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Interfacial properties of inhomogeneous fluids for a smooth profile
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Km 1 Carretera Cunduaćan-Jalpa, Apartado Postal 24, 86690, Cunduacán, Tabasco, Mexico.

A. Zamora
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We analyze single- and multi-component simple fluids in a liquid-vapor coexistence state, which forms an arbitrarily curved interface. Using
an analytical approach, based upon density functional theory, we perform a power series expansion of the density profile on the principal
curvatures to calculate the grand potential that represents the free energy of the system. In addition, we derive microscopic expressions for
the interfacial properties. All results are in good agreement with other viewpoints at the level of surface tension and spontaneous curvature.
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1. Introduction

The statistical mechanics description of two-dimensional ex-
tended objects is a topic of great relevance in condensed mat-
ter physics. The interest on it is due to the diversity of sys-
tems that may be modeled in this fashion [1–4]. Among those
systems one can mention, for instance, micelles, microemul-
sions, interfaces, and biological or artificial membranes. The
composition of such systems is diverse, ranging from sim-
ple to complex molecules. An important thermodynamical
property of such systems is surface tension, which may be
defined as the free energy per unit area and is a measure of
the energy cost for the system to maintain the surface ex-
tended. In some cases the interfacial surface tension may be
lowered by adding surfactants (tensoactive agents), which are
part of the amphiphilic family. The molecules in the interfa-
cial region are formed by two parts; one polar or hydrophilic
(head) and the other non-polar or hydrophobic (tail). Surfac-
tants adhere to the bulk phases leading to formation of soap
films. At room temperature the amphiphilic bilayers show
up generally as a fluid and form what is called a fluid mem-
brane [5]. Under certain conditions these membranes close
onto themselves forming bag-like structures which are known
as vesicles. The elastic behavior of those systems is crucial to
describe such structures. It is known that the relevant contri-
butions to the elastic energy of an homogeneous fluid mem-
brane are those from surface tension and from flexion; which
in its turn are determined by area and curvature of the mem-
brane. As in films formed by amphiphils surface tension is
very small, or nearly null, the dominant contribution to its
free energy is due to bending. Nevertheless, in many sys-
tems surface tension is not negligible and the corresponding
energy contribution must be included [6,7].

Tools employed to describe fluid membranes can also be
used to describe the behavior of fluid interfaces, which may
be formed in fluids of one or several components when they
are in a liquid-vapor coexistence state [8–10]. For monocom-
ponent systems there exists a single interfacial region sepa-
rating both the liquid and vapor homogeneous phases. How-
ever, for multicomponent systems there exist multiple inter-
facial regions: those formed within the same component, but
in different phases, and those from combinations of differ-
ent components where the phases are not necessarily differ-
ent [11]. Although interfacial regions have been studied since
more than a century ago, their structure and conformation to
different scales is still a topic of study; particularly in sys-
tems formed by several components [12, 13]. There exists
vast literature on the theoretical and experimental description
of these systems. On the theoretical context, two approxi-
mation schemes may be basically identified: the one in equi-
librium and the other when fluctuations are included. In the
former, driven forward originally by van der Waals [14], al-
though the external field is what generates the interface, it is
neglected. This scheme assumes existence of a smooth intrin-
sic interface with a density profile that interpolates smoothly
between the bulk-phase densities of the coexistence state. On
the other hand, in the scheme with fluctuations, driven for-
ward by Buffet al. [15], the external field plays a crucial role
as it controls fluctuations of the interface. It is assumed that
the interface is non-smooth, having small undulations due to
capillary waves. Within this viewpoint only the interfacial
local positions are considered as statistical variables and the
thickness of the interface is described as a result of the capil-
lary wave fluctuations of a step-like density profile. Each of
these viewpoints yields independent results for the width of
the interfacial region.
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On the one hand the equilibrium scheme, in all versions,
is unable to capture the fact that the interface thickness di-
verges as gravity goes to zero. The fluctuation scheme, on
the other hand, cannot account for the divergence of the in-
terfacial thickness, on the scale of the bulk correlation length,
when the system approaches the critical temperature. Never-
theless, it has been proved that far from the critical point,
predictions for the interfacial properties from both schemes
agree [16, 17]. We consider that these two viewpoints are
complementary, and enrich comprehension of interfacial phe-
nomena. In any of the situations previously described, if
one deals with amphiphilic membranes or fluid interfaces,
either with or without surface tension, the free energy can
be represented in general by the Helfrich phenomenological
model [18]

ΩS =
∫

dS[γ − 2κc0H + κH2 + κ̄K], (1)

wheredS is the area element of the interface,H = (1/R1)+
(1/R2) andK = 1/R1R2 are the mean and Gaussian local
curvatures respectively withR1 andR2 being the principal
radii of curvature on a given point in the surface. The co-
efficients are in its turn:γ the surface tension,κ and κ̄ the
bending constants, andc0 the spontaneous curvature. These
parameters are intrinsic properties of the media under study
which, in particular for interfacial surfaces, should have a
representation in terms of microscopic quantities. For the
analysis of our system, we consider an ab-initio microscopic
approach to derive independently the “Helfrich equivalent”
and then identify the surface properties [10]. Following this
route, and some variants, fluid interfaces having simple ge-
ometries as spherical or cylindrical for different approxima-
tions of the density profile have been studied [19]. There ex-
ists consensus respect to the points of agreement and discrep-
ancy on the microscopic expressions predicted for the surface
properties [9, 19]. Nevertheless, when it comes to describ-
ing the behavior of an interface given as a surface arbitrarily
curved in a microscopic context, the analysis is more com-
plicated. Much technical effort is required to carry out perti-
nent approximations and only a few have adventured on this
task. A pioneer approximation in this context was carried out
by R. P. K. Zia; in which the normal coordinates were in-
troduced for the first time to investigate the behavior of the
interface [20]. A drawback from this work is that the approx-
imation was carried out on the squared gradient theory, also
known as drum model, and is a known fact that this model is
unable to correctly describe interfacial properties. In a later
work, S. Dietrichet al. use density functional theory (DFT)
as a basis to analyze a more microscopic model for both a
monocomponent and a binary system. Their study is aimed
at obtaining an effective Hamiltonian in each case [11, 21].
In order to obtain the interfacial properties, these authors ac-
count for the smooth variation of the density profile, include
its deformation due to curvature, and use normal coordinates
to introduce an adapted parametrization for the profile near
the interface. In the present work we analyze the statistical

