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Higher dimensional Elko theory
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We show that the so-called Elko equation can be derived fréraianensional Dirac equation. We argue that this result can be relevant for
dark matter and cosmological scenarios. We generalize our procedure to higher dimensions.
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It is known that one of the most interesting proposals to exHere, the indiceg, v etc. run from0 to 3 and the indices, b
plain dark matter [1] is provided by the so called Elko the-run from1 to 2. Further they-matrices satisfy the Clifford
ory [2-3] (see also Refs. [4-12]). This theory describes spiralgebra

half-integer fermions with dual helicity eigenspinors of the VAT A = —2pH, (2)
charge conjugation operator. It turns out that the growinqN. v . . .
) ; Sa . . ith n#¥ = diag(—1,1,1,1). Moreover,p, = —id, and
interest in this kind of matter is due to the fact that besides yp ;" 9-1,1,1,1) Pu *u

ab ; H H i 12
) . . : is the completely antisymmetricsymbol, withe** = 1
being a candidate for dark matter it may also provide of our _c21 pietely y y c

an alternative explanation of the accelerated expansion our j ; ;
universe [13-15] (see also Refs. [2], [16], and [17] refer- In contrast to the usual Dirac equation [27]
ences therein). In the context of inequivalent spin structures (VP +mo] ¢ = 0, ©)

on arbitrary curved spacetimes exotic dark spinor fields has

been introduced [18]. Moreover, dynamical dispersion reEg. (1) requires eight-component complex spigigrrather
lations for Elko dark spinors fields have lead to mass genthan four-component which is the case in Eq. (3). Further-
eration proposal [19] and a light Elko signals exploration atmore, the quantities’ ande’, in (1) establish thaty, is not
acelerators has been developed [20]. Itis interesting that Elkeigenspinor of the/p,, operator ag) in Eq. (3). In spite of
spinor fields have been considered as a tool for probing exhese key differences, one can prove that (1) and (3) imply
otic topological spacetime features [21]. Even more recentlythe Klein-Gordon equations

a Lagrangian for mass dimension one fermion has been de-

rived [22]. (PP +m3| o =0 )
Recently, it has been proposed [23]-dimensional EIko  gnd
theory in the context of Minkowski branes and it was shown [ﬁ“ﬁu + mg} W =0, (5)

that if a 5-dimensional mass term (see Ref. [24] for details

of Kaluza-Klein theory) is introduced there is not the possi- " h fthe Klein-Gord T
bility to localize these modes on the corresponding branedS e square root o t € Kiein-tordon equation. .
Now, consider &-dimensional Klein-Gordon equation

Part of the motivation in these developments arises from the
QeS|re to shed some light on the brane world theory that orig- [ﬁﬂﬁﬂ + m(z)} =0, (6)
inates from so-called/-theory (see Ref. [25] and references
therein), which is a generalization of superstring theory [26].or
In this case, the brane is embedded in a higher dimensional [(p5)2 + PP, + mg] P =0, )
space-tlme..So it appears interesting to explore \_/vhether thv?/ith the indicesji, # etc. assuming the valugs 1,2, 3,5.
Elko theory is some how related fd-theory. As a first step A AT ?
N ) Here,p"p; = 0" pupy, with n” = diag(—1,1,1,1,1).
in this direction, one would like to explore whether there ex- By virtue of (2) one finds that (7) can be written as
ists a higher dimensional Elko theory. In this work we show y
the surprising result that the Elko equation in four dimensions [—(=p5 +"Dp) (s + D) +m3] ¥ = 0. (8)
can be obtained from a higher dimensional Dirac equation.
Let us start mentioning that the Elko theory is based onl hus, introducing the definitions

the fundamental equation

q = ©

respectively. Therefore, both (1) and (3) can be understood

['y“ﬁudf; + imOEZ] iy = 0. (2) and

YR = (Ps +"'Du)L, (10)

1
mo
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one sees that (8) leads to These definitions allow us to rewrite (20) as

