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Higher dimensional Elko theory
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We show that the so-called Elko equation can be derived from a5-dimensional Dirac equation. We argue that this result can be relevant for
dark matter and cosmological scenarios. We generalize our procedure to higher dimensions.
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It is known that one of the most interesting proposals to ex-
plain dark matter [1] is provided by the so called Elko the-
ory [2-3] (see also Refs. [4-12]). This theory describes spin
half-integer fermions with dual helicity eigenspinors of the
charge conjugation operator. It turns out that the growing
interest in this kind of matter is due to the fact that besides
being a candidate for dark matter it may also provide of our
an alternative explanation of the accelerated expansion our
universe [13-15] (see also Refs. [2], [16], and [17] refer-
ences therein). In the context of inequivalent spin structures
on arbitrary curved spacetimes exotic dark spinor fields has
been introduced [18]. Moreover, dynamical dispersion re-
lations for Elko dark spinors fields have lead to mass gen-
eration proposal [19] and a light Elko signals exploration at
acelerators has been developed [20]. It is interesting that Elko
spinor fields have been considered as a tool for probing ex-
otic topological spacetime features [21]. Even more recently,
a Lagrangian for mass dimension one fermion has been de-
rived [22].

Recently, it has been proposed [23] a5-dimensional Elko
theory in the context of Minkowski branes and it was shown
that if a 5-dimensional mass term (see Ref. [24] for details
of Kaluza-Klein theory) is introduced there is not the possi-
bility to localize these modes on the corresponding branes.
Part of the motivation in these developments arises from the
desire to shed some light on the brane world theory that orig-
inates from so-calledM -theory (see Ref. [25] and references
therein), which is a generalization of superstring theory [26].
In this case, the brane is embedded in a higher dimensional
space-time. So it appears interesting to explore whether the
Elko theory is some how related toM -theory. As a first step
in this direction, one would like to explore whether there ex-
ists a higher dimensional Elko theory. In this work we show
the surprising result that the Elko equation in four dimensions
can be obtained from a higher dimensional Dirac equation.

Let us start mentioning that the Elko theory is based on
the fundamental equation

[
γµp̂µδb

a + im0ε
b
a

]
ψb = 0. (1)

Here, the indicesµ, ν etc. run from0 to 3 and the indicesa, b
run from 1 to 2. Further theγ-matrices satisfy the Clifford
algebra

γµγν + γνγµ = −2ηµν , (2)

with ηµν = diag(−1, 1, 1, 1). Moreover,p̂µ = −i∂µ and
εab is the completely antisymmetricε-symbol, withε12 = 1
= −ε21.

In contrast to the usual Dirac equation [27]

[γµp̂µ + m0]ψ = 0, (3)

Eq. (1) requires eight-component complex spinorψb rather
than four-componentψ which is the case in Eq. (3). Further-
more, the quantitiesδb

a andεb
a in (1) establish thatψb is not

eigenspinor of theγµp̂µ operator asψ in Eq. (3). In spite of
these key differences, one can prove that (1) and (3) imply
the Klein-Gordon equations

[
p̂µp̂µ + m2

0

]
ψa = 0 (4)

and [
p̂µp̂µ + m2

0

]
ψ = 0, (5)

respectively. Therefore, both (1) and (3) can be understood
as “the square root of the Klein-Gordon equation.”

Now, consider a5-dimensional Klein-Gordon equation
[
p̂µ̂p̂µ̂ + m2

0

]
ψ = 0, (6)

or [
(p̂5)2 + p̂µp̂µ + m2

0

]
ψ = 0, (7)

with the indicesµ̂, ν̂ etc. assuming the values0, 1, 2, 3, 5.
Here,p̂µ̂p̂µ̂ = ηµ̂ν̂ p̂µ̂p̂ν̂ , with ηµ̂ν̂ = diag(−1, 1, 1, 1, 1).

By virtue of (2) one finds that (7) can be written as
[−(−p̂5 + γµp̂µ)(p̂5 + γν p̂ν) + m2

0

]
ψ = 0. (8)

Thus, introducing the definitions

ψL ≡ ψ (9)

and
ψR ≡ − i

m0
(p̂5 + γµp̂µ)ψL, (10)
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one sees that (8) leads to

(−p̂5 + γµp̂µ)ψR + im0ψL = 0, (11)

while, the expressions (10) can be rewritten as

(p̂5 + γµp̂µ)ψL − im0ψR = 0. (12)

Let us now assume thatp̂5ψR = 0 andp̂5ψL = 0. (These
imitate the cylindrical conditions in the usual dimensional re-
duction of the Kaluza-Klein theory [24].) With these assump-
tions, Eqs. (11) and (12) become

γµp̂µψR + im0ψL = 0 (13)

and
γµp̂µψL − im0ψR = 0, (14)

respectively. So, if one assumes that the indicesa, b run from
the labelsR andL one learns that (13) and (14) can be ob-
tained from the expression

(γµp̂µδb
a + iεb

am0)ψb = 0, (15)

which is precisely formula (1) (see formula (5.14) in
Refs. [2]). This means, among other things, that (11) and
(12) represent a generalization of Elko equation (1).

