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The so-called Curzon-Ahlborn efficiency is becoming a paradigmatic result with regards to thermodynamic optimization of power cycles. Its
wide applicability and sole dependence on the external heat bath temperatures (as the Carnot efficiency does) allows for an easy and fairly
comparison with experimental efficiencies of striking validity. Different analytical derivations are presented in order to assess its validity
and limitations for a broad variety of thermal cycles and steady state systems based on Finite-Time, Linear-Irreversible and Equilibrium
Thermodynamic frameworks. Some conclusions and future perspectives are also outlined.
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1. Introduction

The study of heat devices has been a cornerstone in the de-
velopment of Thermodynamics and it is usual to find the Sec-
ond Law in textbooks and monographs based on Clausius and
Kelvin-Planck statements for refrigerators and heat engines,
which fixes the overall conditions for the heat-work conver-
sion processes in a cyclic system [1]. An step further is the
Carnot theorem which plays a central role since it states the
quantitative upper bounds for the efficiency of such heat de-
vices. Carnot showed that for a heat device working as a
heat engine between two thermal reservoirs at temperatures
Th andTc (Th > Tc), the maximum possible efficiency is
ηC = 1 − τ (τ ≡ Tc/Th < 1). For a refrigerator device it
is well-known that the maximum possible coefficient of per-
formance is given byεC = τ/(1 − τ). These two upper
bounds, though of theoretical significance, are a poor guide
from a practical point of view when comparing with observed
results for real facilities. Two main reasons provoke this dis-
agreement: a) real heat devices are of finite-size and work
under finite-time periods. As a consequence, suffer from
time- and size-irreversibilities; and b) The different steps of
the particular cycles are different to those of the Carnot cycle
since usually neither the heat absorption/rejection processes
are reversible isothermal processes nor the adiabatic expan-
sion/compression processes are isoentropic in nature.

Addressing above shortages was the main reason behind
the work published in 1975 by F. L. Curzon and B. Ahlborn in
an oriented pedagogical journal [2]. In their own words: ’We
have found it instructive in our classes on thermodynamics to
consider another fundamental limitation on efficiency which
is caused by the rate at which heat can be exchanged between
the working material and the heat reservoirs’. The analytical
result reported for the efficiency at maximum power condi-
tions wasηCA = 1 − √τ . As the Carnot value, it depends

only on the external heat sources temperatures, it is indepen-
dent of any peculiar characteristic of the heat device, and al-
lows for a useful guide with observed values for a number of
real power plants. It is worth noting that the CA-efficiency
was also reported early and independently in the nuclear en-
gineering scope by Chambadal [3] and Novikov [4].

The overall goal of this paper is to present some al-
ternative derivations of this result based on three different
Thermodynamic branches: Finite-Time based phenomeno-
logical models (which assume quite different points of view)
[5–8], the well-founded Linear Irreversible Thermodynam-
ics (LIT) framework, and Classical Equilibrium Thermody-
namics [1, 9, 10]. From these complementary derivations we
analyze the versatility, validity and restrictions of this result,
which has evolved into a paradigm in the field of the thermo-
dynamic optimization of energy converters. Some results for
the efficiency at maximum power conditions are discussed
in connection with the CA-efficiency and a number of future
perspectives are finally outlined.

2. Endoreversible model

The original derivation by Curzon-Ahlborn was based on the
so-called endoreversible (or exo-irreversible) model. This Fi-
nite Time model is built on the following main hypothesis:
the working system under consideration obeys a Carnot-like
cycle where the isothermal heat addition and heat rejection
processes (at temperaturesT ′h y T ′c, respectively) with the
two heat thermal baths at temperaturesTh y Tc follow lin-
ear heat transfer laws (see Fig. 1) in such a way that all ir-
reversibilities are associated to the external coupling of the
working system with the heat reservoirs, while the adiabatic
paths remain as reversible. The validity and applicability of
this endoreversible hypothesis has been widely analyzed and
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FIGURE 1. Picture of a endoreversible (exo-irreversible) Carnot-
line heat engine.

discussed in the specialized literature [11–15]. With this in
mind, the heat fluxes can be mathematically described by

Q̇h = σh (Th − T ′h) ≡ σhTh

(
1− 1

ah

)
(1)

Q̇c = σc (Tc − T ′c) ≡ σcTc (ac − 1) (2)

where σh y σc denote, respectively, the thermal conduc-
tances associated to the hot and cold heat transfers and
ah = Th/T ′h ≥ 1, ac = T ′c/Tc ≥ 1.

