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We introduce a family of four Dirac operators in 1+1 dimensiong:= —ihcl'4 /0 (A=1,234forze Q= [a,b]. Here,{I"4} is

a complete set d x 2 matrices: Mh=1l,=aTs= ﬁ andl'y = i34, wherea and3 are the usual Dirac matrices. We show that the
hermiticity of each of the operatoks, implies thatC 4 (z = b) = C'a(z = a), where the real-valued quantiti€s, = cy ' 44, the bilinear
densities, are precisely the components of a Clifford nundbér the basis of the matrices,; moreover,C*/2cg is a density matrixd is

the probability density). Because we know the most general family of self-adjoint boundary conditidnsificthe Weyl representation
(and also forh,), we can obtain similar families fak; and /4 in the Weyl representation using only the aforementioned familyafor

and changes of representation among the Dirac matrices. Using these results, we also determine families of general boundary cond
for all these operators in the standard representation. We also find and discuss connections between boundary conditions for the free
adjoint) Dirac Hamiltonian in the standard representation and boundary conditions for the free Dirac Hamiltonian in the Foldy-Wouthuys
representation.
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1. Introduction and A, B = 2,3,4; therefore, i) tr('4) = 0 (Wheretr
denotes the trace of a matrix); amzl)(they are all linearly in-
valued (differential) Dirac operators: in terms of thel A In other words, we can write an arbitrary

P 2 x 2 matrix, sayC, as

hA = —ihe FA 5

a 4

wherez € Q = [a, b]. (In this article, we will retain the con- C = Z CAfA, (4)
stantsf andc to avoid confusion.) We assume that e&ch =
acts on two-component column vectors (or Dirac wave func-
tions in 1+1 dimensionsy = v (t,z) = [¢1 (¢, ) 1o (t, z)]T  WhereCy = tr(I'4C) /2 (for a good discussion of such ma-
(Where the symbot represents the transpose of a matrix), trix properties, see, for example, Ref. [2], p. 132). Naturally,
which belong to the Hilbert spadé = £2(Q) @ £2(2) (note  the algebra generated by thg is a Clifford algebra.

(A:1a27374)7 (1)

that 749 also belongs td). The scalar product of such Let us now introduce the following four real-valued quan-
vectors is denoted by, &) = [, dz¢T¢ (where the sym- tities:
bol i denotes the adjoint of a matrix). Each self-adjoist ( Ca =D a9 (5)

Hermitian) operatof,4 has a proper domam)(hA) C H,
i.e, the set of functions on which, can act, which includes These functions are usually known as bilinear densities,
a general boundary condition (the latter will be introducedbut they are also called bilinear covariants because they
later in this article). Note: in this paper we use the term Her{possess definite transformation properties under (proper or-
mitian to refer to differential operators that are called sym-thochronous) Lorentz transformations and space inversion
metric (or formally self-adjoint) in the mathematical jargon. (in 1+1 dimensions). Specifically, the time component of a
The2 x 2 (Hermitian) matrices’, = I', are given by Lorentz 2-vector i} = co, whereg = o(t,z) = ¢y is
. o ) o ) the probability density. The spatial component of a 2-vector
=1, Ty=a, Is3=p TI4=ipa. (2)  isCy = j,wherej = j(t,z) = cypféanp is the probability cur-
rent density. Furthermore, the scalals = cs = ey 31,
and the pseudo-scalar @, = cw = cytifay [3]. In this
article, we do not assign specific names to the densities
&BJFB@ —0, &= 52 —i A3) andw. Notice that if the quantitie€’s given in Eq. (5)
are precisely the coefficients 6f in the expansion (4), then
As a consequence, the matrides also have the following the matrix C' can be written as” = 2cyyt. In effect,
properties: i) T2 = 1; (i) Tplalp = —Tafor A # B Ca = tr(Ta2eyt)/2 = tr(cl ayypt) = tr(ep’Tarp) =

