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Origin of conical dispersion relations

Sergio A. Hojman
Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingenierı́a y Ciencias,
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A mechanism that produces conical dispersion relations is presented. A Kronig Penney one dimensional array with two different strengths
delta function potentials gives rise to both the gap closure and the dispersion relation observed in graphene and other materials. The
Schr̈odinger eigenvalue problem is locally invariant under the infinite dimensional Virasoro algebra near conical dispersion points in re-
ciprocal space, thus suggesting a possible relation to string theory.

Keywords: Quantum mechanics; modified Dirac-Kronig-Penney potential; conical dispersion relations.

PACS: 03.65.-w; 03.65.Ge

1. Introduction

Dirac massless fermions dispersion relations have been ob-
served in graphene and other materials. In spite of the exten-
sive literature published on the subject, see for instance [1–5]
and references therein, there does not seem to exist a cogent
understanding of the essence of this remarkable feature.

Materials in which this dispersion relation arises have dif-
ferent structures and their symmetry groups do not match but
share a common feature: They all have more than one lattice
point per unit cell. Although this feature seems to be neces-
sary it does nor appear to be sufficient.

Here we present a mechanism that produces conical dis-
persion relations. A modified Dirac-Kronig-Penney one di-
mensional array with two different strengths delta function
potentials gives rise to both the gap closure and the disper-
sion relation observed in graphene and other materials. The
condition that the (first neighbors) structure factor vanishes
defines the position of the conical dispersion points in recip-
rocal space and produces both the gap closure and conical
dispersion relations.

The Schr̈odinger eigenvalue problem is locally invariant
under the infinite dimensional Virasoro algebra near conical
dispersion points in reciprocal space, thus suggesting a rela-
tion to string theory.

2. The Model

Consider the usual Dirac-Kronig-Penney problem (use the
notation defined in [7]) described by the potentialVDKP (x)

VDKP (x) = U

n=+∞∑
n=−∞

δ(x− na). (1)

The associated Schrödinger equation is

− ~
2

2m
ψ′′ + VDKP (x)ψ = Eψ. (2)

In this case, as it is well known, the translational symmetry
transformation is

x′ = x + a (3)

The eigenvalue problem implies the following dispersion re-
lation

cos ka− cos qa− m U a

~2

sin qa

qa
= 0 , (4)

where

q ≡
√

2mE

~
. (5)

It is convenient to define the functionsf1(k, a) and
g1(q, a, U) by

f1(k, a) ≡ cos ka, (6)

and

g1(q, a, U) ≡ cos qa +
m U a

~2

sin qa

qa
, (7)

respectively, so that the dispersion relation (4) may be equiv-
alently written as

f1(k, a) = g1(q, a, U). (8)

It is very well known that (8) gives rise to energy gaps due to
the fact that while−1 ≤ f1(k, a) ≤ +1, there are local min-
ima ofg1(q, a, U) which are inferior to−1 and local maxima
that exceed+1. We could therefore say that there are two
kind of energy gaps, “maxima gaps” and “minima gaps”.

Consider now the modified potentialVM (x), defined by

VM (x) =
n=+∞∑
n=−∞

(U δ(x−2na)+V δ(x−(2n+1)a)). (9)

The associated Schrödinger equation is

− ~
2

2m
ψ′′ + VM (x)ψ = Eψ. (10)



ORIGIN OF CONICAL DISPERSION RELATIONS 337

In this case, clearly, the translational symmetry transfor-
mation is

x′ = x + 2a (11)

The dispersion relation, in this case, turns out to be

cos 2ka− cos 2qa− m U a

~2

sin 2qa

qa
− m V a

~2

sin 2qa

qa

− 2m2 UV a2

~4

(sin qa)2

q2 a2
= 0 (12)

Introduce now the functionsf2(k, a) andg2(q, a, U, V ) de-
fined by

f2(k, a) ≡ cos 2ka, (13)

and

g2(q, a, U, V ) ≡ cos 2qa +
m U a

~2

sin 2qa

qa

+
m V a

~2

sin 2qa

qa
+

2m2 UV a2

~4

(sin qa)2

q2 a2
(14)

respectively, so that the dispersion relation (12) may be
equivalently written as

f2(k, a) = g2(q, a, U, V ). (15)

It is interesting to note that

f2(k, a) = 2[f1(k, a)]2 − 1, (16)

while

g2(q, a, U, V ) = 2g1(q, a, U)g1(q, a, V )− 1. (17)

3. The V=U case

We will study the dispersion relation (15), in general, but
it is convenient to start the analysis by considering the case
V = U (which is inadequate from a physical standpoint be-
cause in that case the symmetry translation vector is given
by (3) instead of (11)).