Because of its internal reversibility, the working fluid ful-
fills the Clausius equality:

Q̇h

T ′h
=

Q̇c

T ′c
, (3)

and, as consequence, the two internal temperaturesT ′h y T ′c
(i.e., ah andac) are not independent variable. Substituting
Eqs. (1) and (2) in (3) we obtain:

ac =
1

1− σhc(ah − 1)
(4)

whereσhc = σh/σc. From the above equations, the two most
significant magnitudes in the energy conversion process, the

powerẆ = Q̇h− Q̇c and the efficiencyη = Ẇ/Q̇h read as:

Ẇ = σhTh

(ah − 1)− σhc (ah − 1)2 − τ
(
a2

h − ah

)

ah (1 + σhc)− σhca2
h

(5)

η = 1− ahτ

1− σhc (ah − 1)
(6)

Equations (5) and (6) show that, under fixed values for
the parameters accounting for the hot and cold conductances
and the externalTh andTc temperatures,Ẇ andη are only
dependent on the upper temperatureT ′h through the param-
eterah. The maximum power output is obtained under the
usual condition(∂Ẇ/∂ah)ah=āh

= 0. Thus, the optimal̄ah

andāc values are given by:

āh =
1 + σhc

σhc +
√

τ
(7)

āc =
√

τ + σhc√
τ(σhc + 1)

(8)

From these equations we easily obtain the following expres-
sions for the maximum power outpuṫWmax and for the effi-
ciency at maximum powerηmax Ẇ :

Ẇmax = σhTh
(1−√τ)2

1 + σhc
(9)

ηmax Ẇ (τ) = η(āh, āc, τ) = 1−√τ ≡ ηCA (10)

The main conclusion we can extract from these results
is that the efficiency at maximum power is only dependent
of hot and cold external temperatures through the param-
eter τ and then it is independent on any peculiar charac-
teristic of the system. This simple dependence leads to a
fair comparison with experimental results (see Table I and
Fig. 2) in spite of the simplicity of the endoreversible (or
exo-irreversible) model. We also stress that these results have
been obtained assuming linear heat transfer equations. Non-
linear heat transfer laws implemented in the endoreversible
model do not reproduce the CA-efficiency [16].

3. Linear Irreversible Thermodynamics

An obvious criticism to the CA-derivation is its lack of gen-
erality because of its model dependence. On the other side,
the analysis of Curzon and Ahlborn is not bound to devices
working near equilibrium and, as a consequence it does not
seem easy to reproduce it within the framework of linear irre-
versible thermodynamics. Any attempt should first substitute
simple finite-time models by a macroscopic description of the
heat device, and then one must integrate the involved differ-
ential equations describing the local behavior of such system
to get information about its performance. A valuable step in
this way was reported by Van den Broeck [17] showing that
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TABLE I. Comparison among observed efficienciesηexp, with the theoreticalηC and Curzon-Ahlborn,ηCA, values. Data taken from [20].

Power Plant Tc(K) Th(K) τ ηexp ηC ηCA

Doel 4 (Nuclear, Belgium) 566 283 0.50 0.35 0.50 0.31

Almaraz II (Nuclear, Spain) 600 290 0.48 0.34 0.52 0.31

Sizewell B (Nuclear, UK) 581 288 0.50 0.36 0.50 0.30

Cofrentes (Nuclear, Spain) 562 289 0.51 0.34 0.49 0.29

Heysham (Nuclear, UK) 727 288 0.40 0.40 0.60 0.37

West Thurrock (Coal, UK) 838 298 0.36 0.36 0.64 0.40

CANDU (Nuclear, Canada) 573 298 0.52 0.30 0.48 0.28

Larderello (Geothermal, Italy) 523 353 0.68 0.16 0.32 0.18

Calder Hall (Nuclear, UK) 583 298 0.51 0.19 0.49 0.29

(Steam/Mercury, USA) 783 298 0.38 0.34 0.62 0.38

(Steam, UK) 698 298 0.43 0.28 0.57 0.35

(Gas Turbine, Switzerland) 963 298 0.31 0.32 0.69 0.44

(Gas Turbine, France) 953 298 0.31 0.34 0.69 0.44

FIGURE 2. Comparison among observed efficiencies (solid points),
ηexp, with the theoreticalηC and Curzon-Ahlborn,ηCA, values.
Data taken from [20].

