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We introduce a family of four Dirac operators in 1+1 dimensions:ĥA = −i~c Γ̂A ∂/∂x (A = 1, 2, 3, 4) for x ∈ Ω = [a, b]. Here,{Γ̂A} is
a complete set of2× 2 matrices:Γ̂1 = 1̂, Γ̂2 = α̂, Γ̂3 = β̂, andΓ̂4 = iβ̂α̂, whereα̂ andβ̂ are the usual Dirac matrices. We show that the
hermiticity of each of the operatorŝhA implies thatCA(x = b) = CA(x = a), where the real-valued quantitiesCA = cψ†Γ̂Aψ, the bilinear
densities, are precisely the components of a Clifford numberĈ in the basis of the matriceŝΓA; moreover,Ĉ/2c% is a density matrix (% is
the probability density). Because we know the most general family of self-adjoint boundary conditions forĥ2 in the Weyl representation
(and also for̂h1), we can obtain similar families for̂h3 and ĥ4 in the Weyl representation using only the aforementioned family forĥ2

and changes of representation among the Dirac matrices. Using these results, we also determine families of general boundary conditions
for all these operators in the standard representation. We also find and discuss connections between boundary conditions for the free (self-
adjoint) Dirac Hamiltonian in the standard representation and boundary conditions for the free Dirac Hamiltonian in the Foldy-Wouthuysen
representation.
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1. Introduction

First, let us introduce the following four Hermitian matrix-
valued (differential) Dirac operators:

ĥA = −i~c Γ̂A
∂

∂x
, (A = 1, 2, 3, 4) , (1)

wherex ∈ Ω = [a, b]. (In this article, we will retain the con-
stants~ andc to avoid confusion.) We assume that eachĥA

acts on two-component column vectors (or Dirac wave func-
tions in 1+1 dimensions)ψ = ψ(t, x) = [ ψ1(t, x)ψ2(t, x) ]ᵀ

(where the symbolT represents the transpose of a matrix),
which belong to the Hilbert spaceH = L2(Ω)⊕L2(Ω) (note
that ĥAψ also belongs toH). The scalar product of such
vectors is denoted by〈ψ, ξ〉 =

∫
Ω

dxψ†ξ (where the sym-
bol † denotes the adjoint of a matrix). Each self-adjoint (⇒
Hermitian) operator̂hA has a proper domainD(ĥA) ⊂ H,
i.e., the set of functions on whicĥhA can act, which includes
a general boundary condition (the latter will be introduced
later in this article). Note: in this paper we use the term Her-
mitian to refer to differential operators that are called sym-
metric (or formally self-adjoint) in the mathematical jargon.
The2× 2 (Hermitian) matriceŝΓA = Γ̂†A are given by

Γ̂1 = 1̂, Γ̂2 = α̂, Γ̂3 = β̂, Γ̂4 = iβ̂α̂. (2)

As is usually the case, the Dirac matricesα̂ = α̂† andβ̂ = β̂†

satisfy the following relations [1]:

α̂β̂ + β̂α̂ = 0, α̂2 = β̂2 = 1̂. (3)

As a consequence, the matricesΓ̂A also have the following
properties: (i) Γ̂2

A = 1̂; (ii ) Γ̂BΓ̂AΓ̂B = −Γ̂A for A 6= B

andA,B = 2, 3, 4; therefore, (iii ) tr(Γ̂A) = 0 (wheretr
denotes the trace of a matrix); and (iv) they are all linearly in-
dependent, and therefore, any2 × 2 matrix can be expanded
in terms of thêΓA. In other words, we can write an arbitrary
2× 2 matrix, sayĈ, as

Ĉ =
4∑

A=1

CAΓ̂A, (4)

whereCA = tr(Γ̂AĈ)/2 (for a good discussion of such ma-
trix properties, see, for example, Ref. [2], p. 132). Naturally,
the algebra generated by theΓ̂A is a Clifford algebra.

Let us now introduce the following four real-valued quan-
tities:

CA = cψ†Γ̂Aψ. (5)

These functions are usually known as bilinear densities,
but they are also called bilinear covariants because they
possess definite transformation properties under (proper or-
thochronous) Lorentz transformations and space inversion
(in 1+1 dimensions). Specifically, the time component of a
Lorentz 2-vector isC1 = c%, where% = %(t, x) = ψ†ψ is
the probability density. The spatial component of a 2-vector
is C2 = j, wherej = j(t, x) = cψ†α̂ψ is the probability cur-
rent density. Furthermore, the scalar isC3 ≡ cs = cψ†β̂ψ,
and the pseudo-scalar isC4 ≡ cw = cψ†iβ̂α̂ψ [3]. In this
article, we do not assign specific names to the densitiess
and w. Notice that if the quantitiesCA given in Eq. (5)
are precisely the coefficients of̂C in the expansion (4), then
the matrix Ĉ can be written asĈ = 2cψψ†. In effect,
CA = tr(Γ̂A2cψψ†)/2 = tr(cΓ̂Aψψ†) = tr(cψ†Γ̂Aψ) =
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cψ†Γ̂Aψ. Moreover, the following properties of̂C can be
verified: (i) (Ĉ/2c%)† = Ĉ/2c%, (ii ) (Ĉ/2c%)2 = Ĉ/2c%,
and (iii ) tr(Ĉ/2c%)2 = 1. Hence,Ĉ/2c% is a density matrix
and also a projector; therefore, it can represent the quantum
state of the system, as well [4]. It is worth noting that prop-
erty (ii ) implies that(c%)2 = (cs)2 + j2 + (cw)2, i.e., only
three of the bilinear densities are independent [3].