As is usually the case, the Dirac matrices- & andj =
satisfy the following relations [1]:
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el 41p. Moreover, the following properties af' can be the SR, a wave function is usually written @s= (¢, z) =
verified: () (C/2cg)T = C/2cy, (ii) (C/2¢0)? = C/2co,  [e(t,z) x(t,z)]T, wherep is the so-called large component
and {ii) tr(C/?c,g) = 1. Hence C/?cg is a density matrix  of ¢» andy is the small component (for positive energies, the
and also a projector; therefore, it can represent the quantunpper component is “larger” than the lower component in the
state of the system, as well [4]. It is worth noting that prop-nonrelativistic limit). In the WR, we write the wave function
erty (i) implies that(co)? = (cs)? + j2 + (cw)?,i.e, only  asy = ¥(t,x) = [p1(t,z) pa(t,z)]T. Using Egs. (7) and
three of the bilinear densities are independent [3]. (11), we can write the relation between the components of
As is well known, if we have two sets of two Dirac ma- and) as follows:

trices, {a, 4} and{a, 3}, that satisfy the algebraic relations

given in Eg. (3), then there exists a (constant) non-singular 01 171 1 ©
matrix S (defined to within a multiplicative constant) such V2 = ﬁ 1 —1 (12)
that .

a=8asS™t, p=5p5""1 (6)

Likewise, in the SSR, we write the wavefunction @as=
(and therefore aIsﬁA = SI'4 5. Indeed,S mustbe a  ¢(t,z) = [¢1(t,z) ¢o(t,x)]T. The relation between the
unitary matrix to preserve the hermiticity of the Dirac ma- components of the latter wave function and those of the wave
trices. Thus, distinct sets of Dirac matrices that satisfy (6)unction in the SR can be obtained using Egs. (8) and (11):
are referred to as sets of Dirac matrices in distinct (but triv-

ially related) representations. In this paper, we use three o1 1 1 4 @
of these representations, which are usually referred to)as ( { bo } = E [ i1 ] [ Y }
the standard (or Dirac-Pauli) representation (SR),5} =

{02, 6:}; (ii) the Weyl (or spinor, or chiral) representation Using Egs. (12) and (13), we can also write the following
(WR), {&, 3} = {6-,6,}; and (ii) the supersymmetric rep- expression:

resentation (SSRY&, 3} = {6, 5, }. As we will see below,

in 1+1 dimensions the last could also be considered to be a o1 11445 1-—i
Majorana representation [5]. Notice that by using only the { bo } =3 { 1+i —(1—1) } [
three Pauli matrices, we can construct only six distint rep-
resentations. The SR and the WR are related through the
(unitary) matrix

(13)

¥1
P2 } ’ (14)

which expresses the relation between the components of the
wave function in the SSR and those of the wave function
1. . in the WR. Note that because the matxin Eq. (11)

§= ﬁ(az +0z). ) is unitary, the bilinear densities in one representation (see
Eq. (5)) are the same in any other representation. In effect,
zi;r::irly, the SR and the SSR are related via the (un|tary) = e Tt = et §TET 4 8780 = O, Itis also worth
1 A mentioning that in the SSR, the free Dirac equation can be
S=-—"=(1+5,06.). (8)

written as follows (see Egs. (9) and (10)):

V2
Likewise, suppose that we have the following two (equiv-

alent) relativistic wave equations, each in its own representa- .0 o~
) g P — zhcama—d) + chinl)
X

tion: -
. 0 X~ O
oy =il = inte, © 20 o me Y-
ot ot’ =ih— = f—Jr Op7— + —10y | Y =0,
where, for example, ot c ot dx " h
i = —ihead ¢ me*3 + U(x), that is to say, the latter equation is reas,, ¢» can be chosen
Ox to be real. In this regard, the SSR is also a Majorana repre-
H— —ihc&g 4 mc2ﬁ: +U(x) (10) sentation (further details concerning the Majorana represen-
Ox tation can be found, for example, in Ref. [5]). As expected,

are the usual Dirac Hamiltonian operatoi§(¢) is the e physical predictions do not depend on the chosen rep-
potential-energy function, and it is real and independent ofesentation, even though wave functions describing the same
time) and the Dirac matrices are related as shown in Eq. (G)Ohysical situation take different forms in different representa-