mechanics nature of the free energy and the interfacial coef-
ficients for an interface that is arbitrarily deformed, for sys-
tems composed of one or several components. Specifically,
we consider a mean field approximation for the free energy
of the interfacial region, which is the simplest approximation
to describe the coexistence state of a simple fluid. The re-
sulting energy functional can be expressed as a sum of two
terms, each containing local and non-local information re-
spectively [16, 19]. Our aim is to determine the grand po-
tential of an arbitrarily deformed interface for a smooth den-
sity profile. To proceed we use DFT following the route of
the stress tensor, and assume that the interface behaves as a
bidimensional elastic continuous medium. The Gibbs divid-
ing surface is then fixed properly, and the density profile is
expanded in powers of the principal curvatures. Finally, a
local approximation for the surface is performed, which in-
directly affects the interaction potential, and the microscopic
expressions for the surface are obtained. The results we ob-
tain are in complete agreement with previous works and with
the most relevant quantities from other viewpoints. The most
relevant features in our work, which distinguish it from those
previously cited, can be summarized as: (i) we start from
an exact expression for the free energy at the level of mean
field [10], (ii) instead of using normal coordinates, we carry
out a local approximation for the surface, and (iii) by using
the corresponding expression for the energy, the analysis is
generalized to an arbitrary number of components [22].

This paper is organized as follows. In Sec. 2 we briefly
outline the general aspects from this viewpoint. Section 3
is devoted to the monocomponent system. There we con-
sider all relevant developments and results. Next, we carry
out an analogous analysis but for the multicomponent system
in Sec. 4, where in addition we obtain properties for the dif-
ferent surfaces. In Sec. 5 we compare our results with the
most relevant works, and finally, in Sec. 6 we draw some
concluding remarks.

2. Stress Tensor Theory

The description of the system may be carried out using the
fact that the free energy representing the interface of a mono-
component simple fluid in a liquid-vapor coexistence state,
according to DFT, can be written as [23–25]

Ω[ρ(~r)] = F [ρ(~r)] +
∫

d~r[µ− Vext(~r)]ρ(~r), (2)

whereF [ρ(~r)] is the intrinsic Helmholtz free energy,µ is
the chemical potential, andVext is the external potential. To
obtain the equilibrium value for the density profile,ρ0, it is
necessary to minimize the grand potential density functional
and solve the resulting Euler-Lagrange (E-L) equation. Al-
ternatively, the E-L equation can be manipulated to identify
a force-balance equation for a continuum medium in equilib-
rium [19,26,27]

∇ · σ = ρ0∇Vext, (3)
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whereσ is the stress tensor andρ0Vext(~r) is the external
force per unit area. This conservation equation implies ex-
istence of a stress tensor, which contains information of the
whole system. That is, information on the bulk homogeneous
phases as well as on the interfacial region. Although this
quantity is not unique, because a term with zero divergence
may be always added, within this theory it is the starting point
for the calculation of relevant physical properties. Here we
employ the most general expression known in literature, de-
rived from a non-local field theory, and model the system
as a continuous medium [16, 28]. By convenience, and to
carry out a detailed analysis, we separate the stress tensor
in two contributions: one for the homogeneous region and
the other for the inhomogeneous one. The microscopic ex-
pression that results for the interfacial contribution within the
van der Waals approximation for the monocomponent fluid is
given by [10]

σαβ
S (~r) = −

∫
d~r ′

1∫

0

dλ ρ0(~r − (1− λ)~r ′)

× ω̃(~r ′)r′α∇βρ0(~r + λ~r ′)

− 1
2
∇ν

∫
d~r ′

1∫

0

dλ ρ0(~r − (1− λ)~r ′)ω̃(~r ′)

× r′β [r′α∇νρ0(~r + λ~r ′)− r′ν∇αρ0(~r + λ~r ′)]. (4)

This quantity depends exclusively on the density profile and
on the interaction potential, and is independent of the interfa-
cial geometry. In fact, the geometry is defined by the density
profile itself Superscriptsα andβ on the stress tensor denote
its cartesian components;̃ω is the interaction potential be-
tween particles, which is short-ranged, andλ is a parameter
that relates two fluid points on the interfase. Our goal is to
determine the grand potential for an arbitrarily curved geom-
etry by considering a smooth profile. Evidently, one expects
to obtain more precise results and extra contributions absent
for a step-like profile. We assume that each point~r in space
is described by a semi-orthogonal triple(n̂(~r), t̂1(~r), t̂2(~r)),
with n̂(~r) = ∇ρ0(~r)/| ∇ρ0(~r) | being the normal vector and
t̂α(~r), α = 1, 2 tangent vectors to the surface. They are such
that n̂(~r) · t̂α(~r) = 0, with α = 1, 2 and t̂1(~r) · t̂2(~r) 6= 0.
Notice that the normal vector is defined only in the inhomo-
geneous region, where∇ρ0(~r) 6= 0.

The free energy of the whole system is obtained by in-
tegrating the normal component of the stress tensor over all
space. This normal component may be also separated in two
contributions: one due to the homogeneous region and the
other due to the inhomogeneous one [27]. As we are inter-
ested only in the interfacial region, we use the fact that the
corresponding grand potential can be obtained from

ΩS [ρ0(~r)] = −
∫

d~rσN
S (~r), (5)

whereσN
S is the microscopic stress tensor of the inhomoge-

neous region. Eq. (5) is a completely general expression
that may be used to derive surface properties, at the micro-
scopic level, of any surface. Such derivations are carried out
in Sec. 3 for a curved interface.

2.1. Fluid Mixture

We now provide a brief description, analogous to that at
the beginning of this section, but for the system contain-
ing an arbitrary number of components [22]. Let us, there-
fore, consider a grand canonical density functional for the
t-component fluid consisting of molecules of different con-
stituents interacting via a spherically symmetric potential; to
be introduced in explicit form shortly. The expression for this
grand potential functional is

Ω[ρ1(~r), . . . , ρt(~r)] = F [ρ1(~r), . . . , ρt(~r)]

+
t∑

i=1

∫
d~r [µi − V i

ext(~r)]ρ
i(~r), (6)

whereF [ρ1(~r), . . . , ρt(~r)] is the intrinsic Helmholtz free en-
ergy of the whole system,µi, V i

ext(~r), and ρi(~r) are the
chemical potential, the external potential, and the density
profile of thei-th component respectively. Molecules from
different constituents are related each other through an inter-
action potential which depends on the level of approximation
under consideration. Throughout this study we assume an
approximation at the level of mean field, which is introduced
explicitly later on.