As is well known, if we have two sets of two Dirac ma-
trices,{α̂, β̂} and{ ˜̂α,

˜̂
β}, that satisfy the algebraic relations

given in Eq. (3), then there exists a (constant) non-singular
matrix Ŝ (defined to within a multiplicative constant) such
that

˜̂α = Ŝα̂Ŝ−1,
˜̂
β = Ŝβ̂Ŝ−1 (6)

(and therefore alsõ̂ΓA = Ŝ Γ̂A Ŝ−1). Indeed,Ŝ must be a
unitary matrix to preserve the hermiticity of the Dirac ma-
trices. Thus, distinct sets of Dirac matrices that satisfy (6)
are referred to as sets of Dirac matrices in distinct (but triv-
ially related) representations. In this paper, we use three
of these representations, which are usually referred to as (i)
the standard (or Dirac-Pauli) representation (SR),{α̂, β̂} =
{σ̂x, σ̂z}; (ii ) the Weyl (or spinor, or chiral) representation

(WR), { ˜̂α,
˜̂
β} = {σ̂z, σ̂x}; and (iii ) the supersymmetric rep-

resentation (SSR),{ ˜̂α,
˜̂
β} = {σ̂x, σ̂y}. As we will see below,

in 1+1 dimensions the last could also be considered to be a
Majorana representation [5]. Notice that by using only the
three Pauli matrices, we can construct only six distint rep-
resentations. The SR and the WR are related through the
(unitary) matrix

Ŝ =
1√
2
(σ̂x + σ̂z). (7)

Similarly, the SR and the SSR are related via the (unitary)
matrix

Ŝ =
1√
2
(1̂ + σ̂yσ̂z). (8)

Likewise, suppose that we have the following two (equiv-
alent) relativistic wave equations, each in its own representa-
tion:

Ĥψ = i~
∂ψ

∂t
,

˜̂
Hψ̃ = i~

∂ψ̃

∂t
, (9)

where, for example,

Ĥ = −i~cα̂
∂

∂x
+ mc2β̂ + U(x),

˜̂
H = −i~c ˜̂α

∂

∂x
+ mc2 ˜̂

β + U(x) (10)

are the usual Dirac Hamiltonian operators (U(x) is the
potential-energy function, and it is real and independent of
time) and the Dirac matrices are related as shown in Eq. (6).
Then, the Dirac wave functionsψ andψ̃ are related by

ψ̃ = Ŝψ. (11)

If the operatorsĤ and ˜̂
H in (10) are replaced by any of the

operatorŝhA, the result given by Eq. (11) remains true. In

the SR, a wave function is usually written asψ = ψ(t, x) =
[ϕ(t, x) χ(t, x) ]ᵀ, whereϕ is the so-called large component
of ψ andχ is the small component (for positive energies, the
upper component is “larger” than the lower component in the
nonrelativistic limit). In the WR, we write the wave function
asψ̃ = ψ̃(t, x) = [ ϕ1(t, x) ϕ2(t, x) ]ᵀ. Using Eqs. (7) and
(11), we can write the relation between the components ofψ
andψ̃ as follows:

[
ϕ1

ϕ2

]
=

1√
2

[
1 1
1 −1

] [
ϕ
χ

]
. (12)

Likewise, in the SSR, we write the wavefunction asψ̃ =
ψ̃(t, x) = [φ1(t, x) φ2(t, x) ]ᵀ. The relation between the
components of the latter wave function and those of the wave
function in the SR can be obtained using Eqs. (8) and (11):

[
φ1

φ2

]
=

1√
2

[
1 i
i 1

] [
ϕ
χ

]
. (13)

Using Eqs. (12) and (13), we can also write the following
expression:

[
φ1

φ2

]
=

1
2

[
1 + i 1− i
1 + i −(1− i)

] [
ϕ1

ϕ2

]
, (14)

which expresses the relation between the components of the
wave function in the SSR and those of the wave function
in the WR. Note that because the matrix̂S in Eq. (11)
is unitary, the bilinear densities in one representation (see
Eq. (5)) are the same in any other representation. In effect,

C̃A = cψ̃† ˜̂ΓA ψ̃ = cψ†Ŝ†Ŝ Γ̂A Ŝ†Ŝψ = CA. It is also worth
mentioning that in the SSR, the free Dirac equation can be
written as follows (see Eqs. (9) and (10)):

− i~cσ̂x
∂ψ̃

∂x
+ mc2σ̂yψ̃

= i~
∂ψ̃

∂t
⇒

(
1
c

∂

∂t
+ σ̂x

∂

∂x
+

mc

~
iσ̂y

)
ψ̃ = 0,

that is to say, the latter equation is real,i.e., ψ̃ can be chosen
to be real. In this regard, the SSR is also a Majorana repre-
sentation (further details concerning the Majorana represen-
tation can be found, for example, in Ref. [5]). As expected,
the physical predictions do not depend on the chosen rep-
resentation, even though wave functions describing the same
physical situation take different forms in different representa-
tions. For example, to simulate a penetrable barrier atx = a
andx = b (the physical situation), we may choose the pe-
riodic boundary conditionψ(a) = ψ(b) in the SR, but then
we should choose the same boundary condition in any other
representation,i.e., ψ̃(a) = ψ̃(b). Naturally,ψ is not equal
to ψ̃.
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2. Dirac operators

In this section, we first present, together with the most essen-
tial results associated with the hermiticity of each operator
ĥA (see also Ref. [6]), known families of general boundary
conditions for̂h1 andĥ2 in the WR under the assumption that
these operators are self-adjoint. Then, using only the gen-
eral boundary condition for̂h2 and changes of representation
among the Dirac matrices, we also obtain general boundary
conditions forĥ3 andĥ4 in the WR. In the latter procedure,
we need only consider the SR, the WR and the SSR. At the
end of the section, using these results, we also write general
boundary conditions for each of these four operators in the
SR.