Then, the Dirac wave functions and<) are related by tions. For example, to simulate a penetrable barrier ata
andx = b (the physical situation), we may choose the pe-
¥ = S (11)  riodic boundary condition)(a) = 1(b) in the SR, but then

we should choose the same boundary condition in any other
If the operatorsH andH in (10) are replaced by any of the representation,e., w( ) = w(b) Naturally,+ is not equal
operatorsh 4, the result given by Eq. (11) remains true. In to ¢.
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2. Dirac operators The latter result can also be obtained using the theory of self-

. . i ) adjoint extensions of symmetric operators [8]. In the WR, we
In this section, we first present, together with the most essengjte Eq. (18) as follows:

tial results associated with the hermiticity of each operator
ha (see also Ref. [6]), known families of general boundary [ ¢1(b) ] - [ v1(a) } (19)
conditions fork; andh. in the WR under the assumption that eab) | T M| p2(a) |
these operators are self-adjoint. Then, using only the 9€Mrne Jatter result was derived in detail in Appendix A of
eral boundary condition fat; and changes of representation Ref. [8]
among the Dirac matrices, we also obtain general boundary ~ .\ = 2 :
conditions fori; andh, in the WR. In the latter procedure, (b) The operatoh, can be written as
we need only consider the SR, the WR and the SSR. At the
end of the section, using these results, we also write general
boundary conditions for each of these four operators in th%nd it satisfies the following relation:
SR.

(a) First, the pperatoﬁl is essentially the (Dirac) mo- (W, hal) — (hot, €) = —ihic [v'ag] |b 7 21)
mentum operatoP; in fact, ¢

- L .0 .
hy = —thc& p (= cap), (20)

wherey and¢ are vectors irf{. Again, if the boundary con-

;”11 = —ihel ﬂ (= cP = ciﬁ). (15) ditions imposed on) and¢ lead to the cancellation of the
Ox boundary term on the right-hand side of Eq. (21), then the
In the latter expression, we distinguish betweenoperatorh; is Hermitian,i.e., (¢, hof) = (hot,€). If we
P = —mia/ax, which is, in the end, & x 2 matrix, imposey = £ in this last relation and in Eqg. (21), we obtain
andp = —ihd/0x, which is usually considered to be the the following condition:
momentum operator. Note that does not change if we b b . .
change the representation (the identity matris manifestly clvfay]|, = [ill. =0 (=) =j), (22
independent of the representation). This operator satisfies the . .
following relation: 1.8, Cy(b) = Cy(a). Moreover, (i, hotp) = (hat),¢h) =
(1, hot)); therefore,Im(y, hatp) = 0, i.e, (Y, het)) =
(W, hi€) — (h19, &) = —ihe [pT¢] Z, (16)  (h2)y € R. In addition, the operatal, is, essentially, self-

adjoint on the domait (5 ) formed by the Dirac wave func-
where[f]\z = f(t,b) — f(t,a), andy and¢ are vectors in  tions¢ such thaty € H andhyy) € H and that satisfy, in
‘H. If the boundary conditions imposed ghand¢ lead to  the WR & = 4.), the following general boundary condi-
the cancellation of the term evaluated at the endpoints of th&éon [9, 10]:
interval(2, we can write relation (16) ag, h1€) = (hyv, €).
In this caseh, is a Hermitian operator. If we impose = ¢ [ #1(0) ] =U, { 2(0) } , (23)
in this last relation and in Eq. (16), we obtain the following ¥2(a) #1(a)

condition:
o110 b _ (21)-(23), which are associated with the hermiticity and the
]l = lella=0 (= o) =el@), (17) self-adjointness of,, are clearly also valid for the usual
; _ 7 _ _ Hamiltonian operatofl = hy + mc2( + U(x). In other
i.e, Ci(b) = C . Furthermore(vy, h = (hy,¢) = -G 2
Le. G1(6) (@) ) = (ha, ¥) words, the matrix3 does not influence any of these results

hiv); therefore, Im(y, hiy)) = 0, i.e, (W, ) = ... . .
Eq}fl’%:z/g R (3:2 %;er r?értselndt}g comple;ecoéijbugaitli/gn). Thelit s also understood that the potential-energy functida)

