22)]
— 00 —00 0

o oo

- 3—2 / dz / dZQ/dT 21 — 22)°1°0(r* + (21 — 22)%)ph (21) P (22)
o oo 0
/ iz / iz / dr rP5(r? + (21 — 22)2)ply(21)h (22), (34)
—00 0
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oo o} oo

k=3 [ dn [ [arrtan? + - 2P erh(ea) + sl

e’} —00 0
- o0 o0 .
+ 1 / dz / dzy / dr (21 — 22)2r30(r* + (21 — 22)2)pb(21) P (22)
—00 —o0 0
— 116 dz / dZQ/dr rSO(r? 4+ (21 — 22)%)ph(21) ph(22), (35)
— o0 —00 0

are the surface tension, the spontaneous curvature, and the rigidity constants respectively. Observe that these coefficients inherit
the generalities of the microscopic free energy (31), and that to be able to evaluate all properties numerically the third order
corrections to the density profilg;, are necessary. This is a formidable task, initiated recently, that has already provided some
significant advances [31]. We shall consider this problem in a future publication.

4. Multicomponent System
L/vhich both homogeneous phases are found in a mixed state.

Here we carry out an analysis analogous to that in the preif temperature is lowered even further, multiple coexistence
vious section, but for the system composed of an arbitraryegions between the diverse components of the system are
number of constituents. For this purpose, the normal comformed. These coexistence regions range from those of a sin-
ponent of the stress tensor for the inhomogeneous regiogle component to those of multiple ones. The latter is the
Eq. (14), is integrated over the whole space, Eq. (15), tanost general state and thus the one we are interested to de-
obtain the contribution to the free energy from the interfacialscribe in this work.

region. By assuming density profiles that define an arbitrarily ~ Now we go onto fixing the Gibbs dividing surface for the
deformed interfacial region, which may be described using a-th component; having densi/. Let us assume its radius
semi-orthogonal system of vectors at each point, one findgcated at? = R?, and expand the density profile about this

the microscopic grand potential [22] surface by introducing the changg = R + z. When the
o0 choice is made, we get a mathematical surface on which the
Qs = 1 Z/df/ . / ds o, concepts from differential geometry can be associated with-
4 ” ' out ambiguity. By performing a power-expansion of the den-
2 0

sity profile on the principal curvatures we get to
(s (50 =722 4 (70 - 7)?)

p4(Ry, + 2)
= po(2) + pi(2)Hi + ph(2)HY + p5(2) Ky, (37)

Po(7n)
x 9,0 p(F V)0, g (7). (36)

The staring point for our study is precisely this exact micro- _

scopic expression, which captures the non-local character dfheretf; and K; are the mean and Gaussian curvatupgs,

the free energy. In contrast to the monocomponent systen'S the profile of the local plane, and, are corrections to the

in which there is only one density profile and one interactiondensity profile due to curvature. This expansion is obtained

potential, there now exist a large amount of these quantitied0r each profile in the grand potential. The interaction poten-

Equation (36) depends on all exact densities of an arbitrarial between two arbitrary componentsindj also captures

ily deformed surface. Such a form is inconvenient to exploitthese details. Itis

its analytic potential when studying the interfacial region, al- _ .

though it favors numerical analyzes, which are beyond the Wij (5 + (7 = 7) + (P — Fi)z)

scope of this work. To obtain useful microscopic expressions ‘

of the interfacial properties, it is necessary to approximate = @ij (5 + (7 = 7)% + (R, — 21)°

the density profile. The approximation we use, accounts for 4 4 4 o

the smooth decay of the density profile of each component + (R} — z2)? — 2(R}, — z1)(R — z2)n’ - ﬁ”)- (38)

density. Before proceeding to the analysis, we consider it rel-

evant to briefly discuss the behavior of the fluid mixture withTo proceed we introduce the volume element

temperature. At high temperatures the system is expected " = dS(r,)dr, = dS(R,)dz into the grand potential;

be found in a vapor phase mixture, obeying its correspondingbserving that the surface elemei depends on the metric

mechanical equilibrium condition. As temperature is slightlyunder consideration. Thus, it is evident that in order to obtain

lowered, there appears a liquid-vapor coexistence state imicroscopic expressions for the most relevant properties of
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the system, one of the surface integrals in the grand potentigalculate the metric and obtain an approximate expression for
must be evaluated. Following the same approach as for thihe product of the normals, so as to approximate the interac-
monocomponent system; that is, assuming the surface for th@n potential. By introducing these approximations and the
i-th component locally approximated by a paraboloid, weexpansion for the density profile into the microscopic grand
| potential we obtain