(a) First, the operator̂h1 is essentially the (Dirac) mo-
mentum operator̂P ; in fact,

ĥ1 = −i~c 1̂
∂

∂x
(= cP̂ = c1̂p̂). (15)

In the latter expression, we distinguish between
P̂ = −i~1̂∂/∂x, which is, in the end, a2 × 2 matrix,
and p̂ = −i~∂/∂x, which is usually considered to be the
momentum operator. Note thatĥ1 does not change if we
change the representation (the identity matrix1̂ is manifestly
independent of the representation). This operator satisfies the
following relation:

〈ψ, ĥ1ξ〉 − 〈ĥ1ψ, ξ〉 = −i~c
[
ψ†ξ

]∣∣b
a
, (16)

where [ f ]|ba = f(t, b) − f(t, a), andψ andξ are vectors in
H. If the boundary conditions imposed onψ andξ lead to
the cancellation of the term evaluated at the endpoints of the
intervalΩ, we can write relation (16) as〈ψ, ĥ1ξ〉 = 〈ĥ1ψ, ξ〉.
In this case,̂h1 is a Hermitian operator. If we imposeψ = ξ
in this last relation and in Eq. (16), we obtain the following
condition:

[
ψ†ψ

]∣∣b
a

= [ % ]|ba = 0 (⇒ %(b) = %(a)), (17)

i.e., C1(b) = C1(a). Furthermore,〈ψ, ĥ1ψ〉 = 〈ĥ1ψ, ψ〉 =
〈ψ, ĥ1ψ〉; therefore, Im〈ψ, ĥ1ψ〉 = 0, i.e., 〈ψ, ĥ1ψ〉 ≡
〈ĥ1〉ψ ∈ R (the bar represents complex conjugation). The
requirement given in Eq. (17) implies that each wavefunction
ψ that belongs to the domainD(ĥ1) must obey only specific
boundary conditions at the endpoints of the intervalΩ (under
the assumption that̂h1 is also a self-adjoint operator). In-
deed, Eq. (17) is satisfied by imposing the following general
boundary condition:

ψ(b) = Û1ψ(a), (18)

where the matrix̂U1 is unitary (and therefore, Eq. (18) is a
4-parameter family of boundary conditions) [7]. In fact, let
us consider the following general relation,ψ(b) = M̂ψ(a),
whereM̂ is an arbitrary (complex) matrix. By substituting
the latter relation into Eq. (17), we obtainψ†(a)M̂†M̂ψ(a)−
ψ†(a)ψ(a) = 0; therefore,M̂†M̂ = 1̂, i.e., M̂ is unitary.

The latter result can also be obtained using the theory of self-
adjoint extensions of symmetric operators [8]. In the WR, we
write Eq. (18) as follows:

[
ϕ1(b)
ϕ2(b)

]
= Û1

[
ϕ1(a)
ϕ2(a)

]
. (19)

The latter result was derived in detail in Appendix A of
Ref. [8].

(b) The operator̂h2 can be written as

ĥ2 = −i~c α̂
∂

∂x
(= cα̂p̂), (20)

and it satisfies the following relation:

〈ψ, ĥ2ξ〉 − 〈ĥ2ψ, ξ〉 = −i~c
[
ψ†α̂ξ

]∣∣b
a
, (21)

whereψ andξ are vectors inH. Again, if the boundary con-
ditions imposed onψ and ξ lead to the cancellation of the
boundary term on the right-hand side of Eq. (21), then the
operatorĥ2 is Hermitian, i.e., 〈ψ, ĥ2ξ〉 = 〈ĥ2ψ, ξ〉. If we
imposeψ = ξ in this last relation and in Eq. (21), we obtain
the following condition:

c
[
ψ†α̂ψ

]∣∣b
a

= [ j ]|ba = 0 (⇒ j(b) = j(a)), (22)

i.e., C2(b) = C2(a). Moreover,〈ψ, ĥ2ψ〉 = 〈ĥ2ψ, ψ〉 =
〈ψ, ĥ2ψ〉; therefore, Im〈ψ, ĥ2ψ〉 = 0, i.e., 〈ψ, ĥ2ψ〉 ≡
〈ĥ2〉ψ ∈ R. In addition, the operator̂h2 is, essentially, self-
adjoint on the domainD(ĥ2) formed by the Dirac wave func-
tions ψ such thatψ ∈ H and ĥ2ψ ∈ H and that satisfy, in
the WR (̂α = σ̂z), the following general boundary condi-
tion [9,10]:

[
ϕ1(b)
ϕ2(a)

]
= Û2

[
ϕ2(b)
ϕ1(a)

]
, (23)

where the matrixÛ2 is also unitary. Notice that the results
(21)-(23), which are associated with the hermiticity and the
self-adjointness of̂h2, are clearly also valid for the usual
Hamiltonian operatorĤ = ĥ2 + mc2β̂ + U(x). In other
words, the matrixβ̂ does not influence any of these results
(it is also understood that the potential-energy functionU(x)
that is present in̂H is bounded inside the intervalΩ). Thus,
the latter result allows us to ensure that the results associated
with ĥ2 are also valid for a Hamiltonian that describes, for
example, a massless Dirac fermion in 1+1 dimensions. In
particular, the result given in Eq. (23) in combination with
changes of representations provides all we require to obtain
general boundary conditions forĥ3 andĥ4 in the WR, as out-
lined below.