the CA-efficiency is a result which can be obtained in the
well-founded formalism of linear irreversible thermodynam-
ics (LIT) thus supporting their validity and generality.

Irreversible Thermodynamics is based on the assumption
of local thermodynamic equilibrium. Accordingly, the local
and instantaneous relations between thermodynamic quanti-
ties in a system out of equilibrium are the same as for an
equilibrium system. The resulting positive entropy produc-
tion is found to be a sum of products of the so-called ther-
modynamic fluxes,Ji, and thermodynamic forces,Xj (also
called affinities), where each flux depends on all the thermo-
dynamic forces. The relation can be linearized in the limit of
vanishing forces by a Taylor expansion, so that each flux lin-
early depends on each force through some coupling parame-
ter,Lij = ∂Ji/∂Xj , that globally contains the local informa-
tion of the system. For the particular case of two fluxes and
two thermodynamic forces the following relations are well
known:J1 = L11X1 +L12X2, J2 = L21X1 +L22X2. Here

the conditionsL11 ≥ 0, L22 ≥ 0 andL11L22 − L12L21 ≥ 0
imply that entropy productioṅσ = J1X1 + J2X2 is a non-
negative quantity, according to the second law [1,9,10].

In this framework the main steps of the proposal by Van
den Broeck [17] are as follow. Consider the cyclic system
sketched in Fig. 1, where now the temperature of the exter-
nal thermal baths are given byT + ∆T andT , so that the
power output of the working system against an external force
F (mechanical, electric, or so on) iṡW = −Fẋ, whereẋ
is the conjugate variable toF . To get this, the system ab-
sorbs a heat flux|Q̇| from the hot thermal bath and delivers
a heat flux|Q̇| − |Ẇ | to the cold thermal bath. The entropy
generation is given by

σ̇ = − |Q̇|
T + ∆T

+
|Q̇| − |Ẇ |

T

≡ −Fẋ

T
+ |Q̇|

(
1
T
− 1

T + ∆T

)
(11)

From this equation it is straightforward to identify the
fluxesJ1 ≡ ẋ andJ2 ≡ Q̇ as well as the the correspond-
ing thermodynamic forces (or affinities)X1 ≡ F/T and

X2 ≡
(

1
T
− 1

T + ∆T

)
≈ ∆T

T 2
.

Taking into account the above elected forces and fluxes,
the power output can be written as

Ẇ = −Fẋ = −J1X1T = −(L11X
2
1 + L12X1X2)T (12)

which shows a maximum under the condition
(∂Ẇ/∂X1)X1=X̄1

= 0. The resulting optimal forcēX1

s given by

X̄1 = −L12X2

2L11
(13)
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On the other side, the efficiency of conversion is

η =
Ẇ

Q̇
= −J1X1T

J2
= −J1X1T

J2X2
X2 = −∆T

T

J1X1

J2X2
(14)

After the linear expressions ofJ1 andJ2 in terms ofX1 and
X2, we get that

η = −∆T

T
k

L11k + L12

L21k + L22
(15)

with k ≡ X1/X2. Finally, taking into account the optimal
forceX̄1 = −L12X2/2L11 given by Eq. 13 we obtain for the
efficiency at maximum power condition the following equa-
tion

η(X̄1) ≡ ηmax Ẇ =
1
2

∆T

T

q2

2− q2
(16)

whereq = L12/
√

L11L22 is a coupling parameter bounded
by −1 ≤ q ≤ +1. In the limit of perfect coupling,q = 1,
the efficiency isηmax Ẇ = (1/2)(∆T/T ), which matches at
first order the CA-value

ηCA = 1−
√

T

T + ∆T
≈ ∆T

2T
.