Now, it is straightforward to generalize our procedure
to higher dimensions. In fact, let us introduce theD-
dimensional Klein-Gordon equation

[
p̂Ap̂A + m2

0

]
ψ = 0, (16)

with the indicesA, B etc. running from0 to D − 1. We
shall assume that the splitting of the indicesA = (µ, a).
Thus, considering that̂pAp̂A = ηAB p̂Ap̂B , with ηAB =
diag(−1, 1, ..., 1, 1) one sees that (16) become

[
p̂ap̂a + p̂µp̂µ + m2

0

]
ψ = 0. (17)

Using the analogue of (2) for the internal space

γaγb + γbγa = 2δab, (18)

and also assuming that

γaγµ − γµγa = 0, (19)

one learns that (17) can also be written as
[−(−γap̂a + γµp̂µ)(γbp̂b + γν p̂ν) + m2

0

]
ψ = 0. (20)

It is not difficult to see that theγµ andγa matrices can be
chosen as2(D−2)/2 × 2(D−2)/2 or 2(D−3)/2 × 2(D−3)/2 ma-
trices, depending ifD is an even or odd number, respectively.

Now, let us introduce the definitions

ψL ≡ ψ (21)

and
ψR = − i

m0
(γap̂a + γµp̂µ)ψL. (22)

These definitions allow us to rewrite (20) as

−i(−γap̂a + γµp̂µ)ψR + m0ψL = 0. (23)

The Eqs. (22) and (23) lead to

(−γap̂a + γµp̂µ)ψR + im0ψL = 0 (24)

and
(γap̂a + γµp̂µ)ψL − im0ψR = 0. (25)

So, once again, if one assumes the dimensional reductions
conditions

γap̂aψR = 0 (26)

and
γap̂aψL = 0, (27)

one obtains Elko formula (1). Of course, our approach of this
higher dimensional generalization of Elko equation resem-
bles the typical procedure of the Dirac equation in the Weyl
representation. In this case one starts with the Klein-Gordon
equation

(ηµν p̂µp̂ν + m2
0)ψ = 0, (28)

and introduces the Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)

σ3 =
(

1 0
0 −1

)
, (29)

which satisfy
σiσj + σjσi = 2δij (30)

and
σiσj − σjσi = 2iεijkσk. (31)

Here,δij = diag(1, 1, 1) is the Kronecker delta andεijk is
the completely antisymmetricε-symbol, withε123 = 1. In
(1 + 3)-dimensions we haveηµν = diag(−1, 1, 1, 1) and
therefore (28) becomes

(−p̂0p̂0 + δij p̂ip̂j + m2
0)ψ = 0. (32)

Using (30) one sees that (32) can be written as

(−σ0p̂0σ
0p̂0 + σiσj p̂ip̂j + m2

0)ψ = 0 (33)

or

(−σ0p̂0 + σip̂i)(σ0p̂0 + σj p̂j)ψ + m2
0ψ = 0, (34)

whereσ0 is the identity2× 2-matrix.
So, by definingψL ≡ ψ and

ψR ≡ − 1
m0

(σ0p̂0 + σj p̂j)ψL, (35)

one obtains

(σ0p̂0 + σj p̂j)ψL + m0ψR = 0 (36)
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and
(σ0p̂0 − σip̂i)ψR + m0ψL = 0. (37)

We recognize in (36) and (37) the Dirac equation in the Weyl
representation,

[
γ0

W p̂0 + γi
W p̂i + m0

]
ψW = 0, (38)

which in covariant notation becomes

[γµ
W p̂µ + m0] ψW = 0, (39)

where

γ0
W =

(
0 1
1 0

)
, γi

W =
(

0 σi

−σi 0

)
, (40)

and

ψW =
(

ψR

ψL

)
. (41)

Here, theW in γµ
W andψW means that these quantities are

in the Weyl representation. One can verify that

γµ
W γν

W + γν
W γµ

W = −2ηµν . (42)

It turns out that one can interchange the order of (36) and
(37) in the form

(−σ0p̂0 + σip̂i)ψR −m0ψL = 0, (43)

and
(σ0p̂0 + σj p̂j)ψL + m0ψR = 0. (44)

Thus, comparing (43) and (44) with (24) and (25) one ob-
serves that the algebra ofγa andγµ given in (2), (18) and
(19) is the analogue of the algebra satisfied byσ0 and σi,
namely