(c) The operator̂h3 can be written as

ĥ3 = −i~c β̂
∂

∂x
(= cβ̂p̂), (24)

and it satisfies the following relation:

〈ψ, ĥ3ξ〉 − 〈ĥ3ψ, ξ〉 = −i~c
[
ψ†β̂ξ

]∣∣∣
b

a
, (25)
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whereψ andξ are vectors inH. If, as a result of the bound-
ary conditions imposed onψ and ξ, the boundary term in
Eq. (25) vanishes, then the operatorĥ3 is Hermitian, i.e.,
〈ψ, ĥ3ξ〉 = 〈ĥ3ψ, ξ〉. By imposingψ = ξ in this last relation
and in Eq. (25), we obtain the following condition:

[
ψ†β̂ψ

]∣∣∣
b

a
= [ s ]|ba = 0 (⇒ s(b) = s(a)), (26)

i.e., C3(b) = C3(a). Additionally, 〈ψ, ĥ3ψ〉 = 〈ĥ3ψ, ψ〉 =
〈ψ, ĥ3ψ〉; therefore, Im〈ψ, ĥ3ψ〉 = 0, i.e., 〈ψ, ĥ3ψ〉 ≡
〈ĥ3〉ψ ∈ R. However, the operator̂h3 is also self-adjoint on
the domainD(ĥ3) formed by Dirac wave functionsψ such
that ψ ∈ H and ĥ3ψ ∈ H and that also satisfy a general
boundary condition. To obtain this general boundary condi-
tion in the WR for which the operator̂h3 = −i~c β̂ ∂/∂x is
self-adjoint, we must exploit the fact thatβ̂ is preciselŷσz in
the SR. In other words,̂h3 in the SR is simply the operator
ĥ2 = −i~c α̂ ∂/∂x in the WR (̂α = σ̂z). In this manner,
we can immediately write the general boundary condition for
ĥ3 as follows: first, in Eq. (23), we make the replacements
ϕ1 → ϕ, ϕ2 → χ, andÛ2 → Û3 (the latter because we are
interested in the operatorĥ3), and then, we transform into the
WR using the inverse of the unitary transformation given in
Eq. (12),i.e., ϕ = (ϕ1 + ϕ2)/

√
2 andχ = (ϕ1 − ϕ2)/

√
2.

We obtain the result
[

ϕ1(b) + ϕ2(b)
ϕ1(a)− ϕ2(a)

]
= Û3

[
ϕ1(b)− ϕ2(b)
ϕ1(a) + ϕ2(a)

]
, (27)

where the matrix̂U3 is unitary.
(d) The operator̂h4 can be written as

ĥ4 = −i~c iβ̂α̂
∂

∂x
(= +ciβ̂α̂p̂), (28)

and it satisfies the following relation:

〈ψ, ĥ4ξ〉 − 〈ĥ4ψ, ξ〉 = −i~c
[
ψ†iβ̂α̂ξ

]∣∣∣
b

a
, (29)

whereψ andξ are vectors inH. If, because of the bound-
ary conditions imposed onψ and ξ, the boundary term in
Eq. (29) vanishes, then the operatorĥ4 is Hermitian, i.e.,
〈ψ, ĥ4ξ〉 = 〈ĥ4ψ, ξ〉. By imposingψ = ξ in this last relation
and in Eq. (29), we obtain:

[
ψ†iβ̂α̂ψ

]∣∣∣
b

a
= [ w ]|ba = 0 (⇒ w(b) = w(a)), (30)

i.e., C4(b) = C4(a). Moreover,〈ψ, ĥ4ψ〉 = 〈ĥ4ψ, ψ〉 =
〈ψ, ĥ4ψ〉; therefore, Im〈ψ, ĥ4ψ〉 = 0, i.e., 〈ψ, ĥ4ψ〉 ≡
〈ĥ4〉ψ ∈ R. In the same manner as for the other operators
we have introduced, the operatorĥ4 is also self-adjoint on
the domainD(ĥ4) formed by Dirac wave functionsψ such
thatψ ∈ H andĥ4ψ ∈ H and that satisfy a general bound-
ary condition. To obtain this general boundary condition in
the WR for which the operator̂h4 = −i~c iβ̂α̂ ∂/∂x is self-
adjoint, we must exploit the fact thatiβ̂α̂ is preciselyσ̂z in

the SSR (i.e., iσ̂yσ̂x = σ̂z). In other words,̂h4 in the SSR is
simply the operator̂h2 = −i~c α̂ ∂/∂x in the WR (̂α = σ̂z).
Thus, we can immediately write the general boundary con-
dition for ĥ4 as follows: first, in Eq. (23), we make the
replacementsϕ1 → φ1, ϕ2 → φ2, andÛ2 → Û4 (the lat-
ter because we are interested in the operatorĥ4), and then,
we transform into the WR using the unitary transformation
given in Eq. (14),i.e., φ1 = ((1 + i)ϕ1 + (1 − i)ϕ2)/2 and
φ2 = ((1+ i)ϕ1− (1− i)ϕ2)/2. After some simplifications,
we obtain