In this case,

g2(q, a, U, U) = 2[g1(q, a, U)]2 − 1. (18)

Therefore, the dispersion relation (8) implies that

f2(k, a) = g2(q, a, U, U), (19)

is satisfied. The converse statement is false.

It is, of course, clear that bothf2(k, a) ≥ −1 and
g2(q, a, U, U) ≥ −1. Therefore,−1 is the minimum value
attained by both functions.

The minimum values are reached forf2(k, a) when

f1(kr, a) = 0, (20)

and forg2(q, a, U, U) when

g1(qs, a, U) = 0, (21)

at points (kr = (2r + 1)π/2a, qs).
Therefore, some “minima gaps” disappear in this scheme.

The dispersion relation at generic minima points(kr, qs) de-
fined by

f2(kr, a) = g2(qs, a, U, U) = −1, (22)

is degenerate because both the functionsandtheir derivatives
coincide at points(kr, qs). In fact, the functions derivatives
vanish at those points, due to the fact that the equality is
reached at the minima of the functions,i.e, we have that at
the points(kr, qs)

df2(k, a)
dk

|k=kr
= 4

df1(k, a)
dk

f1(k, a)|k=kr
= 0 (23)

and

dg2(q, a, U, U)
dq

|q=qs

= 4
dg1(q, a, U)

dq
g1(q, a, U)|q=qs = 0, (24)

also.
This degeneracy gives rise to local invariance under the

Virasoro algebra at the conical dispersion relations points
(kr, qs), in reciprocal space (k-space, see below). This fea-
ture is discussed in Sec. 5.

Therefore, the dispersion relations in the vicinity of the
minima read

d2f2(k, a)
dk2

|k=kr (k − kr)2

=
d2g2(q, a, U, U)

dq2
|q=qs(q − qs)2, (25)

Note that both

d2f2(k, a)
dk2

|k=kr = 4a2 > 0 (26)

and

d2g2(q, a, U, U)
dq2

|q=qs = 4

×
(

dg1(q, a, U)
dq

)2

|q=qs > 0 (27)

because the points(kr, qs) define both functions minima.
Define

g′1 ≡
dg1(q, a, U)

dq
|q=qs , (28)
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f ′′2 ≡
d2f2(k, a)

dk2
|k=kr (= 4a2) , (29)

g′′2 ≡
d2g2(q, a, U, U)

dq2
|q=qs = 4(g′1)

2 , (30)

∆k ≡ k − kr , (31)

∆E ≡ ~2q2

2m
− ~

2q2
s

2m
, (32)

to get the conical dispersion relation

∆E = ±
√

f ′′2
g′′2

~2qs

m
∆k

= ± a

g′1

~2qs

m
∆k = ±~vF ∆k, (33)

where the Fermi velocityvF is given by

vF ≡
√

f ′′2
g′′2

~qs

m
=

a

g′1

~qs

m
. (34)

4. The general case

Note that forV 6= U , one may write

g2(q, a, U, V ) ≡ g2(q, a, U, U)

+
2m(V − U)a

~2

sin qa

qa
g1(q, a, U), (35)

therefore

g2(qs, a, U, V ) = g2(qs, a, U, U)

= f2(kr, a) = −1, (36)

It is interesting to realize that the corresponding condi-
tion g1(q′s, a, V ) = 0 (exchangingV and U ) also implies
g2(q′s, a, U, V ) = −1, as it should. In what follows, we
write everything in terms of the theg1(qs, a, U) = 0 con-
dition only, understanding that similar results are reached in
points(kr, qs) and points(kr, q

′
s).