1 o0 o0 o0 o0 o0 i :L.2 2
0= -1 Z/dS(rn) / dz / dzo / dx / dy/dSWij (s + 22+ + (21— 22)% + (21 — zg)(R—]l + %)
¥ — 00 —00 —o0 —00 0
1/a? y2 2 /i Zi H. i H. ol 15 H2 5
+1 o + 1 po (21)pg (22) + Hipy (21)pg (22) + Hjpg (21)p7 (22) + Hj pg (21)ps (22)
1 2
+ HyH;p (21)p (22) + H7 ply (21)p¢ (22) + Kiph (21)p5 (22) + K;ply (21) 05 (22) + - } (39)

Then, we expand the interaction potential between componemts;, &;;, abouts + 22 4+ y* + (21 — 22)? and order terms
in powers of the difference;, — z5. These terms may now be analyzed, following the analogy with the monocomponent case,
to obtain the final result for the contribution to the free energy from the interfacial region

05 =3 % [astrn) [ an [ dn| [arro,ot s - {0 o) + it ()
ij —o0 —0oo 0
+ Hipg (21)p7 (22) + H} pfy (21)p5 (22) + HiHypl (21)p7 (22) + HE p5 (21)p¢) (22) + Kipfy (21)p (22)

Eb e G} [l 2 = X G2 4 1 20 (B2 - 3E) o)) (40)
0

This expression implies that the Hamiltonian of the system depends on the arbitrary number of components, and that may be
expanded in powers of the curvatures. This is an important result, as it allows for the knowledge, in approximate form, of the
expression of the grand potential for a smooth profile.

Microscopic expressions for the interfacial properties of
the multicomponent system can also be identified as the coelfake the microscopic grand potential either from Eq. (31) or
ficients of the surface invariants, in analogy to Eq. (1). How-settingt = 1 into Eq. (40). Only the most relevant aspects
ever, we consider the free energy Eq. (40) as the most relend results from these models are presented.
vant result, which is consistent with the monocomponent sys-
tem, Eg. (31). Expressions for the microscopic free energy 05.1. Squared Laplacian
the mono- and multi-component systems, Eqgs. (31) and (40 ) ) o . )
respectively, clearly reproduce the asymptotic values of thid he starting point for the description of this model is Eq. (16)
quantity in the limit of a step-like density profile within this With ¢ = 1, i.e. for a single component. First, one introduces
viewpoint [10, 22]. It is important to point out that the use the assumption of small density grad|e_ntsj which means that
of the same, van der Waals, mean-field model to describe tho (') can be expanded abop(r). This yields a free en-
liquid-vapor coexistence state, as used in other viewpoint£rdy functional that depends on the equilibrium density at one
is not a guarantee of identical expressions for the interfacidpOint. Power-expanding this expression; maintaining terms
properties. Discrepancies do occur as a result of different ag!P t0 squared laplacian, one obtains
proximations and simplifications, which are mainly due to 1
the arbitrariness in election of the Gibbs dividing surface. flp(™)] = /d?{fo(p(f‘)) + §A(p(f‘)) (Vp())?

Although discrepancies are observed in expressions for the

rigidity constants [8,24], it is expected to find agreement with 1 . 2
the main terms. - ZB(P(T)) (V2p()" |, (41)

where the coefficient$,, A and B are given respectively by
5. Comparison with other Works

Here we compare our results with predictions from other the- fo(p(7)) = kT {P(F) In(X3p(7)) — 1]
oretical frameworks. For the monocomponent system, we
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- 50 [areiom]. @)
Alp() =5 [arnteiom), @)
Bl = 250 [arvie o). (ad)

In these expression,is the de Broglie thermal wavelength,
c(7'; p(7)) is the direct correlation function of a homoge-
neous and isotropic fluid of densip(7), fo is the free en-
ergy density of an uniform fluid, and the coefficiedtaind B
are the second and four moments:0f’; p(7)) respectively.