σ0σ0 + σ0σ0 = 2δ00, (45)

σ0σj − σjσ0 = 0, (46)

and
σiσj + σjσi = 2δij . (47)

This means theγa plays the role ofσ0, while γµ plays the
role ofσi. This analysis may motive to look for at-time sig-
nature, rather thans-space signature. In fact, in the case of
t-time signature the formula (18) must be changed by

γaγb + γbγa = −2δab, (48)

At the end, starting with a Dirac equation in spacetime of
(t + s)-signature and imposing the cylindrical condition in
the extra dimensions one must arrive to the Elko equation in
(1 + 3)-dimensions. In particular it may be interesting to
find the analogue of Elko theory in(2 + 2)-dimensions (see
Refs. 28 to 29)

From the point of view of Kaluza-Klein theory the con-
ditions (26) and (27) correspond to the zero mode of a com-
pactified space. It will be interesting for further research to

consider non zero modes of the internal space. In this direc-
tion the Ref. [23] dealing with brane-worlds in5-dimensions
may be particularly useful.

It still remains to analyze a kind of Majorana condition
for the physical statesψa, namely

Cψa = eiθψa, (49)

whereC denotes a charge conjugation operator andeiθ is
a phase factor. If one choosesCψa = ψa one obtains the
the self-conjugate Elko spinor or Majorana spinor, while if
one requires the conditionCψa = −ψa one gets the anti-
self-conjugate Elko spinor, which is different than the con-
ventional Majorana’s choice. But this will require to con-
sider a Clifford algebra in a(t+s)-signature in a similar way
as one analyzes the Majorana-Weyl spinors in higher dimen-
sions [30].

In 5-dimensions and in the Weyl representation the ex-
pression (49) implies

−σ2ψ∗L = ψR, (50)

or
σ2ψ∗R = ψL. (51)

Consequently, up to a face, the Majorana spinor obtained
from (50) and (51), in the Weyl representation, looks like

ψ −→ λ =
( −σ2ψ∗L

ψL

)
(52)

or

ψ −→ ρ =
(

ψR

σ2ψ∗R

)
. (53)

It turns out that in the original construction of Elko the-
ory [2-3] the constraint (49) is considered as the starting
point. For this reason when the field equation (1) is used one
finds thatψa contains only4 complex components. In our
case, in writing (15), one sees that originallyψa has8 com-
plex components, but the two approaches must be equivalent
after imposing the Majorana condition (49). Roughly speak-
ing, in Refs. 2 to 3 it is followed the route of (49) first and
then (1), while in our case the route is (1) (or (15)) first and
then (49), but in both cases the number of components asso-
ciated withψa, satisfying (1) (or (15)) and (49), is4 complex
components. In higher dimensions this analysis is more com-
plicated since besides of imposing (49) one must consider the
equations (26) and (27).

It is also worth mentioning some dimensional analysis to-
wards a renormalization of the theory. In general the action

S(4) =
∫
L(4)d

4x, (54)

must be dimensionless. For this reason, since the dimension-
ality of d4x is−4, one sees that each term inL(4) must carry
dimensionality+4. In this context, one finds that the kinetic
term ofL(4) implying the Dirac equation establishes that the
spinor fieldψa has mass dimension3/2. Thinking about the
Lorentz transformation of type(A,B) this result is obtained
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considering that the mass dimension of the spinor field is
given by1+A+B. In fact, for the field of the types(1/2, 0)
and (0, 1/2), the expected mass dimensionality is3/2. In
Elko theoryψa also transforms as(1/2, 0)⊕ (0, 1/2), but ac-
cording to Refs. 2 to 3 due to non-locality the dimension of
ψa is not3/2, but1 (see Ref. [31] for an alternative results).
It is worth mentioning that recently a Lagrangian approach
for mass dimension one fermions has been proposed [22]. In
our case, the situation seems different because our starting
point is not the action (54) but

S(5) =
∫
L(5)d

5x. (55)

In this case, in order to have a dimensionless action,L(5)

must contain mass dimension+5, and therefore the kinetic
term inL(5), implying the Dirac equation in5 dimensions,
leads to the result that the spinor fieldψa must carry mass
dimension2, instead of3/2 as it is the case in4 dimensions.
We believe that this is an intriguing result that deserves a fur-
ther research.

Finally, suppose one fix the Clifford algebra (2). One may
be interested in exploring the consequences in the Elko the-
ory under the signature change:

(−1, 1, 1, 1) ↔ (1,−1,−1,−1) (56)

As it has been emphasized in the the Ref. [32] only if the
mass is equal to zero the Dirac equation is invariant under
(56). This conclusion may be different in Elko theory be-
cause a massless fermion in 5-dimensions may be massive in
4-dimensions. This seems to be an interesting question [33]
which may be a subject for further research.
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