[
ϕ1(b)− iϕ2(b)
ϕ1(a) + iϕ2(a)

]
= Û4

[
ϕ1(b) + iϕ2(b)
ϕ1(a)− iϕ2(a)

]
, (31)

where the matrix̂U4 is unitary. Incidentally, the latter bound-
ary condition was obtained in Ref. [11], although that discus-
sion concerned a Dirac Hamiltonian, which is essentially the
same operator̂h4 in the WR plus a certain matrix potential.

Likewise, we can explicitly write the most general bound-
ary condition for each of these operators in the SR, which is
the most frequently used representation, in part because it is
very convenient for studying the non-relativistic limit [12].
Our results are as follows:

(a) In the SR, we write the boundary condition that be-
longs toD(ĥ1) as follows:

[
ϕ(b)
χ(b)

]
= T̂1

[
ϕ(a)
χ(a)

]
, (32)

whereT̂1 = ŜÛ1Ŝ andŜ is given in Eq. (7). The result ex-
pressed by (32) is expected becauseĥ1 is independent of the
representation (see Eq. (15)).

(b) Likewise, insideD(ĥ2), we have the following
boundary condition:

[
ϕ(b) + χ(b)
ϕ(a)− χ(a)

]
= T̂2

[
ϕ(b)− χ(b)
ϕ(a) + χ(a)

]
, (33)

whereT̂2 = Û2. This result is easily obtained because we
know the general boundary condition forĥ2 in the WR (see
Eq. (23)); thus, all that is necessary is to transform from
the latter representation into the SR (using Eq. (12)). In
the non-relativistic limit, Eq. (33) provides the most gen-
eral boundary condition for which the Schrödinger Hamil-
tonian is self-adjoint. See Ref. [10] for further details and
Ref. [13] for the confirmation of this result (although in the
latter, the equivalent problem of a particle moving on a real
line with a point interaction at the origin was considered).
Let us also note in passing that the usual Dirichlet boundary
condition,ψ(a) = ψ(b) = 0, i.e., ϕ(a) = ϕ(b) = 0 and
χ(a) = χ(b) = 0, is not included in Eq. (33). In other
words, the operator̂h2 and the Dirac Hamiltonian̂H (see
Eq. (10)) are not self-adjoint when this boundary condition
is within their domains; in any case, these two operators can
be made Hermitian by imposing the boundary condition in
question (this particular topic was discussed in Ref. [14]).
However, the following boundary conditions, for example,
are contained in Eq. (33):ϕ(a) = ϕ(b) = 0 (T̂2 = −1̂),
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χ(a) = χ(b) = 0 (T̂2 = +1̂), ψ(a) = ψ(b) (T̂2 = +σ̂x), and
ψ(a) = −ψ(b) (T̂2 = −σ̂x).

(c) Similarly, insideD(ĥ3), we have the following bound-
ary condition:

[
ϕ(b)
χ(a)

]
= T̂3

[
χ(b)
ϕ(a)

]
, (34)

where T̂3 = Û3. We can inmediately write this result be-
cause we know the general boundary condition forĥ3 =
−i~c β̂ ∂/∂x when β̂ = σ̂z (see Eq. (23)),i.e., for ĥ3 in
the SR.

(d) Finally, in the domainD(ĥ4), we have the following
boundary condition:

[
ϕ(b) + iχ(b)
iϕ(a) + χ(a)

]
= T̂4

[
iϕ(b) + χ(b)
ϕ(a) + iχ(a)

]
, (35)

whereT̂4 = Û4. We can obtain this result because we know
the general boundary condition for̂h4 = −i~c iβ̂α̂ ∂/∂x
wheniβ̂α̂ = σ̂z (see Eq. (23)),i.e., for ĥ4 in the SSR. Thus,
all that is necessary is to transform from the latter represen-
tation into the SR (using Eq. (13)).

At this point, certain remarks are in order. Indeed, we
could construct different types of general boundary condi-
tions for each of the operators considered here (some could
also be dependent of four parameters). However, the families
of general boundary conditions presented herein possess the
advantage that none of the coefficients in the unitary matrices
need be equal to infinity. In addition, each of these general
boundary conditions is the most general that can be written
with only one single matrix boundary condition. These fea-
tures have been noted in the literature, especially in the study
of the (equivalent) problem of a particle in a line with a point
interaction at the origin (see, for example, Refs. [10,13,15]).