Using this model, Robledo et al. described a monocompo-

J.G. SEGOVIA-IOPEZ, A. ZAMORA, AND B. EREZ-HERNANDEZ

From this we read the microscopic expressions for the inter-
facial coefficients

y= / dralA (o) — B ()°], (49)

1
Kep = —3 / drn[2Apopy — 2Bpypy +2Bpopg],  (50)

K= / dry, (A[2p6p’z + o] = B[2pgpy + pi”]
+2Bpypl + phpy] + 2r2[A(ph)* — B (p6')2]) , (51)
[Ap§ + Bpg?]r2) .

x= [ dra (vit ~ B - (52)

nent inhomogeneous fluid with interfacial surface arbitrarilyBy direct comparison of the expressions in this work and the

curved [32]. According to DFT, the equilibrium grand poten-
tial is

Qeq = Qouiic|peq ()] + Qsurt [Peq (7], (45)

where p.q corresponds to the equilibrium density profile,
which is obtained by minimizing the grand potential func-
tional in Eq. (2). The resultis

Qeq = —poVin — PL,Voue + /dS{[A (p/)2 - B (p”)2]
+ J/dran’p” + %(ﬂ —2K)
< [aniaw)? - B} (46)

squared laplacian model respectively, we observe the follow-
ing: for the surface tension, Egs. (32) and (49), show an-
alytical discrepancy. This is due to the fact that Eq. (32)
is exact at mean field level, whereas Eq. (49) corresponds
to the first two terms of a series expansion. Comparison on
the Tolman length, Egs. (33) and (50), show agreement only
in the first term. Eq. (50) has terms that cannot be repro-
duced in more detailed analyses, as the one in this and previ-
ous works [19, 31]. By comparing the results for the rigidity
constantss and 5, Egs. (34) and (35) with (51) and (52)
respectively, we observe coincidence of some terms in the
casep(z1) = p(z2). Setting this condition, however, implies
loosing information on the non-local behavior of the system,
which is an effect from the squared laplacian approximation.
Better coincidence is expected with a model using and equiv-
alent level of approximation on the free energy.

5.2. Mean Field

Introduction of the same approximation for the density pro-

file, Eq. (19), into this leads to

Qeq = —PoVin — PLyVour + s, (47)

where()s denotes the contribution from the interfacial sur-
face

QS:/ds/drn([A(pg)%B(pgf]) +H/dS

x / dra[2Apop — 2Bpgpy + 2Bpypg] + H® / ds

‘ / dr, (A[zf/opg 42— BRpol + ) + 2B
ds

/ 7 2 /
< looplt + pust) + 2r2 A (o) — B (pa>21)+f< /

< [ dra (st~ ol [A? + Bi?)2) . (49

Blokhuiset al. analyze the liquid-vapor coexistence state of a
monocomponent simple fluid. Their starting point is the free
energy functional [9, 31]

Q) = [ a1 unlol) — ()

1 Y . N
by [0 [draUprnE), 63
wherey is the chemical potential arld(r) is the short-range
interaction potential. For the reference free energy, they as-
sume the form of Carnahan-Starling

4n — 3n?
(1—mn)*’

wheren = wpd?/6 andd is the molecular diameter. These
authors consider spherical and cylindrical liquid-droplets and
expand both the density profile and chemical potential in
powers of the inverse radii of curvature, as in Eq. (19). The
results they obtain for the interfacial coefficients are [31]

Jus(p) = kpTplnp+kpTp (54)

Rev. Mex. Fis60(2014) 318-330



INTERFACIAL PROPERTIES OF INHOMOGENEOUS FLUIDS FOR A SMOOTH PROFILE 329

- / dor [ U121 = )i, (55)
So = i/oo dz / AU (r)r? (1 — s2)ph(21)p) (22), (56)
/ dor [ dral()r2(1 = )pie)plofen — / dar [ dal(r)r?(1 = S0 (20 (22)
- /dzl/de 2(1 — s2)22p)(21) (20 + — o /dzl/de r)rt (1 — ) (1 +35%)ph(21)ph(22),  (57)
= / dar [ dRal(r)r2(1 = )0 2) — pl(e2)] + / day [ disal(r)r?(1 = )2 (1) 22)

/ dz / AU (1) (1 — s2)(1 + 752) (1) (22), (58)

for the surface tension, Tolman length, and the bending and
Gaussian rigidity respectively. Subscriptsand ¢ accord- )
ingly label spheres and cylinders, and {hé:) denote cor- 6. Conclusions
rections to the density profile due to curvatures. Explicitly,
these quantities measure deviations, of oidef the density
profile from a planar surface.