- tgivenin Ea. (17) implies that each functi that is present irff is bounded inside the intervél). Thus,
requirement given in Eq. ( .)|rAnp 'es that each Waveluncliony, » |5ier result allows us to ensure that the results associated
1 that belongs to the domaib (k) must obey only specific

o . 4 with h, are also valid for a Hamiltonian that describes, for
boundary °°’.“"“°”§ a’g the endpoints OT the intef¥glinder example, a massless Dirac fermion in 1+1 dimensions. In
the assumption thai; is also a self-adjoint operator). In-

. S . . . articular, the result given in Eq. (23) in combination with
deed, Eq. (17) 1S satisfied by imposing the following generaf:)hanges of representations provides all we require to obtain
boundary condition:

general boundary conditions fhg andh, in the WR, as out-

3 lined below.
b)=U , 18 . i
Vo) 1) (18) (c) The operatohs can be written as

where the matrixJ, is also unitary. Notice that the results

where the matrix/; is unitary (and therefore, Eq. (18) is a A ) A
4-parameter family of boundary conditions) [7]. In fact, let hy = —ihc§ 5 (= c0p), (24)
us consider the following general relatian) = My(a), o ) )
where M is an arbitrary (complex) matrix. By substituting and it satisfies the following relation:
the latter relation into Eq. (17), we obtairi (a) M M¢(a)—

~ ~ “ b
Yi(a)y(a) = 0; therefore, MM = 1, i.e., M is unitary. (¥, hs€) — (hayp, §) = —ihe {Wﬂf} .

(25)
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wherety and¢ are vectors ir{. If, as a result of the bound- the SSRi(e., i6,6, = 6.). In other words/y, in the SSR is
ary conditions imposed o and ¢, the boundary term in  simply the operatohy, = —ific & d/0x in the WR @ = 6.).

Eq. (25) vanishes, then the operatgy is Hermitian,i.e.,  Thus, we can immediately write the general boundary con-
(1h, hs€) = (hst, €). By imposingy = ¢ in this last relation  dition for /4 as follows: first, in Eq. (23), we make the

and in Eqg. (25), we obtain the following condition: replacements; — ¢1, @ — ¢2, andU, — Uy, (the lat-
b ter because we are interested in the operaf9r and then,
[ngw} =[s]°=0 (= s(b) = s(a)), (26)  we transform into the WR using the unitary transformation
a given in Eq. (14)i.e., ¢1 = ((1+i)p1 + (1 —i)p2)/2 and
i.e., Ca(b) = Cs(a). Additionally, (1, hyth) = (fizih, ) = ¢2 = ((1+i)p1 — (1 —1i)p2)/2. After some simplifications,
<¢,h3w> therefore, Im<w,713¢> = 0, ie, (1/),}}31/;) = We obtain
(h3)y € R. However, the operatdr; is also self-adjoint on ©1(b) —ip2(b) } 0 { 1(b) + ip2(b) (31)
the domainD (h3) formed by Dirac wave functiong such p1(a) + ipa(a) p1(a) —ipz(a) |’

thaty € H andhzyy € H and that also satisfy a general

boundary condition. To obtain this general boundary Condlwhere the matrix/, is unitary. Incidentally, the latter bound-
tion in the WR for which the operatdr; — —mcﬁa/ax is  arycondition was obtained in Ref. [11], although that discus-

self-adjoint, we must exploit the fact thatis preciselys, in sion concerned a Dirac Hamiltonian, which is essentially the
the SR. In other words); in the SR is simply the operator S&me operatat, in the WR plus a certain matrix potential.

hy = —ihcad/dz in the WR ¢ = 6.). In this manner Likewise, we can explicitly write the most general bound-
we can immediately write the general boundary condition for2y condition for each of these operators in the SR, which is
hs as follows: first, in Eq. (23), we make the replacements the most frequently used representation, in part because it is
01— ©, P2 — X andU2 — Uy (the latter because we are V€Y convenient for studying the non-relativistic limit [12].
interested in the operatér), and then, we transform into the OUr results are as follows: y