3. The standard and the Foldy-Wouthuysen
representations

Thus far, we have considered representations of the Dirac
equation that are related to the SR via trivial unitary trans-
formations,i.e., transformations that do not involve the mo-
mentum operator (see Ref. [16] for further discussion). As in
Eq. (9), let us consider the following two (relativistic) wave
equations, each in its own representation:

Ĥψ = i~
∂ψ

∂t
,

˜̂
Hψ̃ = i~

∂ψ̃

∂t
. (36)

Here, Ĥ is the usual Dirac Hamiltonian operator with
U(x) = 0 (i.e., the Hamiltonian for a free Dirac particle in
1+1 dimensions):

Ĥ = cα̂p̂ + mc2β̂, (37)

where, as we know,̂p = −i~∂/∂x. Moreover, using the rela-
tions of Eq. (3), we can show that̂H2 = (cp̂)2 + (mc2)2, as

expected. On the other hand, let˜̂
H be the following operator:

˜̂
H = β̂

√
(cp̂)2 + (mc2)2, (38)

which also satisfies the expression̂̃H2 = (cp̂)2 + (mc2)2.
It is that there exists a matrix, more specifically, a unitary
matrix Û that is dependent on̂p such that

˜̂
H = ÛĤÛ† (39)

and such that the wave functionsψ andψ̃ in (36) are related
by

ψ̃ = Ûψ. (40)

In effect, by first using the equation on the right-hand side in
(36) and also Eqs. (39) and (40), we can write the following:

˜̂
Hψ̃ = i~

∂ψ̃

∂t
⇒ ˜̂

HÛψ = i~Û
∂ψ

∂t
⇒ Û† ˜̂

HÛψ

= i~Û†Û
∂ψ

∂t
= i~

∂ψ

∂t
,

and therefore (after applying the remaining equation in (36)),

Ĥ = Û† ˜̂
HÛ

(the operatorŝH and ˜̂
H as well asÛ are time independent).

Moreover, to transform operators from one representation
into the other, we can use expressions similar to that given

in (39) for Ĥ and ˜̂
H. For example, we can writễα = Û α̂Û†

and alsõ̂β = Û β̂Û†; in any case, we do not need to explicitly

calculate the matrices{ ˜̂α,
˜̂
β} in this paper.

The exact transformation̂U was obtained for the first time
by Foldy and Wouthuysen [17] and can be written as follows
(see, for example, Ref. [2], p. 277, and for a rather unusual
calculation ofÛ , see Ref. [18]):

Û =
β̂Ĥ + E√

2E(E + mc2)
(
⇒ Û† =

Ĥβ̂ + E√
2E(E + mc2)

)
, (41)

whereE ≡
√

(cp)2 + (mc2)2 > 0 is an eigenvalue of the
operatorĤ (−E is also an eigenvalue of̂H), such thatE2

is an eigenvalue of the operator̂H2. Naturally,E is also an

eigenvalue of˜̂H (and−E is also an eigenvalue of̂̃H). It is
worth mentioning that to verify the relation̂UÛ† = Û†Û =
1̂, we have made use of the relation̂H2 = E2, i.e., we must
assume that̂H2 acts on plane waves or linear combinations
of plane waves with the same energy. The same assumption
is applied, for example, in the demonstration that the momen-
tum operator when transformed into a new representation is
the momentum operator itself,i.e., ˜̂p = p̂. By substituting the
matrixÛ given by Eq. (41) into the expression (39) and using
the relationĤ2 = E2 once again (along with some equations
in (3)), we obtain

˜̂
H = β̂E. (42)
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It is clear thatÛ permits us to transform quantities from
a trivial representation (the SR, the WR, etc) into a new rep-
resentation (represented by quantities marked with a tilde).
However, the new representation can be regarded as the usual
Foldy-Wouthuysen representation (FWR) only whenβ̂ is di-
agonal. Thus, we choose to use the SR to expressĤ andÛ ,
i.e., {α̂, β̂} = {σ̂x, σ̂z}, as usual. From Eqs. (40) and (41),
we can obtain the explicit relation between wave functions
in these two representations,i.e., we can writeψ = Û ψ̃ as
follows:

[
ϕ
χ

]
=

1√
2E(E + mc2)

×
[

E + mc2 −cp̂
cp̂ E + mc2

] [
ψ1

ψ2

]
. (43)

Henceforth, we will write the Foldy-Wouthuysen wave func-
tion asψ̃ ≡ ψFW = [ψ1 ψ2 ]ᵀ. Some aspects of the rela-
tion between wave functions in the SR and the FWR have
been recently studied [19, 20]. However, to the best of our
knowledge, no specific discussion of the connections be-
tween possible boundary conditions in these two represen-
tations is present in the literature.

First, we have noticed that (i) for positive energies,E, the
wave function in the FWR has the formψFW = [ ψ1 0 ]ᵀ (this
result have also been noted in Ref. [20]). In effect,

˜̂
HψFW = EψFW ⇒

[
Eψ1

−Eψ2

]
=

[
Eψ1

Eψ2

]
⇒ ψ2 = 0,

where we have made use of Eq. (42). Thus, becauseψ2(x) =
0, the spatial derivative also vanishes,i.e., ψ′2(x) = 0, for all
x ∈ Ω. Therefore, from Eq. (43), we also have the following
expressions:

ϕ(x) =
E + mc2

√
2E(E + mc2)

ψ1(x),

χ(x) =
−i~c√

2E(E + mc2)
ψ′1(x). (44)

Note that by writingχ(x) in (44) in terms ofϕ(x) (by elim-
inatingψ′1(x) using the first derivative of the other equation
in (44)), we can writeψ(x) in the SR in terms of onlyϕ(x)
andϕ′(x), as follows:

ψ(x) =
[

ϕ(x)
χ(x)

]
=

[
ϕ(x)

−i~c
E+mc2 ϕ′(x)

]
. (45)

Second, we have found that (ii ) for negative energies,
−E, we haveψFW = [ 0 ψ2 ]ᵀ [20]. In effect,