The functiong2(q, a, U, V ) does not, in general, attain a
minimum at the pointsqs. In fact,

dg2(q, a, U, V )
dq

|q=qs

=
2m(V − U)a

~2

sin qsa

qsa

dg1(q, a, U)
dq

|q=qs

=
2m(V − U)a2

~2qsa

(
−1 +

sin 2qsa

2qsa

)
6= 0, (37)

in general. We nonetheless get conical dispersion relations
both for low energiesqsa → 0 and for high energies (as com-
pared to the potential strength difference)2m(V−U)a2

~2qsa ¿ 1.
The tight binding approach

(
m U a
~2 À 1 andm V a

~2 À 1
)

also yields interesting results. In fact, in that case one may

study the behavior ofg1(qn, a, U)=0 (or g1(q′n, a, V )=0)
near the zeroes of (sin qa/qa) [7], i.e., at the points
qna = nπ + (−1)nδn, n ∈ {Z− {0}}

g1(qn, a, U) = (−1)n +
m U a

~2

δn

nπ
. (38)

The requirementg1(qn, a, U) = 0 implies

δn = (−1)n+1 nπ~2

m U a
, (39)

while for g1(q′n, a, V ) = 0 one gets

δ′n = (−1)n+1 nπ~2

m V a
. (40)

Note that due to the tight binding condition bothδn ¿ 1 and
δ′n ¿ 1. Therefore, forU ∼ V the difference (δn − δ′n) is
of the orderδn

2, i.e., to first order,qn = q′n, which means
thatg2(qn, a, U, V ) = −1, thusg2(qn, a, U, V ) attains min-
ima atq = qn in the tight binding approximation, giving rise
to conical dispersion relations at those points.

The energy spectrum is readily computed, to get

En =
n2π2~2

2ma2

(
1− ~2

mUa

)2

(41)

or

En =
n2π2~2

2ma2

(
1− δ1

π

)2

' n2π2~2

2ma2

(
1− 2

δ1

π

)
(42)

to first order inδ1.

5. Local Virasoro invariance in reciprocal
space

DefineF (k, q, a, U, V ) by

F (k, q, a, U, V ) ≡ f2(k, a)− g2(q, a, U, V ). (43)

The functionF (k, q, a, U, V ) and its first derivatives with re-
spect tok and q vanish at (kr = (2r + 1)π/2a, qs) ((kr

= (2r + 1)π/2a, q′s) ) whenever the conditions for conical
dispersion relations are met (see Secs. 3 and 4). As a mat-
ter of fact,(kr, qs) and(kr, q

′
s) define saddle points for the

functionF (k, q, a, U, V ).
For conical dispersion relationsF (kr + ∆k, qs +

∆q, a, U, V ) may be written as

F (kr + ∆k, qs + ∆q, a, U, V )

' ∂2F

∂k2
|k=kr∆k2 +

∂2F

∂q2
|q=qs∆q2, (44)

because the function and its first derivatives vanish at those
points. Moreover, the product of the second derivatives ofF
is negative.
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Therefore, the eigenvalue equationF (k, q, a, U, V ) = 0
in the vicinity of conical points (kr = (2r + 1)π/2a, qs) re-
duces to

∂2F

∂k2
|k=kr

∆k2 +
∂2F

∂q2
|q=qs

∆q2 = 0, (45)

which defines a two dimensional “light” cone associated to
the Fermi velocityvF . The Fermi velocity is proportional
to the (square root) of the (negative of) the ratio of the sec-
ond derivatives of the functionF (k, q, a, U, V ) at the coni-
cal points as showed in (34). A conformally invariant metric
near the conical points may be defined in terms ofvF . Two
dimensional conformal transformations leave the dispersion
relation (45) near conical points invariant.

It is a widely known fact that such structures are invariant
under the action of the (infinite dimensional) Virasoro alge-
bra [8]. This symmetry gives rise to local gauge invariance
of the Schr̈odinger wave function around conical points. This
fact encourages the search of a relationship of this problem
to string theory.

In three dimensional models (two space dimensions) [6],
the symmetry is reduced to the (ten generators) three dimen-
sional conformal algebra.

6. Conclusions

I have presented a mechanism that produces conical disper-
sion relations consistent with behavior observed in graphene
and other materials [1–5]. The mechanism assumes the ex-
istence of more than one lattice point per unit cell. The
condition to achieve conical dispersion relations is equiva-
lent to require that the nearest neighbors structure factor van-
ish [6]. The Schr̈odinger eigenvalue problem near conical
points happens to be invariant under the Virasoro algebra
which hints a relationship between this problem and string
theory. In a forthcoming paper [6], a bidimensional general-
ization which includes Hubbard model (tight binding) calcu-
lations, the ideas presented here are explored and extended.
The invariance near conical points, in two dimensional ar-
rays, is reduced to the ten dimensional conformal group in
three (spacetime) dimensions.
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