For a more general demonstration not limited to the linear ap-
proximation, Van den Broeck [17] uses a cascade construc-
tion of infinite cycles, each working between infinitesimal
temperature differences, which under perfect coupling con-
ditions allows to recover the exact CA-efficiency. An inter-
esting and striking property of the cascade construction is that
the overall performance regimes of the whole system may be
different to those showed by each particular device [18,19].

It should be stressed that this derivation, unlike the origi-
nal one, does not need any explicit assumption for heat trans-
fers processes or the endoreversible hypothesis, as it emerges
as a straightforward consequence of the appropriate selection
for the linear fluxes-forces relations from the entropy gener-
ation equation.

4. Low-dissipationmodel

A third and complementary derivation for the CA-efficiency,
but conceptually very different, was reported more recently
by Espositoet al. [20]. It does not need the endoreversible as-
sumption, or any specific heat transfer law between the cyclic
system and external heat baths couplings. Besides it is in-
dependent of the external temperatures values (i.e., beyond
the linear-response regime) and incorporates an additional
ingredient associated to some symmetry properties which in
last instance determines upper and lower bounds for the effi-
ciency of the energy conversion.

Again, let us consider the reversible Carnot cycle in
Fig. 1. During the heat absorption process the entropy vari-
ation is∆S = Qh/Th while along the heat rejection step is
−∆S = Qc/Tc. Globally, the Clausius equalityQh/Th =
Qc/Tc applies. The consideration of irreversibilities is taken
into account by considering that isothermal heat transfers

proceed in finite times,th and tc, during the upper absorp-
tion and low rejection processes, respectively. Thus, entropy
generation in these processes areΣh/th andΣc/tc, where
Σh andΣc are coefficients that globally contain all the infor-
mation on the corresponding irreversibilities.

Because of the linear dependence of the entropy gen-
eration on the inverse of time, this model it is calledlow-
dissipation. Indeed, under infinite time limits the model re-
covers reversible behavior without entropy generation. An-
other valuable characteristic of the model is that does not
make any assumption on the temperaturesTh and Tc, and
thus is not limited to the linear time domain. The heats in-
volved in the cycle are given asQh = Th (∆S − Σh/th) and
Qc = Tc (−∆S − Σc/tc), while the power output is:

P =
Qh + Qc

th + tc

=
(Th − Tc) ∆S − ThΣh/th − TcΣc/tc

th + tc
(17)

The maximum power output is obtained by maximizing this
function with respect to the time durationsth and tc. This
requires to fulfill the following conditions:

(
∂P

∂tc

)
(t̄c, t̄h) = 0

(
∂P

∂th

)
(t̄c, t̄h) = 0

{(
∂P

∂tc

)(
∂P

∂th

)
−

[(
∂2P

∂tc∂th

)]2
}

(t̄c, t̄h) < 0 (18)

These conditions give rise to a unique physically accept-
able solution:

t̄h = 2
ThΣh

(Th − Tc)∆S

(
1 +

√
TcΣc

ThΣh

)
(19)

FIGURE 3. Comparison among observed efficiencies (solid points)
with ηC , ηCA, and the upperηC = (2 − ηC) and lowηC = 2
bounds.
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t̄c = 2
TcΣc

(Th − Tc)∆S

(
1 +

√
ThΣh

TcΣc

)
(20)

The efficiency is given by

η(th, tc, τ) =
P

Qh
= 1− Tc

Th

(∆S + Σc

tc
)

(∆S − Σh

th
)

(21)

and taking into account the optimal values given in Eqs. 19
and 20, we finally obtain that the efficiency at maximum
power conditions is given as:

η(t̄h, t̄c, τ) = ηC

(
1 +

√
TcΣc

ThΣh

)

(
1 +

√
TcΣc

ThΣh

)2

+
Tc

Th

(
1− Σc

Σh

) (22)

When Σh = Σc (symmetric dissipation) the exact
Curzon-Ahlborn value1 −

√
Tc/Th ≡ 1 − √

τ is straight-
forward recovered while under strong asymmetric limits
Σh/Σc →∞ andΣh/Σc → 0 the following lower and upper
boundsηC/2 ≤ η∗ ≤ ηC/(2−ηC) are obtained. In Fig. 3 can
be checked the fairly agreement between efficiencies listed
in Table I and the above bounds. One notable difference of
this model with the two previous derivations is that now the
CA-efficiency needs the optimization with respect two inde-
pendent variables (th andtc) to be obtained.