The equilibrium density profile for each componentρi
0 is

obtained following the same procedure as in the monocom-
ponent system. The difference, in this case, being the appear-
ance of a system oft coupled E-L equations whose solution
is more complicated. Explicitly, it is necessary to minimize
Eq. (6); which yields the corresponding E-L equation. Then,
in analogy to the monocomponent treatment, we carry out
pertinent manipulations so as to write it as the force-balance
equation

δF

δρi

∣∣∣∣
ρi
0

∇ρi
0(~r)−∇{[µi − V i

ext(~r)]ρ
i
0(~r)}

= ρi
0(~r)∇V i

ext(~r). (7)

This partial balance is not sufficient to represent the conser-
vation equation of the whole system. The appropriate result
is obtained from Eq. (7) by summing over all components.
That yields

∇ · σ =
t∑

i=1

ρi
0(~r)∇V i

ext(~r), (8)

whereσ now denotes the stress tensor of the fluid mixture,
which is symmetric by nature of the system [28]. This quan-
tity contains information on both, the homogeneous phases
and the interfacial region. However, it is not unique as one
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may always add a term with vanishing divergence and the ex-
ternal force per unit area remains invariant. To proceed, we
separate the stress tensor in two contributions: one for each
region, corresponding to homogeneous and inhomogeneous
densities

σ = σ0 + σS , (9)

whereσ0 is the homogeneous contribution from the bulk
phases of all components, given as

σ0 = ω(~r, [ρ1
0, . . . , ρ

t
0])I ])

=

[
f(~r, [ρ1

0, . . . , ρ
t
0])−

t∑

i=1

(µi − V i
ext(~r))ρ

i
0

]
I , (10)

with I being the unit tensor, and the contribution from the
interfacial region,σS , that satisfies the relationship

∇ · σS(~r) =
t∑

i=1

[
δF

δρi

∣∣∣∣
ρi
0

∇ρi
0(~r)

]

−∇f(~r, [ρ1
0, · · · , ρt

0]). (11)

In addition, we introduce the densities of grand po-
tential and Helmholtz free energy,ω(~r, [ρ1

0, . . . , ρ
t
0]) and

f(~r, [ρ1
0, . . . , ρ

t
0]), defined respectively through

Ω[ρ1
0, . . . , ρ

t
0] =

∫
d~r ω(~r, [ρ1

0, . . . , ρ
t
0]), (12)

F [ρ1
0, . . . , ρ

t
0] =

∫
d~r f(~r, [ρ1

0, . . . , ρ
t
0]). (13)

By considering the system as a continuum medium and us-
ing general symmetry arguments, a non-local field theory has
been constructed which predicts the following expression for
the stress tensor [22,28]

σαβ(~r ) =

(
f(~r, [ρ1

0, . . . , ρ
t
0])−

t∑

i=1

(µi − V i
ext(~r))ρ

i
0

)
I

−
t∑

i=1

∫
d~r ′

1∫

0

dλ r′α∇βρi
0(~r + λ~r ′)

× δL0(~r − (1− λ)~r ′ | ρ1
0, . . . , ρ

t
0)

δρi
0(~r + λ~r ′)

+∇ν

t∑

i=1

∫
d~r ′

1∫

0

dλλr′β

×
(

r′ν∇αρi
0(~r + λ~r ′)− r′α∇νρi

0(~r + λ~r ′)

)

× δL0

(
~r − (1− λ)~r ′ | ρ1

0, . . . , ρ
t
0

)

δρi
0(~r + λ~r ′)

. (14)

There exists a direct relation between concepts from La-
grangian mechanics and equilibrium statistical mechanics.

The quantityL0(~r | ρ1
0, . . . , ρ

t
0)−

∑t
i=1 µi(~r )ρi

0(~r ) = ω(~r |
ρ1
0, . . . , ρ

t
0) is identified as the grand potential density; that

is, minus the pressure in an uniform fluid [28]. The first term
in brackets in Eq. (14) is the contributionσ0, correspond-
ing to the bulk homogeneous phases, whereas the remaining
part is that from the interfacial regionσS , recognizable be-
cause∇ρ0(~r) 6= 0 there. In this theory the non-local func-
tionalF [ρ(~r)] enters just as an ingredient. We assume that the
mean field approximation is sufficient to capture all relevant
details of the fluid mixture in the liquid-vapor coexistence
state. Higher order approximations to the free energy yield
more detailed information, as they allow to measure correla-
tions between different points. Nevertheless, this information
is relevant when the system presents long-range fluctuations,
which occurs as it approaches to the critical point.

Once again the free energy of the system may be obtained
by integrating the normal component of the stress tensor over
the whole space. The separation of the stress tensor intro-
duced before implies that the grand potential may also be
separated in two contributions [22]. The contribution from
the bulk homogeneous phases may be considered known. In
many cases it corresponds to terms of pressure by volume, or
to the free energy of a hard sphere system. On the other hand,
the microscopic expression for the free energy of the interfa-
cial region is the most relevant physical quantity, which we
will investigate for inhomogeneous systems. The fact that all
surface properties may be derived from this contribution, lead
us to concentrate exclusively on it. Our starting point is the
exact result

ΩS = −
∫

d~rσN
S , (15)

where the expression forσS depends on the free energy ap-
proximation and captures information on thet-component
system. As previously mentioned, we consider an approx-
imation at the level of mean field, which proposes the
Helmholtz free energy as

F [ρ0(~r)] =
t∑

i=1

∫
d~r f(ρi

0(~r)) +
1
2

t∑

i=1

t∑

j=1

∫
d~r

×
∫

d~r ′ ω̃ij(~r − ~r ′)ρi
0(~r)ρ

j
0(~r

′), (16)

with ω̃ij being the interaction potential between two
molecules of arbitrary componentsi andj. The first term in
this expression contains information only on the system local
contribution, which can be for an ideal gas or hard spheres.
The second captures the non-local behavior of the system,
which is the most relevant contribution to describe its liquid-
vapor coexistence state. By introducing this approximation
into the stress tensor, Eq. (14), and identifying the contribu-
tion to the interfacial region, we find

σαβ
S (~r) = −1

2

∑

ij

∫
d~r ′

1∫

0

dλ ρi
0(~r − (1− λ)~r ′)

× ω̃ij(~r ′)r′α∇βρj
0(~r + λ~r ′)
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−1
2

∑

ij

∇ν

∫
d~r ′

1∫

0

dλ ρi
0(~r−(1−λ)~r ′)ω̃ij(~r ′)

×r′β
[
r′α∇νρj

0(~r+λ~r ′)− r′ν∇αρj
0(~r+λ~r ′)

]
. (17)

We perform a general analysis, for the system composed of
an arbitrary numbert of components, for which there ex-
ists a variety of interaction potentials̃ωij between pairs of
molecules. As all interactions, either between molecules of
the same or different constituents, are possible, there is a total
of t(t + 1)/2 interaction potentials, which implies existence
of an equivalent number of coexistence regions.