WR using the inverse of the unitary transformation given in (@ In the SR, we wr|.te the boundary condition that be-
Eq. (12),i.e., o= (<P1 + %02)/\/5 andX — (4,01 _ @2)/\/2 Iongs tOD(hl) as follows:

We obtain the result { ©(b) ] ~ 7 [ p(a) } : (32)

1(b) + 2 (b) 1(b) — @a(b) x(b) x(a)
p1(a) — p2(a) =Us w1(a) + pa(a) |’ (27) . A .
! whereT; = SULS andS is given in Eg. (7). The result ex-
where the matrixU; is unitary. Fégf(jse:ntt)gti(:nz)( slsé sépqecgfg);)ecahses independent of the
() The operaton.s can be writien as (b) Likewise, inside D(h;), we have the following
; 3 A bound dition:
hs = —ihcifa 82 (= +ciBagp), 29) oundary condition
X

[ @(b) + x(b) ] :12[ (b) — x(b) } (33)

and it satisfies the following relation: (a) — x(a) p(a) + x(a)

(29) whereT; = U,. This result is easily obtained because we
know the general boundary condition fbs in the WR (see
Eqg. (23)); thus, all that is necessary is to transform from

ary conditions imposed or and ¢, the boundary term in the latter representation into the SR (using Eq. (12)). In
EQ. (29) vanishes, then the operafor is Hermitian, i.e., the non-relativistic limit, Eq. (33) provides the most gen-

€)= (hut, €). By imposingy = ¢ in this last relation eral boundary condition for which the Séldinger Hamil-
Sﬁd ifléq. ézé;/) v§/>e ogcain? 9= tonian is self-adjoint. See Ref. [10] for further details and

Ref. [13] for the confirmation of this result (although in the
latter, the equivalent problem of a particle moving on a real
line with a point interaction at the origin was considered).
. . Let us also note in passing that the usual Dirichlet boundary
i.e, Cy(b) = Cu(a). Moreover,(,hatp) = (hat);9) = condition,s(a) = 1(b) = 0, i.e., p(a) = p(b) = 0 and
<1/)7h4’(/J> therefore, Im(y, hatp) = 0, i.e, (¥, hay) =  x(a) = x(b) = 0, is not included in Eq. (33). In other
(hs)y € R. In the same manner as for the other operatorsvords, the operatoh, and the Dirac Hamiltoniafl (see

we have introduced, the operathy is also self-adjoint on Eq. (10)) are not self-adjoint when this boundary condition
the domainD(h,) formed by Dirac wave functiong such is within their domains; in any case, these two operators can
thaty € ‘H andhst € H and that satisfy a general bound- be made Hermitian by imposing the boundary condition in
ary condition. To obtain this general boundary condition inquestion (this particular topic was discussed in Ref. [14]).
the WR for which the operatdr, = —ificifa 0/0x is self-  However, the following boundary conditions, for example,
adjoint, we must exploit the fact thafa is preciselys. in  are contained in Eq. (33)p(a) = ¢(b) = 0 (15 = —1),

~ ~ ~ b
(. ha€) = (ha, ) = —ihe [lidac]|

wherevy and¢ are vectors irf{. If, because of the bound-

[wtidav]|| = (it =0 (= w(t) = w(@), @0
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x(a) = x(b) = 0 (T3 = +1), ¥(a) = (b) (Tr = +6,), and  which also satisfies the expressibit = (cp)? + (mc?)>.
Y(a) = —(b) (Tz = —62). It is that there exists a matrix, more specifically, a unitary

(c) Similarly, insideD(h3), we have the following bound-  matrix U that is dependent ofisuch that
ary condition:

@@)] A[xw>} H=UHU' (39)
=T , 34
[M@ *| pla) (349 i

. . , . ) , and such that the wave functiogisand+) in (36) are related
whereT; = Us. We can inmediately write this result be-

cause we know the general boundary condition figr = by -
—ihe30/0x when 3 = &, (see Eq. (23))i.e., for hs in b =Uy. (40)
the SR.