5. Conclusions and outlook

Although the original derivation of the the Curzon-Ahlborn
efficiency was settled as a pedagogical tool allowing a fairly
comparison between theoretical and observed results and
it was obtained for a particular model (Carnot-like endo-
reversible or exo-irreversible cycles with linear transfer laws)
it has become a paradigmatic result in studies dealing with
thermodynamic optimization of power devices in the frame-
works of Finite Time and Linear Irreversible Thermodynam-
ics (and also in Stochastic Thermodynamics [21]).

In the above context, more intriguing is the fact that this
result can be also obtained in the realm of (reversible) Classi-
cal Equilibrium Thermodynamics: a) Reversible cycles with
two adiabatic processes alternating with two others of the
same nature (for instance, two isochorics (Otto cycle) or two
isobarics (Joule-Brayton cycle)) show an efficiency at max-
imum work that is exactly the sameηCA-value. Neverthe-
less, for reversible cycles with two adiabatic steps alternating
with two others of different nature (for instance Diesel and
Atkinson cycles) the efficiency at maximum work conditions
is working-fluid dependent, though it is very close, but not
exactly the same, toηCA [22, 23]; b) A Carnot-like heat de-
vice working at maximum work between two finite thermal
baths with constant and equal heat capacities also show an
efficiency equal to the Curzon-Ahlborn [1,24].

Because of the nowadays importance of the energy con-
version processes, the great universality of the CA-efficiency
in so many different contexts and models deserve future and
closer analysis. We list below three sets of recent results that
could be useful for future research work in order to provide a
clear foundation and understanding of its observed ubiquity:

• The analysis of a great variety of heat engine models
(classic, mesoscopic and quantum in nature) has en-
abled to show that at maximum power conditions, the
efficiency coincides or approaches up to second order
(depending on some particular symmetry conditions)
with the Taylor expansion of the CA-value [25–36]:

ηCA = 1−√τ ≡ 1−
√

1− ηC

≈ ηC

2
+

η2
C

8
+

6η3
C

96
+ ... (23)

Why so many different models in nature and in differ-
ent thermodynamic frameworks approaches the above
Taylor expansion is still an open question.

• Minimally nonlinear irreversible thermodynamic mod-
els have also been proposed for cyclic and steady-state
heat devices, in order to account for possible thermal
dissipation effects in the interaction between the work-
ing system and the external heat reservoirs [37]. These
models incorporate to the linear fluxes-forces relations
an additional nonlinear dissipation term. As in LIT,
the optimization procedure also involves only one de-
gree of freedom, the thermodynamic flux, and the re-
sulting energetic properties obtained under symmetric
dissipation conditions allow to recover the optimized
low dissipation results when the tight-coupling condi-
tion holds. Concerning these models, a different point
of view was stated on the basis that dissipations should
naturally appear in the LIT-models when the local On-
sager relations are extended to a global scale [38, 39].
Another step forward in this direction has been re-
ported by Sheng and Tu [40, 41] by introducing new
and valuable concepts as weighted thermal fluxes and
weighted reciprocal of temperature.

• A wider connection between (reversible) maximum-
work and (finite-time) maximum-power thermal cycles
has been recently reported suggesting an extended en-
dorevesibility concept where the meaning of the CA-
efficiency has been reconsidered and the role of heat
capacities established [42,43].

We close by stressing another open question concerning
with the extension of the CA-efficiency to refrigerator de-
vices. An important shortcoming of endoreversible models is
its lack of generality. This problem remains an open question
provided that the optimization of the refrigeration power for
an endorreversible Carnot refrigerator, with linear finite-time
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heat transfers, cannot allow to obtain an analogous expres-
sion for the efficiency of the refrigerator to Curzon-Ahlborn’s
value for endoreversible heat engines. So, a number of differ-
ent optimization criteria has been proposed in order to find a
counterpart of the CA-efficiency using mainly low-disspation
and linear and non-linear irreversible models [40,41,44–47].
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