3. Interfacial Free Energy and Curvature Ex-
pansion for the Density Profile

We consider an arbitrarily curved interface for a density pro-
file that depends exclusively on the normal coordinate. By us-
ing Eqs. (4) and (5) we get to the general microscopic grand
potential [10]

ΩS [ρ0(~r)] = −1
4

∫
d~r

∫
d~r ′

∞∫

0

ds

×∇ρ0(~r) · ∇′ρ0(~r ′)ω̃(s + (~r − ~r ′)2). (18)

This result, exact at the level of mean field, describes the be-
havior of an arbitrarily curved interface in equilibrium. All
details of the interfacial region are there contained as it de-
pends on the full profile of the curved interface. In order to
obtain explicit expressions for surface properties it is neces-
sary to approximate the density profile and the surface rep-
resenting the interfacial region. The aim in this study is to
perform the most general approximation to the density pro-
file within this scheme.

We start by writing the volume element as
d~r = dS(rn)drn, where the surface elementdS depends
on the metric under consideration. By decomposing vectors
in their normal and tangent components respectively, the ex-
pression for the interaction potential gets slightly modified.
After this, we fix the Gibbs dividing surface by assuming it
located atrn = Rn, and then expand the density profile about
this surface. Explicitly, we usern = Rn + z and propose an
expansion in powers of the principal curvatures of the form

ρ0(~rn) = ρ(Rn + z)

= ρ0(z) + ρ1(z)H + ρ2(z)H2 + ρ3(z)K, (19)

whereH andK are the mean and Gaussian curvatures re-
spectively,ρ0 is the density profile of the local plane, and
ρα, α = 1, 2, 3, are corrections to the profile due to cur-
vatures. Within this representation the volume element be-
comesdS(rn)drn = dS(Rn)dz. The interaction potential is
also affected by this choice of Gibbs dividing surface. Now
its argument has the dependence

ω̃
(
s + (~rn − ~r ′n)2 + (~rt − ~r ′t )2

)
= ω̃

(
s + (~rt − ~r ′t )2

+ (Rn − z1)2 + (R′n − z2)2

− 2(Rn − z1)(R′n − z2)n̂(~r) · n̂′(~r ′)
)
. (20)

Also, for this dividing surface, the density profile is expanded
and introduced into the interaction potential. The grand po-
tential then becomes

ΩS = −1
4

∫
dS(rn)

∞∫

−∞
dz1

∫
dS(r′n)

∞∫

−∞
dz2

×
∞∫

0

ds n̂(~r) · n̂′(~r ′)ω̃
(
s + (~rt − ~r ′t )2 + (Rn − z1)2

+ (R′n − z2)2 − 2(Rn − z1)(R′n − z2)n̂ · n̂′
)

×
{

ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)]

+ H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
}

. (21)

That is, a function of the principal curvatures of the system
and of the diverse contributions from the density profile. A
drawback is that it also depends on two surface integrals. To
obtain explicit forms for the microscopic expressions of the
surface properties, it is necessary to approximate one of these

FIGURE 1. Schematic picture showing the local approximation for
surfaceS about a pointP . PointsP andQ are located by vectors~r
and~r ′ respectively, and the normal vectors to the surface at those
points aren̂ and n̂′. PointP is chosen as the origin of the local
coordinate system whereasQ lies outside the tangent plane. Its
projection onto this tangent plane has coordinates(x, y). The ra-
dius of location of the Gibbs dividing surface is atRn. The distance
from Q to the local plane (projection of̂n′ onton̂) is Rn−R′n = ζ,
with ζ seen from the local system as a paraboloid.
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integrals. This may be accomplished by choosing two ar-
bitrary points on the surface, located by vectors~r and~r ′,
and taking one of them as the origin of the new coordinate
system, with its horizontal plane being the tangent plane to
the surface at such point [10, 29, 30]. The distance that sep-
arates these points is of the order of the interaction poten-
tial range, i.e. the length-scale over which a molecule is
related to others. Although this separation could be small,
only one of the points lies on the tangent plane. Figure 1
shows this setting where the pointP , located by~r, is cho-
sen as the origin of the local coordinate system. The other
point,Q, located by~r ′, has in-plane coordinates(x, y). De-
noting the magnitudes of the normal components of vector
positions~r and~r ′ asRn andR′n respectively, the difference
between these components, as measured from the local sys-
tem, isRn − R′n = ζ = 1/2

(
x2/R1 + y2/R2

)
, which cor-

responds to the heightζ of the arbitrary point~r ′ on the Gibbs

dividing surface as seen from the local coordinate system. By
using this parametrization, the metric on the surface becomes
g = 1 + x2/R2

1 + y2/R2
2. A normal vector to the surface

at Q is n̂′ = (−∇ζ, 1)/
√

g, which is easily obtained from
the quadratic approximation. Then, by choosing the normal
vector to the surface atP asn̂ = k̂, the product of normals
becomeŝn · n̂′ = 1/

√
g.

Evidently, election of the Gibbs dividing surface as well
as manipulations on the density profile depend only on the
normal components. This choice of local coordinate sys-
tem, in addition, make the tangent components of vectors
~r and ~r ′ have coordinates~rt = (0, 0) and ~r ′t = (x, y),
respectively. From this we find the approximation to the
product n̂ · n̂′, in terms of the radii of curvature, given as
n̂ · n̂′ ≈ 1 − 1/2

(
x2/R2

1 + y2/R2
2

)
. We employ this result

to approximate the argument of the interaction potential and
then power expand it, in terms of the inverse radii of curva-
ture, about the values + x2 + y2 + (z1 − z2)2. This yields

ω̃
(
s + (~rt − ~r ′t )2 + (Rn − z1)2 + (R′n − z2)2 − 2(Rn − z1)(R′n − z2)n̂ · n̂′

)
= ω̃

(
s + (~rt − ~r ′t )2 + (z1 − z2)2

+ (Rn −R′n)2 + 2(z1 − z2)(Rn −R′n)
)

= ω̃
(
s + x2 + y2 + (z1 − z2)2 + (z1 − z2)

( x2

R1
+

y2

R2

)
+

1
4

( x2

R1
+

y2

R2

)2)

= ω̃
(
s + x2 + y2 + (z1 − z2)2

)
+ ω̃′

(
s + x2 + y2 + (z1 − z2)2

)[
(z1 − z2)

( x2

R1
+

y2

R2

)
+

1
4

( x2

R1
+

y2

R2

)2]

+
1
2
ω̃′′

(
s + x2 + y2 + (z1 − z2)2

)[
(z1 − z2)

( x2

R1
+

y2

R2

)
+

1
4

( x2

R1
+

y2

R2

)2]2

+ · · · (22)

It will be shown later on in this section that this approximation is sufficient to capture the most relevant details of the system
and to obtain the terms containing physical meaning.