(d) Finally, in the domaid)(fz4), we have the following
boundary condition:

In effect, by first using the equation on the right-hand side in
(36) and also Egs. (39) and (40), we can write the following:

¢(b) +ix(b) ] 2 [ ip(b) + x(b) ] AR - SR R
, =1 . 35 Hi = ih"" = HUY = ihlU = H
[ iv(a) + x(a) ) +ixta) | @) v =ihgy = HUY =il 5 = UTHUY
whereT; = U,. We can obtain this result because we know — Z‘hf]Tf]@ — m‘lw,
the general boundary condition fér, = —ihcifad/0x ot ot

whenifa = o (see Eq. (23))i.e., for hy inthe SSR. Thus, 5 therefore (after applying the remaining equation in (36)),
all that is necessary is to transform from the latter represen-

tation into the SR (using Eq. (13)).

At this point, certain remarks are in order. Indeed, we
could construct different types of general boundary condi- - = - L
tions for each of the opergtzrs con%idered here (so)r/ne cou@\he operators! andH as well as/ are time mdependent)..
also be dependent of four parameters). However, the familie; oreover, to transform operators from one representation
of general boundary conditions presented herein possess tHEO . < P
advantage that none of the coefficients in the unitary matrice$) (39) for i/ andH. For example, we can write = UaU'
need be equal to infinity. In addition, each of these generaind alsg3 = UBUT; in any case, we do not need to explicitly
boundary conditions is the most general that can be writtegalculate the matrice§, 3} in this paper.

with only one single matrix boundary condition. These fea-  The exact transformatidii was obtained for the first time
tures have been noted in the literature, espECIaIIy in the StU(Wy Fo|dy and Wouthuysen [17] and can be written as follows

of the (equivalent) problem of a particle in a line with a point (see, for example, Ref. [2], p. 277, and for a rather unusual
interaction at the origin (see, for example, Refs. [10, 13, 15])calculation ofU/, see Ref. [18]):

i =UTHD

the other, we can use expressions similar to that given

3. The standard and the Foldy-Wouthuysen o PHAE
representations 2E(E +mc?)

Thus far, we have considered representations of the Dirac <:> ot = HB+FE ) (41)

equation that are related to the SR via trivial unitary trans- 2E(E +mc2) )’

formations,i.e., transformations that do not involve the mo-

mentum operator (see Ref. [16] for further discussion). As inyhere E = (cp)?2 + (mc2)? > 0 is an eigenvalue of the

Eq. (9), let us consider the following two (relativistic) wave gperatorf] (—E is also an eigenvalue aff), such thatf?

equations, each in its own representation: is an eigenvalue of the operat&t®. Naturally, £ is also an
R L ;1) eigenvalue off (and—F is also an eigenvalue df). It is
Hy =ih>p, Hi=ihor. (36) " \worth mentioning that to verify the relatiditt = 010 =

i, we have made use of the relatiai? = E2, i.e., we must
assume thaff? acts on plane waves or linear combinations
of plane waves with the same energy. The same assumption
is applied, for example, in the demonstration that the momen-
H = cap + chB, (37)  tum operator when transformed into a new representation is
. . . the momentum operator itseife., p = p. By substituting the
where, as we know; = —ihd/0x. Moreover, using the rela- matrixU given by Eq. (41) into the expression (39) and using

i 52 (2 212 N
tions of Eq. (3), we can show t:hH = () + (me”)”, as the relationH? = E? once again (along with some equations
expected. On the other hand, I¢tbe the following operator: (3)), we obtain

H =32 + (mP), (38) i = BE. (42)

Here, H is the usual Dirac Hamiltonian operator with
U(z) = 0 (i.e, the Hamiltonian for a free Dirac particle in
1+1 dimensions):
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It is clear thatl/ permits us to transform quantities from ¢ (z) = 0). Therefore, from Eq. (43), we also have the
a trivial representation (the SR, the WR, etc) into a new repfollowing expressions:
resentation (represented by quantities marked with a tilde).