(=Ds + ¥Y"Pu)¥r + imotpr, = 0, (11) —i(=7"Pa +Y'Pu)r + Mo, = 0. (23)

while, the expressions (10) can be rewritten as The Egs. (22) and (23) lead to

(Ps +¥"'Pu)br — imor = 0. (12) (—=Y"Pa + VD) + imothr, = 0 (24)
Let us now assume thagyr = 0 andpsy;, = 0. (These  gngd
imita_te the cylindrical con.ditions inthe usugl dimensional re- (V' Pa + VD)1 — imotr = 0. (25)
duction of the Kaluza-Klein theory [24].) With these assump- o . ] ]
tions, Egs. (11) and (12) become So, once again, if one assumes the dimensional reductions
conditions
YEPubr + imopr, =0 (13) Y*Patr =0 (26)
and and
Vputbr — imotr = 0, (14) VPaL =0, @)

respectively. So, if one assumes that the indicégun from  One obtains Elko formula (1). Of course, our approach of this

the labelsR and L one learns that (13) and (14) can be ob-higher dimensional generalization of Elko equation resem-
tained from the expression bles the typical procedure of the Dirac equation in the Weyl

representation. In this case one starts with the Klein-Gordon
(V' Du0b +iebmo )by, = 0, (15)  equation
. . . . (ﬁ“yﬁ#ﬁu + m?))w =0, (28)
which is precisely formula (1) (see formula (5.14) in i ) )
Refs. [2]). This means, among other things, that (11) and@nd introduces the Pauli matrices,
(12) represent a generalization of Elko equation (1). .
.. . . 1 0 1 2 0 (3
Now, it is straightforward to generalize our procedure 10/)°7=0i o

g =
to higher dimensions. In fact, let us introduce the

dimensional Klein-Gordon equation o3 — ( (1) 01 ) ’ (29)
[5*Da +m) ¥ =0, (16) o
which satisfy
with the indicesA, B etc. running from0 to D — 1. We olod +olot =267 (30)
shall assume that the splitting of the indicds= (y, a).
Thus, considering thgi“p, = 74 Bpapp, with nA8 = and i i on ik
diag—1,1, ..., 1,1) one sees that (16) become olo’ —a'o’ = 2ie""op,. (31)

Here,§% = diag(1,1,1) is the Kronecker delta and’* is
the completely antisymmetris-symbol, withe!23 = 1. In
(1 + 3)-dimensions we have” = diag—1,1,1,1) and
therefore (28) becomes

[0Pa + PPy + M) ¢ = 0. 17)
Using the analogue of (2) for the internal space

b b.a ab
Yy =207, (18) C o siga n
(—Popo + 67 pip; + mg)h = 0. (32)
and also assuming that
Vit =yt =0, (19)

one learns that (17) can also be written as

Using (30) one sees that (32) can be written as
(—=0Poc’po + o'’ pip; + m)Y =0 (33)
or
[—(=7"Pa + ") (VDo +"Dy) +m5| b = 0. (20)

. . _ (=0°Po + 'i) (%P0 + 07 pj) + mgy =0, (34)
It is not difficult to see that the* and~“ matrices can be

chosen ag(P~2)/2 x 9(D=2)/2 gy 9(D=3)/2 « 9(D=3)/2 ma-

trices, depending ib is an even or odd number, respectively.

Now, let us introduce the definitions

Y= (21)

and ;
Yp = ——(Y"Pa +1"Pu)L. (22)
mo

whereq? is the identity2 x 2-matrix.
So, by defining);, = ¢ and

1 . =
Yr=——(0"Po + 0p;)Yr, (35)
mg
one obtains
(%o + 07 P )b, +mor =0 (36)
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and _ consider non zero modes of the internal space. In this direc-
(0% — o'ps) YR + morpr = 0. (37)  tion the Ref. [23] dealing with brane-worlds $rdimensions
may be particularly useful.

We recognize in (36) and (37) the Dirac equation in the Weyl It still remains to analyze a kind of Majorana condition

representation, for the physical stateg,, namely
o +ivditmol v =0, (39 C = i, o)
which in covariant notation becomes where C' denotes a charge conjugation operator affdis
oo~ _ a phase factor. If one choosés), = v, one obtains the
DB + mol w =0, B9 the self-conjugate Elko spinor or Majorana spinor, while if
where one requires the conditiof'y), = —1, one gets the anti-
A self-conjugate Elko spinor, which is different than the con-
A0 = ( 0 1 > i = < 0 o ) (40) ventional Majorana’s choice. But this will require to con-
W o)W —ot 0 )’ sider a Clifford algebra in & + s)-signature in a similar way
as one analyzes the Majorana-Weyl spinors in higher dimen-
and ;
VR sions [30].
Yw = v ) (41) In 5-dimensions and in the Weyl representation the ex-