As we are interested only in the most relevant contributions to the surface, terms with curvatures larger thanH2 andK, or
equivalently larger than the inverse radii of curvature squared, will be ignored. By also considering thatdS(r′n) =

√
gdxdy,

we get to an expression for the grand potential in terms of the differencez1 − z2

Ω = −1
4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

−∞
dz2

∞∫

0

ds ×
[
ω̃(s + x2 + y2 + (z1 − z2)2) +

1
4
ω̃′(s + x2 + y2 + (z1 − z2)2)

×
( x2

R1
+

y2

R2

)2
][

ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)] + H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]
− 1

4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

−∞
dz2

∞∫

0

ds (z1 − z2)
( x2

R1
+

y2

R2

)

×
[
ω̃′(s + x2 + y2 + (z1 − z2)2) +

1
2
ω̃′′(s + x2 + y2 + (z1 − z2)2)(z1 − z2)

( x2

R1
+

y2

R2

)
+ · · ·

]

×
[
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)] + H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]

= Ω0 + Ωz1−z2 . (23)

Notice the separation in two contributions: The first integral, that we callΩ0, is independent of the differencez1−z2. However
the second one, here denotedΩz1−z2 , is proportional, up to quadratic terms, toz1−z2. We first work the termΩ0 to identify its
contribution to the free energy of the interfacial region. The aim is to express this quantity in terms of the interaction potential,
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and not on its derivative. We expect it to depend explicitly on the curvatures. Its expression is easily identified from Eq. (23)
and reads

Ω0 = −1
4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

−∞
dz2

∞∫

0

ds

[
ω̃(s + x2 + y2 + (z1 − z2)2) +

1
4
ω̃′

(s + x2 + y2 + (z1 − z2)2)×
( x2

R1
+

y2

R2

)2
][

ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ1′(z2)]

+ H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)] + K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]
. (24)

Integrations respect tox andy may be easily carried out. Then, by using the relation between radii of curvature and principal
curvatures, 1

R2
1

+ 1
R2

2
+ 2

3R1R2
= H2 − 4

3K, one finds the expression forΩ0 in powers of the principal curvatures

Ω0 = −1
4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dz2

[
2π

∞∫

0

dr r3ω̃(r2 + (z1 − z2)2)− 3
16

π

∞∫

0

dr r5ω̃(r2 + (z1 − z2)2)
(

H2 − 4
3
K

)]

×
[
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)] + H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]
. (25)

We now concentrate on those terms that depend on the differencez1 − z2, which could imply a dependence on the Gibbs
dividing surface. This contribution, correct to quadratic order on the inverse radii of curvature, may be read directly from
Eq. (23)

Ωz1−z2 = −1
4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

−∞
dz2

∞∫

0

ds× (z1 − z2)
( x2

R1
+

y2

R2

)[
ω̃′(s + x2 + y2 + (z1 − z2)2)

+
1
2
ω̃′′(s + x2 + y2 + (z1 − z2)2)(z1 − z2)

( x2

R1
+

y2

R2

)
+ · · ·

][
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2)

+ ρ′0(z1)ρ′1(z2)] + H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]

= Ω(1)
z1−z2

+ Ω(2)
z1−z2

, (26)

where nowΩ(1)
z1−z2

andΩ(2)
z1−z2

denote contributions linear and quadratic on the differencez1− z2 respectively; each requiring
a separate analysis as their dependence on the interaction potential is different. The first term is

Ω(1)
z1−z2

= −1
4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

−∞
dz2

∞∫

0

ds× (z1 − z2)
( x2

R1
+

y2

R2

)
ω̃′(s + x2 + y2 + (z1 − z2)2)

×
[
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)] + H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]
, (27)

in which, analogously to the previous term, we perform the integrations overx andy independently. Maintaining the contribu-
tion to quadratic order on the curvatures we find

Ω(1)
z1−z2

= −1
4
(−π

2
)H

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

drr3 × (z1 − z2)ω̃′(r2 + (z1 − z2)2)

×
[
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)]

]
. (28)
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This expression can be interpreted as the first order term in the series expansion of the two-point correlation function, which
gets canceled out by symmetry. Introducing appropriate changes of variables, this expression can be manipulated further to
realise that it cancels indeed. It is important to mention that throughout these manipulations, the principal curvatures are taken
as constants, which is so because the Gibbs dividing surface has been fixed in advance. We now look at the term that depends
quadratically on the differencez1 − z2

Ω(2)
z1−z2

= −1
4

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

−∞
dz2

∞∫

0

ds× (z1 − z2)2
( x2

R1
+

y2

R2

)2 1
2

ω̃′′(s + x2 + y2 + (z1 − z2)2)

×
[
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)] + H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

+ K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]
. (29)

Once again, we evaluate the integrals overx andy, and maintain only quadratic order contributions on the curvatures to get

Ω(2)
z1−z2

= −3π

16

(
H2 − 4

3
K

) ∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

drr3 × (z1 − z2)2 ω̃(r2 + (z1 − z2)2)ρ′0(z1)ρ′0(z2). (30)

This contribution can be interpreted as the second order term in the series expansion of the two-point correlation function,
which is non-zero by symmetry. By adding all contributions we obtain the final result

ΩS = −π

2

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dz2

{ ∞∫

0

dr r3ω̃(r2 + (z1 − z2)2)
[
ρ′0(z1)ρ′0(z2) + H[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)]

+ H2[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)] + K[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]
]

+
3
8

∞∫

0

dr[ (z1 − z2)2r3 − 1
4

r5]ω̃(r2 + (z1 − z2)2)
(
H2 − 4

3
K

)
ρ′0(z1)ρ′0(z2)

}
. (31)

Observe that the order in the approximation of this microscopic free energy is the same as in the expansion of the interaction
potential (22).

Equation (31) provides the most general expression for an arbitrarily curved surface and for a smooth density profile within
this approximation scheme; which is consistent with the limit case of a step-like density profile. The result is also consistent
with that obtained for spherical and cylindrical surfaces using a smooth profile. Microscopic expressions for the interfacial
properties are obtained by direct comparison of the previous expression with Eq. (1). Thus, for this system

γ = −π

2

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr r3ω̃(r2 + (z1 − z2)2)ρ′0(z1)ρ′0(z2), (32)

κc0 =
π

4

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr r3ω̃(r2 + (z1 − z2)2)[ρ′1(z1)ρ′0(z2) + ρ′0(z1)ρ′1(z2)], (33)

κ = −π

2

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr r3ω̃(r2 + (z1 − z2)2)[ρ′0(z1)ρ′2(z2) + ρ′1(z1)ρ′1(z2) + ρ′2(z1)ρ′0(z2)]

− 3π

16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr (z1 − z2)2r3ω̃(r2 + (z1 − z2)2)ρ′0(z1)ρ′0(z2)

+
3π

64

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr r5ω̃(r2 + (z1 − z2)2)ρ′0(z1)ρ′0(z2), (34)
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κ̄ = −π

2

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr r3ω̃(r2 + (z1 − z2)2)[ρ′3(z1)ρ′0(z2) + ρ′0(z1)ρ′3(z2)]

+
π

4

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr (z1 − z2)2r3ω̃(r2 + (z1 − z2)2)ρ′0(z1)ρ′0(z2)

− π

16

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

0

dr r5ω̃(r2 + (z1 − z2)2)ρ′0(z1)ρ′0(z2), (35)

are the surface tension, the spontaneous curvature, and the rigidity constants respectively. Observe that these coefficients inherit
the generalities of the microscopic free energy (31), and that to be able to evaluate all properties numerically the third order
corrections to the density profile,ρ3, are necessary. This is a formidable task, initiated recently, that has already provided some
significant advances [31]. We shall consider this problem in a future publication.