Starting from the most general, microscopic and exact, ex-
pression for the grand potential within mean field approxi-
mation, Egs. (18) and (36), we have derived the effective
Hamiltonian for an arbitrarily curved interface of single- and
In the analysis of Blokhuist al. the free energy contains multi-component simple fluids in a liquid-vapor coexistence
the same level of approximation that we used here, and so orstate, considering a smooth density profile. Then, from this
would expect identical expressions for the interfacial coeffi-result, we have been able to generalize microscopic expres-
cients. By comparing Egs. (32) and (55) one finds that bottsions for surface properties obtained in previous works. Im-
expressions for the surface tension are equivalent. In order fportant considerations that make this generalization worth-
compare the Tolman length, Eqgs. (33) and (56) respectivelyyvhile are: (i) Incorporation of a smooth profile, (ii) For an
one needs to make the correspondenice- p;1/2 = p1/2. arbitrarily curved surface, (iii) With extension to a system
By doing this, one finds that both expressions are identicalof an arbitrary number of components. In particular, for the
Then, to compare the coefficient &f in Eq. (31), the two monocomponent system, we introduce a smooth profile that
correspondences — k/2 andps — p.o are needed. It captures the geometry of the interfacial region and therefore
can be observed that, one to one, the terms in (34) and (5€pntains more detailed information on particle interactions
coincide, although the factors are not identical. Finally, tothan in the case of a step-like profile. The treatment of this
compare the coefficient df in Eqg. (31), the two correspon- single-component fluid is based essentially on two approx-
dencest — k andps — [ps2 — 4pc2] are necessary. Once imations: (a) A power-series expansion of the density pro-
again, all terms in both Egs. (35) and (58) correspond idenfile on the principal curvatures up to second order. Within
tically; although they also show discrepancies on numericathis approximation, the lowest order term corresponds to a
factors. As a summary of this comparison, we find full agreeplane profile, whereas the other contributions capture the ef-
ment in the microscopic form of the rigidity constants, butfects of surface curvature. (b) The other one, necessary to
discrepancies on the numerical factors, whose origin is cembtain concrete results, consists in approximating the surface
tainly due to approximations as the free energy is the same itocally by a paraboloid. This is valid when the average radius
both works. Notice, however, that in their analysis these auef curvature is very large as compared to the range of the
thors only consider the spherical and cylindrical geometriesinteraction potential. Although the interaction between two
whereas we analyze an arbitrarily curved surface. A commmolecules is considered short-ranged, technically only one
parison with multicomponent mixtures is not possible, as nof them is located on the local plane, which reveals that this
equivalent analysis for a smooth profile has been reported. approximation really captures the effects of curvature even
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at very small scales. Nevertheless, this in no way avoids thtéhe single component case, where only one interfacial region
fact that this approximation is appropriate for weakly curvedmay exist, here there exist multiple coexistence regions and
surfaces. Both approximations, (a) and (b), are captured imtermolecular interactions. The coexistence surfaces may
the interaction potential, which depends directly on the rabe due to a single component or to a mixture of different
dius of the Gibbs dividing surface, and on the radii of cur-ones. As a generalization to the monocomponent system, the
vature defined on the local coordinate system. This fact igmpproximations used on each component are basically those
employed to perform an expansion of the interaction potendescribed previously, except that we now consider different
tial in powers of the principal curvatures, which allows us toGibbs dividing surfaces. From the results obtained, only the
obtain a final expression for the grand potential of the intermicroscopic surface tension may be compared, which shows
facial region. As described above, the results obtained are iagreement with other viewpoints [11, 12]. The theory here
agreement with other viewpoints for the surface tension angresented can, in addition, be used to describe nucleation of
the Tolman length, but differ on the values predicted for thefluid drops of any geometry and number of components. A
rigidity coefficients [31, 33]. task that is still pending concerns numerical evaluation of all
To carry out the description of the multicomponent sys-results for single- and multiple-component systems. We shall
tem, we consider an arbitrary numheof density profiles, consider this study in a future publication.
which enter directly into the grand potential. Contrary to
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