. » pression (49) implies
Here, theW in ~{;, andyy means that these quantities are

in the Weyl representation. One can verify that —ot = g, (50)
T+ = =20, (42) o -
o 'l/JR - wlw (51)

%onsequently, up to a face, the Majorana spinor obtained
from (50) and (51), in the Weyl representation, looks like

It turns out that one can interchange the order of (36) an
(37) in the form

(N N
(=0"po + a'pi)Yr — Moy, = 0, (43) PR ( —o?; ) (52)
and VL
(c%Po + 07 pj)br, + mor = 0. (44) or "
Thus, compari i - v p= ( 2 ) (53)
, paring (43) and (44) with (24) and (25) one ob oY

serves that the algebra of and~* given in (2), (18) and
(19) is the analogue of the algebra satisfiedolfyand o,
namely

It turns out that in the original construction of Elko the-
ory [2-3] the constraint (49) is considered as the starting
point. For this reason when the field equation (1) is used one
finds thatiy, contains only4 complex components. In our
case, in writing (15), one sees that originally has8 com-

%7 — oI =0, (46)  plex components, but the two approaches must be equivalent
after imposing the Majorana condition (49). Roughly speak-
and o o B ing, in Refs. 2 to 3 it is followed the route of (49) first and
o'o? + o'’ =26". (47)  then (1), while in our case the route is (1) (or (15)) first and
then (49), but in both cases the number of components asso-
ciated withy,, satisfying (1) (or (15)) and (49), iscomplex
fcomponents. In higher dimensions this analysis is more com-
plicated since besides of imposing (49) one must consider the
equations (26) and (27).
Ayt byt = 9590, (48) Itis also worth mentioning some dimensional analysis to-
wards a renormalization of the theory. In general the action
At the end, starting with a Dirac equation in spacetime of
(t + s)-signature and imposing the cylindrical condition in Suy = //:(4)d4x, (54)
the extra dimensions one must arrive to the Elko equation in
(1 + 3)-dimensions. In particular it may be interesting to must be dimensionless. For this reason, since the dimension-
find the analogue of Elko theory if2 + 2)-dimensions (see ality of d*z is —4, one sees that each termdp,y must carry
Refs. 28 to 29) dimensionality+4. In this context, one finds that the kinetic

From the point of view of Kaluza-Klein theory the con- term of L4 implying the Dirac equation establishes that the
ditions (26) and (27) correspond to the zero mode of a comspinor fieldy, has mass dimensidy2. Thinking about the
pactified space. It will be interesting for further research toLorentz transformation of typeA, B) this result is obtained

%0 + 0% = 25, (45)

This means the/* plays the role o, while v* plays the
role of o*. This analysis may motive to look fortatime sig-
nature, rather than-space signature. In fact, in the case o
t-time signature the formula (18) must be changed by
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considering that the mass dimension of the spinor field is

given byl + A+ B. In fact, for the field of the typegl /2, 0)
and (0, 1/2), the expected mass dimensionality3i&2. In
Elko theoryi), also transforms ad /2,0) & (0, 1/2), but ac-

cording to Refs. 2 to 3 due to non-locality the dimension of
1q IS NOt3/2, butl (see Ref. [31] for an alternative results).
It is worth mentioning that recently a Lagrangian approac
for mass dimension one fermions has been proposed [22]. |
our case, the situation seems different because our starti

point is not the action (54) but

S(5) = /£(5)d5:ﬂ.
In this case, in order to have a dimensionless actig,
must contain mass dimensiegb, and therefore the kinetic
term in L), implying the Dirac equation i3 dimensions,
leads to the result that the spinor fiald must carry mass
dimensior2, instead o3/2 as it is the case in dimensions.

(55)

h

J. A.NIETO

Finally, suppose one fix the Clifford algebra (2). One may
be interested in exploring the consequences in the Elko the-
ory under the signature change:

(-1,1,1,1) < (1,-1,—-1,-1) (56)

As it has been emphasized in the the Ref. [32] only if the
mass is equal to zero the Dirac equation is invariant under
6). This conclusion may be different in Elko theory be-

use a massless fermion in 5-dimensions may be massive in
4-dimensions. This seems to be an interesting question [33]
which may be a subject for further research.
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We believe that this is an intriguing result that deserves a fur-

ther research.
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