4. Multicomponent System

Here we carry out an analysis analogous to that in the pre-
vious section, but for the system composed of an arbitrary
number of constituents. For this purpose, the normal com-
ponent of the stress tensor for the inhomogeneous region,
Eq. (14), is integrated over the whole space, Eq. (15), to
obtain the contribution to the free energy from the interfacial
region. By assuming density profiles that define an arbitrarily
deformed interfacial region, which may be described using a
semi-orthogonal system of vectors at each point, one finds
the microscopic grand potential [22]

ΩS = −1
4

∑

ij

∫
d~r

∫
d~r

′
∞∫

0

ds ω̃ij

×
(
s + (~r (1)

n − ~r (2)
n )2 + (~r (1)

t − ~r
(2)
t )2

)

× ∂ (1)
n ρi

0(~r
(1))∂ (2)

n ρj
0(~r

(2)
n ). (36)

The staring point for our study is precisely this exact micro-
scopic expression, which captures the non-local character of
the free energy. In contrast to the monocomponent system,
in which there is only one density profile and one interaction
potential, there now exist a large amount of these quantities.
Equation (36) depends on all exact densities of an arbitrar-
ily deformed surface. Such a form is inconvenient to exploit
its analytic potential when studying the interfacial region, al-
though it favors numerical analyzes, which are beyond the
scope of this work. To obtain useful microscopic expressions
of the interfacial properties, it is necessary to approximate
the density profile. The approximation we use, accounts for
the smooth decay of the density profile of each component
density. Before proceeding to the analysis, we consider it rel-
evant to briefly discuss the behavior of the fluid mixture with
temperature. At high temperatures the system is expected to
be found in a vapor phase mixture, obeying its corresponding
mechanical equilibrium condition. As temperature is slightly
lowered, there appears a liquid-vapor coexistence state in

which both homogeneous phases are found in a mixed state.
If temperature is lowered even further, multiple coexistence
regions between the diverse components of the system are
formed. These coexistence regions range from those of a sin-
gle component to those of multiple ones. The latter is the
most general state and thus the one we are interested to de-
scribe in this work.

Now we go onto fixing the Gibbs dividing surface for the
i-th component; having densityρi. Let us assume its radius
located atri

n = Ri
n and expand the density profile about this

surface by introducing the changeri
n = Ri

n + z. When the
choice is made, we get a mathematical surface on which the
concepts from differential geometry can be associated with-
out ambiguity. By performing a power-expansion of the den-
sity profile on the principal curvatures we get to

ρi
0(~rn) = ρi

0(R
i
n + z)

= ρi
0(z) + ρi

1(z)Hi + ρi
2(z)H2

i + ρi
3(z)Ki, (37)

whereHi andKi are the mean and Gaussian curvatures,ρi
0

is the profile of the local plane, andρi
α are corrections to the

density profile due to curvature. This expansion is obtained
for each profile in the grand potential. The interaction poten-
tial between two arbitrary componentsi andj also captures
these details. It is

ω̃ij

(
s + (~r i

n − ~r ′jn)2 + (~rt − ~r ′t)
2
)

= ω̃ij

(
s + (~rt − ~r ′t )2 + (Ri

n − z1)2

+ (R′jn − z2)2 − 2(Ri
n − z1)(R′jn − z2)n̂i · n̂′j

)
. (38)

To proceed we introduce the volume element
d~r = dS(rn)drn = dS(Rn)dz into the grand potential;
observing that the surface elementdS depends on the metric
under consideration. Thus, it is evident that in order to obtain
microscopic expressions for the most relevant properties of
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the system, one of the surface integrals in the grand potential
must be evaluated. Following the same approach as for the
monocomponent system; that is, assuming the surface for the
i-th component locally approximated by a paraboloid, we

calculate the metric and obtain an approximate expression for
the product of the normals, so as to approximate the interac-
tion potential. By introducing these approximations and the
expansion for the density profile into the microscopic grand
potential we obtain

Ω = −1
4

∑

ij

∫
dS(rn)

∞∫

−∞
dz1

∞∫

−∞
dz2

∞∫

−∞
dx

∞∫

−∞
dy

∞∫

0

dsω̃ij

(
s + x2 + y2 + (z1 − z2)2 + (z1 − z2)

( x2

Rj
1

+
y2

Rj
2

)

+
1
4

( x2

Rj
1

+
y2

Rj
2

)2
){

ρ′i0 (z1)ρ
′j
0 (z2) + Hiρ

′i
1 (z1)ρ

′j
0 (z2) + Hjρ

′i
0 (z1)ρ

′j
1 (z2) + H2

j ρ′i0 (z1)ρ
′j
2 (z2)

+ HiHjρ
′i
1 (z1)ρ

′j
1 (z2) + H2

i ρ′i2 (z1)ρ
′j
0 (z2) + Kiρ

′i
3 (z1)ρ

′j
0 (z2) + Kjρ

′i
0 (z1)ρ

′j
3 (z2) + · · ·

}
. (39)

Then, we expand the interaction potential between componentsi andj, ω̃ij , abouts + x2 + y2 + (z1 − z2)2 and order terms
in powers of the differencez1 − z2. These terms may now be analyzed, following the analogy with the monocomponent case,
to obtain the final result for the contribution to the free energy from the interfacial region

ΩS = −π

2

∑

ij

∫
dS(Rn)

∞∫

−∞
dz1

∞∫

−∞
dz2

[ ∞∫

0

dr r3ω̃ij(r2 + (z1 − z2)2))
{

ρ′i0 (z1)ρ
′j
0 (z2) + Hiρ

′i
1 (z1)ρ

′j
0 (z2)

+ Hjρ
′i
0 (z1)ρ

′j
1 (z2) + H2

j ρ′i0 (z1)ρ
′j
2 (z2) + HiHjρ

′i
1 (z1)ρ

′j
1 (z2) + H2

i ρ′i2 (z1)ρ
′j
0 (z2) + Kiρ

′i
3 (z1)ρ

′j
0 (z2)

+ Kjρ
′i
0 (z1)ρ

′j
3 (z2)

}
+

3
8

∞∫

0

dr [(z1 − z2)2r3 − 1
4
r5]× ω̃ij(r2 + (z1 − z2)2)

(
H2

j −
4
3
Kj

)
ρ′i0 (z1)ρ

′j
0 (z2)

]
. (40)

This expression implies that the Hamiltonian of the system depends on the arbitrary number of components, and that may be
expanded in powers of the curvatures. This is an important result, as it allows for the knowledge, in approximate form, of the
expression of the grand potential for a smooth profile.