˜̂
HψFW = −EψFW ⇒

[
Eψ1

−Eψ2

]

=
[ −Eψ1

−Eψ2

]
⇒ ψ1 = 0,

where we have made use of Eq. (42). Thus, becauseψ1(x) =
0, its spatial derivative also vanishes for allx ∈ Ω (i.e.,

ψ′1(x) = 0). Therefore, from Eq. (43), we also have the
following expressions:

ϕ(x) =
i~c√

2E(E + mc2)
ψ′2(x),

χ(x) =
E + mc2

√
2E(E + mc2)

ψ2(x). (46)

Note that by writingϕ(x) in (46) in terms ofχ(x) (by elim-
inatingψ′2(x) using the first derivative of the other equation
in (46)), we can writeψ(x) in the SR in terms of onlyχ(x)
andχ′(x), as follows:

ψ(x) =
[

ϕ(x)
χ(x)

]
=

[
i~c

E+mc2 χ′(x)
χ(x)

]
. (47)

Therefore, in the non-relativistic limitE ≈ mc2, i.e.,
p/mc ¿ 1, (i) when the energies are positive, we know
from Eq. (45) thatχ = −i~cϕ′/(E + mc2) ≈ p̂ϕ/2mc =
O(v/c) (for this reasonχ is called the small component,
and ϕ is the large component), and the entire wave func-
tion in the SR tends towardψ = [ ϕ 0 ]ᵀ. Likewise, (ii )
when the energies are negative, we know from Eq. (47) that
ϕ = i~cχ′/(E + mc2) ≈ −p̂χ/2mc = O(v/c) (for this
reason,ϕ is called the small component in this case, andχ
is the large component), and the wave function tends toward
ψ = [ 0 χ ]ᵀ. Thus, the wave function in the SR in the non-
relativistic limit and the wave function in the FWR exhibit
a clear similarity. (i) For positive energies,ψ = [ ϕ 0 ]ᵀ

andψFW = [ ψ1 0 ]ᵀ, where the latterϕ andψ1 differ by
a constant factor (see Eq. (44)). (ii ) For negative energies,
ψ = [ 0 χ ]ᵀ andψFW = [ 0 ψ2 ]ᵀ , and the latterχ andψ2

differ by a constant factor (see Eq. (46)).
Now, we present some examples of boundary condi-

tions in the FWR that correspond to physically acceptable
boundary conditions in the SR. For example, let us im-
pose the usual Dirichlet boundary condition upon the entire
Foldy-Wouthuysen wave function at the ends of the interval
Ω = [a, b], i.e.,

ψFW(a) = ψFW(b) = 0. (48)

This boundary condition appears to be acceptable because the

operator ˜̂H in Eq. (38) contains a second derivative with re-
spect tox (although this derivative is under the square root
sign). (i) For positive energies, the latter boundary con-
dition implies thatψ1(a) = ψ1(b) = 0 (remember that
ψ2(x) = ψ′2(x) = 0). On the other hand, using the equation
on the left-hand side in (44), we find that the upper compo-
nent of the wave function in the SR (i.e., the large compo-
nent, in this case) satisfies the Dirichlet boundary condition,
i.e., ϕ(a) = ϕ(b) = 0. This boundary condition is included
in Eq. (33), and therefore, the Dirac Hamiltonian̂H is self-
adjoint [10]. (ii ) For negative energies, the boundary condi-
tion in (48) implies thatψ2(a) = ψ2(b) = 0 (remember that
ψ1(x) = ψ′1(x) = 0). On the other hand, from the equation
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on the right-hand side in (46), we find that the lower compo-
nent of the wavefunction in the SR (i.e., the large component
again in this case) satisfies the Dirichlet boundary condition,
i.e., χ(a) = χ(b) = 0. This boundary condition is also in-
cluded in Eq. (33), and hence, the Dirac HamiltonianĤ is
self-adjoint [10].

Now, let us consider the usual periodic boundary condi-
tion for the Foldy-Wouthuysen wave function,i.e.,

ψFW(a) = ψFW(b), ψ′FW(a) = ψ′FW(b). (49)

In the SR (and also in the other trivial representations), the
periodic boundary condition is defined only by the condition
ψ(a) = ψ(b), i.e., the derivative ofψ(x) need not satisfy
the periodicity condition (this is true because the correspond-
ing Hamiltonian is considered to be self-adjoint [10]). Then,
using the periodic boundary condition forψFW(x), we ob-
tain the following results: (i) For positive energies, we obtain
from Eq. (44) the conditionsϕ(a) = ϕ(b) andχ(a) = χ(b),
and therefore,ψ(a) = ψ(b). Likewise, (ii ) for negative en-
ergies, we obtain from Eq. (46) the conditionsϕ(a) = ϕ(b)
andχ(a) = χ(b), and hence,ψ(a) = ψ(b), i.e., the periodic
boundary condition. A similar analysis considering the an-
tiperiodic boundary condition,i.e., ψFW(a) = −ψFW(b) and
ψ′FW(a) = −ψ′FW(b), yields the antiperiodic boundary con-
dition for ψ, i.e., ψ(a) = −ψ(b) (for both positive and nega-
tive energies). Naturally, both the conditionψ(a) = ψ(b) as
well as the conditionψ(a) = −ψ(b) are included in Eq. (33),
and hence, the Dirac Hamiltonian̂H is self-adjoint [10].