Microscopic expressions for the interfacial properties of
the multicomponent system can also be identified as the coef-
ficients of the surface invariants, in analogy to Eq. (1). How-
ever, we consider the free energy Eq. (40) as the most rele-
vant result, which is consistent with the monocomponent sys-
tem, Eq. (31). Expressions for the microscopic free energy of
the mono- and multi-component systems, Eqs. (31) and (40)
respectively, clearly reproduce the asymptotic values of this
quantity in the limit of a step-like density profile within this
viewpoint [10, 22]. It is important to point out that the use
of the same, van der Waals, mean-field model to describe the
liquid-vapor coexistence state, as used in other viewpoints,
is not a guarantee of identical expressions for the interfacial
properties. Discrepancies do occur as a result of different ap-
proximations and simplifications, which are mainly due to
the arbitrariness in election of the Gibbs dividing surface.
Although discrepancies are observed in expressions for the
rigidity constants [8,24], it is expected to find agreement with
the main terms.

5. Comparison with other Works

Here we compare our results with predictions from other the-
oretical frameworks. For the monocomponent system, we

take the microscopic grand potential either from Eq. (31) or
settingt = 1 into Eq. (40). Only the most relevant aspects
and results from these models are presented.

5.1. Squared Laplacian

The starting point for the description of this model is Eq. (16)
with t = 1, i.e. for a single component. First, one introduces
the assumption of small density gradients, which means that
ρ0(~r ′) can be expanded aboutρ0(~r). This yields a free en-
ergy functional that depends on the equilibrium density at one
point. Power-expanding this expression; maintaining terms
up to squared laplacian, one obtains

f [ρ(~r)] =
∫

d~r

[
f0(ρ(~r)) +

1
2
A(ρ(~r)) (∇ρ(~r))2

− 1
4
B(ρ(~r))

(∇2ρ(~r)
)2

]
, (41)

where the coefficientsf0, A andB are given respectively by

f0(ρ(~r)) = kT

[
ρ(~r)

[
ln(λ3ρ(~r))− 1

]
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− 1
2
ρ2(~r)

∫
d~r ′c(~r ′; ρ(~r))

]
, (42)

A(ρ(~r)) =
kT

3!

∫
d~r ′r′2c(~r ′; ρ(~r)), (43)

B(ρ(~r)) =
2kT

5!

∫
d~r ′r′4c(~r ′; ρ(~r)). (44)

In these expressions,λ is the de Broglie thermal wavelength,
c(~r ′; ρ(~r)) is the direct correlation function of a homoge-
neous and isotropic fluid of densityρ(~r), f0 is the free en-
ergy density of an uniform fluid, and the coefficientsA andB
are the second and four moments ofc(~r ′; ρ(~r)) respectively.
Using this model, Robledo et al. described a monocompo-
nent inhomogeneous fluid with interfacial surface arbitrarily
curved [32]. According to DFT, the equilibrium grand poten-
tial is

Ωeq = Ωbulk[ρeq(~r)] + Ωsurf [ρeq(~r)], (45)

where ρeq corresponds to the equilibrium density profile,
which is obtained by minimizing the grand potential func-
tional in Eq. (2). The result is

Ωeq = −p0Vin − PLnVout +
∫

dS

{
[A (ρ′)2 −B (ρ′′)2]

+ J

∫
drnBρ′ρ′′ +

1
2
(J2 − 2K)

×
∫

drnr2
n[A (ρ′)2 −B (ρ′′)2]

}
. (46)

Introduction of the same approximation for the density pro-
file, Eq. (19), into this leads to

Ωeq = −p0Vin − PLnVout + ΩS , (47)

whereΩS denotes the contribution from the interfacial sur-
face

ΩS =
∫

dS

∫
drn

([
A (ρ′0)

2 −B (ρ′′0)2
])

+ H

∫
dS

×
∫

drn[2Aρ′0ρ
′
1 − 2Bρ′′0ρ′′1 + 2Bρ′0ρ

′′
0 ] + H2

∫
dS

×
∫

drn

(
A[2ρ′0ρ

′
2 + ρ′21 ]−B[2ρ′′0ρ′′2 + ρ′′21 ] + 2B

× [ρ′0ρ
′′
1 + ρ′1ρ

′′
0 ] + 2r2

n[A (ρ′0)
2 −B (ρ′′0)2]

)
+K

∫
dS

×
∫

drn

(
ρ′3ρ

′
0 −Bρ′′3ρ′′0 − [Aρ′20 + Bρ′′20 ]r2

n

)
. (48)

From this we read the microscopic expressions for the inter-
facial coefficients

γ =
∫

drn[A (ρ′0)
2 −B (ρ′′0)2], (49)

κc0 = −1
2

∫
drn[2Aρ′0ρ

′
1 − 2Bρ′′0ρ′′1 + 2Bρ′0ρ

′′
0 ], (50)

κ =
∫

drn

(
A[2ρ′0ρ

′
2 + ρ′21 ]−B[2ρ′′0ρ′′2 + ρ′′21 ]

+ 2B[ρ′0ρ
′′
1 + ρ′1ρ

′′
0 ] + 2r2

n[A (ρ′0)
2 −B (ρ′′0)2]

)
, (51)

κ̄ =
∫

drn

(
ρ′3ρ

′
0 −Bρ′′3ρ′′0 − [Aρ′20 + Bρ′′20 ]r2

n

)
. (52)

By direct comparison of the expressions in this work and the
squared laplacian model respectively, we observe the follow-
ing: for the surface tension, Eqs. (32) and (49), show an-
alytical discrepancy. This is due to the fact that Eq. (32)
is exact at mean field level, whereas Eq. (49) corresponds
to the first two terms of a series expansion. Comparison on
the Tolman length, Eqs. (33) and (50), show agreement only
in the first term. Eq. (50) has terms that cannot be repro-
duced in more detailed analyses, as the one in this and previ-
ous works [19, 31]. By comparing the results for the rigidity
constantsκ and κ̄, Eqs. (34) and (35) with (51) and (52)
respectively, we observe coincidence of some terms in the
caseρ(z1) = ρ(z2). Setting this condition, however, implies
loosing information on the non-local behavior of the system,
which is an effect from the squared laplacian approximation.
Better coincidence is expected with a model using and equiv-
alent level of approximation on the free energy.