We can also consider a slightly less common example,
the Neumann boundary condition for the Foldy-Wouthuysen
wave function,i.e.,

ψ′FW(a) = ψ′FW(b) = 0. (50)

(i) For positive energies, the latter boundary condition leads
to ψ′1(a) = ψ′1(b) = 0 (remember thatψ2(x) = ψ′2(x) = 0),
and from Eq. (44), we find that the lower component of
the wave function in the SR (i.e., the small component,
in this case) satisfies the Dirichlet boundary condition,i.e.,
χ(a) = χ(b) = 0. (ii ) For negative energies, the boundary
condition in (50) leads toψ′2(a) = ψ′2(b) = 0 (remember that
ψ1(x) = ψ′1(x) = 0), and from Eq. (46), we find that the up-
per component of the wavefunction in the SR (i.e., the small
component again in this case) satisfies the Dirichlet boundary
condition,i.e., ϕ(a) = ϕ(b) = 0. As we know, both the con-
dition χ(a) = χ(b) = 0 and the conditionϕ(a) = ϕ(b) = 0
are included in Eq. (33), and hence the Dirac HamiltonianĤ
is self-adjoint [10].

To summarize, we have imposed certain boundary con-
ditions on the wave functionψFW. These boundary condi-
tions lead to physically acceptable boundary conditions for
the (self-adjoint) Dirac Hamiltonian̂H in its standard form,
i.e., the Hamiltonian given by Eq. (37) with general bound-
ary conditions given by Eq. (33) (because we have precisely
consideredĤ in the SR). On the other hand, a physically
acceptable boundary condition for̂H can lead to different

boundary conditions for the Hamiltonian in the FWR. For ex-
ample, the boundary conditionϕ(a) = ϕ(b) = 0 (T̂2 = −1̂
in Eq. (33)) leads toψFW(a) = ψFW(b) = 0 for positive en-
ergies but leads toψ′FW(a) = ψ′FW(b) = 0 for negative ener-
gies. However, the periodic boundary conditionψ(a) = ψ(b)
in the SR (̂T2 = σ̂x in Eq. (33)) also leads to the periodic
boundary condition in the FWR,ψFW(a) = ψFW(b) and
ψ′FW(a) = ψ′FW(b), for both positive and negative energies.
Thus, we can propose general boundary conditions forψFW

based on the family of self-adjoint general boundary condi-
tions forψ given in Eq. (33). (i) For positive energies, using
the fact that, in this case, the wavefunction in the FWR has
the formψFW = [ ψ1 0 ]ᵀ, we obtain the following family of
general boundary conditions from Eqs. (44) and (33):

ψFW(b)− iλψ′FW(b) + σ̂x [ψFW(a) + iλψ′FW(a)]

= T̂2

{
ψFW(b) + iλψ′FW(b) + σ̂x

[
ψFW(a)

− iλψ′FW(a)
]}

, (51)

whereλ ≡ ~c/(E + mc2). Likewise, (ii ) for negative en-
ergies, using the fact that, in this case, the wave function in
the FWR has the formψFW = [ 0 ψ2 ]ᵀ, we obtain the fol-
lowing family of general boundary conditions from Eqs. (46)
and (33):

−ψFW(a) + iλψ′FW(a) + σ̂x [ψFW(b) + iλψ′FW(b)]

= T̂2

{
ψFW(a) + iλψ′FW(a)

+ σ̂x [−ψFW(b) + iλψ′FW(b)]
}
. (52)

Notice that some of the boundary conditions in (51) and (52)
are energy dependent,i.e., these boundary conditions should
be applied only to a stationary state with definite energy. We
will not elaborate further on the consequences of this energy
dependence in this article.

4. Conclusions

In summary, we have studied several essential properties as-
sociated with the hermiticity and self-adjointness of four dif-
ferential Dirac operators,̂hA = −i~c Γ̂A ∂/∂x, for x ∈
Ω = [a, b]. The hermiticity leads toCA(b) = CA(a), where
CA = cψ†Γ̂Aψ. The self-adjointness additionally leads to
specific families of boundary conditions, each to be included
in its respective domainD(ĥA). In general, because in any
trivial representation the matriceŝΓ2 = α̂, Γ̂3 = β̂, and
Γ̂4 = iβ̂α̂ are (essentially) the three (anticommuting) Pauli
matrices (the latter satisfŷσj σ̂k = iσ̂l for cyclic {j, k, l}),
the families of general boundary conditions for the operators
ĥ2, ĥ3, andĥ4 are linked. In particular, we obtained the fam-
ilies of general boundary conditions forĥ3 andĥ4 from the
general family forĥ2 in the WR. To transform these fami-
lies of boundary conditions into any other trivial represen-
tation, such as the SR, is a simple task. We were also able
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to obtain boundary conditions for the free Dirac Hamilto-
nian in the FWR from boundary conditions for the free (self-
adjoint) Dirac Hamiltonian in the SR. In fact, these boundary
conditions can be obtained because they are consistent with
the self-adjointness of the standard free Dirac Hamiltonian.
However, given a boundary condition for the standard Dirac

Hamiltonian, we could obtain (in certain cases) two different
boundary conditions for the Dirac Hamiltonian in the FWR
depending on the sign of the energy of the state in question.
We hope that this article will be of interest to those interested
in the mathematical aspects of relativistic quantum mechan-
ics, presented in a simple and pedagogical fashion.
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