5.2. Mean Field

Blokhuiset al. analyze the liquid-vapor coexistence state of a
monocomponent simple fluid. Their starting point is the free
energy functional [9,31]

Ω[ρ] =
∫

d~r [fhs(ρ(~r))− µρ(~r)]

+
1
2

∫
d~r

∫
d~r12U(r)ρ(~r1)ρ(~r2), (53)

whereµ is the chemical potential andU(r) is the short-range
interaction potential. For the reference free energy, they as-
sume the form of Carnahan-Starling

fhs(ρ) = kBTρ ln ρ + kBTρ
4η − 3η2

(1− η)2
, (54)

whereη = πρd3/6 andd is the molecular diameter. These
authors consider spherical and cylindrical liquid-droplets and
expand both the density profile and chemical potential in
powers of the inverse radii of curvature, as in Eq. (19). The
results they obtain for the interfacial coefficients are [31]
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σ = −1
4

∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)ρ′0(z1)ρ′0(z2), (55)

δσ =
1
4

∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)ρ′0(z1)ρ′1(z2), (56)

k = −
∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)ρ′0(z1)ρ′c,2(z2 − 1

8

∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)ρ′1(z1)ρ′1(z2)

− 1
4

∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)z2

1ρ′0(z1)ρ′0(z2 +
1
64

∞∫

−∞
dz1

∫
d~r12U(r)r4(1− s2)(1 + 3s2)ρ′0(z1)ρ′0(z2), (57)

κ̄ =
1
2

∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)ρ′0(z1)[4ρ′c,2(z2)− ρ′s,2(z2)] +

1
4

∞∫

−∞
dz1

∫
d~r12U(r)r2(1− s2)z2

1ρ′0(z1)ρ′0(z2)

− 1
96

∞∫

−∞
dz1

∫
d~r12U(r)r4(1− s2)(1 + 7s2)ρ′0(z1)ρ′0(z2), (58)

for the surface tension, Tolman length, and the bending and
Gaussian rigidity respectively. Subscriptss and c accord-
ingly label spheres and cylinders, and theρi(z) denote cor-
rections to the density profile due to curvatures. Explicitly,
these quantities measure deviations, of orderi, of the density
profile from a planar surface.

In the analysis of Blokhuiset al. the free energy contains
the same level of approximation that we used here, and so one
would expect identical expressions for the interfacial coeffi-
cients. By comparing Eqs. (32) and (55) one finds that both
expressions for the surface tension are equivalent. In order to
compare the Tolman length, Eqs. (33) and (56) respectively,
one needs to make the correspondenceρ1 → ρs,1/2 = ρ1/2.
By doing this, one finds that both expressions are identical.
Then, to compare the coefficient ofH2 in Eq. (31), the two
correspondencesκ → k/2 and ρ2 → ρc,2 are needed. It
can be observed that, one to one, the terms in (34) and (57)
coincide, although the factors are not identical. Finally, to
compare the coefficient ofK in Eq. (31), the two correspon-
dences̄κ → k̄ andρ3 → [ρs,2 − 4ρc,2] are necessary. Once
again, all terms in both Eqs. (35) and (58) correspond iden-
tically; although they also show discrepancies on numerical
factors. As a summary of this comparison, we find full agree-
ment in the microscopic form of the rigidity constants, but
discrepancies on the numerical factors, whose origin is cer-
tainly due to approximations as the free energy is the same in
both works. Notice, however, that in their analysis these au-
thors only consider the spherical and cylindrical geometries,
whereas we analyze an arbitrarily curved surface. A com-
parison with multicomponent mixtures is not possible, as no
equivalent analysis for a smooth profile has been reported.

6. Conclusions

Starting from the most general, microscopic and exact, ex-
pression for the grand potential within mean field approxi-
mation, Eqs. (18) and (36), we have derived the effective
Hamiltonian for an arbitrarily curved interface of single- and
multi-component simple fluids in a liquid-vapor coexistence
state, considering a smooth density profile. Then, from this
result, we have been able to generalize microscopic expres-
sions for surface properties obtained in previous works. Im-
portant considerations that make this generalization worth-
while are: (i) Incorporation of a smooth profile, (ii) For an
arbitrarily curved surface, (iii) With extension to a system
of an arbitrary number of components. In particular, for the
monocomponent system, we introduce a smooth profile that
captures the geometry of the interfacial region and therefore
contains more detailed information on particle interactions
than in the case of a step-like profile. The treatment of this
single-component fluid is based essentially on two approx-
imations: (a) A power-series expansion of the density pro-
file on the principal curvatures up to second order. Within
this approximation, the lowest order term corresponds to a
plane profile, whereas the other contributions capture the ef-
fects of surface curvature. (b) The other one, necessary to
obtain concrete results, consists in approximating the surface
locally by a paraboloid. This is valid when the average radius
of curvature is very large as compared to the range of the
interaction potential. Although the interaction between two
molecules is considered short-ranged, technically only one
of them is located on the local plane, which reveals that this
approximation really captures the effects of curvature even
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at very small scales. Nevertheless, this in no way avoids the
fact that this approximation is appropriate for weakly curved
surfaces. Both approximations, (a) and (b), are captured in
the interaction potential, which depends directly on the ra-
dius of the Gibbs dividing surface, and on the radii of cur-
vature defined on the local coordinate system. This fact is
employed to perform an expansion of the interaction poten-
tial in powers of the principal curvatures, which allows us to
obtain a final expression for the grand potential of the inter-
facial region. As described above, the results obtained are in
agreement with other viewpoints for the surface tension and
the Tolman length, but differ on the values predicted for the
rigidity coefficients [31,33].

To carry out the description of the multicomponent sys-
tem, we consider an arbitrary numbert of density profiles,
which enter directly into the grand potential. Contrary to

the single component case, where only one interfacial region
may exist, here there exist multiple coexistence regions and
intermolecular interactions. The coexistence surfaces may
be due to a single component or to a mixture of different
ones. As a generalization to the monocomponent system, the
approximations used on each component are basically those
described previously, except that we now consider different
Gibbs dividing surfaces. From the results obtained, only the
microscopic surface tension may be compared, which shows
agreement with other viewpoints [11, 12]. The theory here
presented can, in addition, be used to describe nucleation of
fluid drops of any geometry and number of components. A
task that is still pending concerns numerical evaluation of all
results for single- and multiple-component systems. We shall
consider this study in a future publication.
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