However, the new representation can be regarded as the usual o(z) = the (),
Foldy-Wouthuysen representation (FWR) only whﬁm di- 2E(E + mc?)

agonal. Thus, we choose to use the SR to exptessidU, E 4+ me?

i.e, {&, 8} = {64,6.}, as usual. From Egs. (40) and (41), x(z) = mwg(x). (46)

we can obtain the explicit relation between wave functions

in these two representationiss., we can writeyy = U as Note that by writing(z) in (46) in terms ofy(z) (by elim-

follows: inating ¢4 (x) using the first derivative of the other equation
el_ 1 in (46)), we can write)(x) in the SR in terms of only(x)
X | 2E(E+me) andy’(z), as follows:
FE + mc? —Cﬁ :| |: 1/}1 :| L,D(.’E) ihc X ( )
~ . 43 ) — — E-+mc?
. [ cp E + mc? g (43) ¥(x) [ (@) } [ (@) ] . (47)

Henceforth, we will write the Foldy-Wouthuysen wave func-
tion asy = Yrw = [¢1 ¥2|T. Some aspects of the rela-
tion between wave functions in the SR and the FWR hav
been recently studied [19, 20]. However, to the best of our,
knowledge, no specific discussion of the connections be:
tween possible boundary conditions in these two represen;
tations is present in the literature.

First, we have noticed thaif) for positive energies, the
wave function in the FWR has the forgiw = [, 0]7 (this
result have also been noted in Ref. [20]). In effect,

Therefore, in the non-relativistic limit? ~ mc?, i.e.,

/me < 1, (i) when the energies are positive, we know

rom Eq. (45) thaty = —ihcy’/(E + mc?) ~ po/2me =

O(v/c) (for this reasony is called the small component,

and ¢ is the large component), and the entire wave func-

on in the SR tends toward = [¢ 0]T. Likewise, {i)

when the energies are negative, we know from Eq. (47) that

o = ihex'/(E + mc?) ~ —px/2mec = O(v/c) (for this

reason,p is called the small component in this case, and

is the large component), and the wave function tends toward

= By Fin ¥ = [0 x]7. Thus, the wave function in the SR in the non-

Hpw = Egpw = { —Ety } = [ Es ] = ¥2=0,  relativistic limit and the wave function in the FWR exhibit
a clear similarity. ) For positive energiesyy = [¢ 0]T

where we have made use of Eq. (42). Thus, becgu&e) = andypw = [ 0]T, where the latterp and 1), differ by

0, the spatial derivative also vanishes,, ¢;(xz) = 0, forall 5 constant factor (see Eq. (44))i) (For negative energies,

x € Q1. Therefore, from Eq. (43), we also have the following , — [ |7 andirw = [0 ¢ ]T , and the lattery ands

expressions: differ by a constant factor (see Eq. (46)).
E + mc? Now, we present some examples of boundary condi-
P(r) = —m———et1(2), tions in the FWR that correspond to physically acceptable
2E(E + me?) boundary conditions in the SR. For example, let us im-
—ihc , pose the usual Dirichlet boundary condition upon the entire
x(x) = 2E(E + m02)¢1(95)~ (44) Foldy-Wouthuysen wave function at the ends of the interval
Q= [a,bl,i.e
Note that by writingy () in (44) in terms ofp(z) (by elim- 2.8
inating ¢} (x) using the first derivative of the other equation Yrw(a) = Yrpw(b) = 0. (48)
in (44)), we can writa)(x) in the SR in terms of only(x)
andy’(zx), as follows: This boundary condition appears to be acceptable because the

(@) operatorH in Eq. (38) contains a second derivative with re-
Y(x) = [ () } = [ _Z,ﬁ () ] (45)  spect toz (although this derivative is under the square root
x() E+me ¥ \* sign). () For positive energies, the latter boundary con-

Second, we have found thait)(for negative energies, dition implies thaty;(a) = ¢1(b) = 0 (remember that

—FE, we haveypw = [0 1, ]7 [20]. In effect, a(z) = 4 (x) = 0). On the other hand, using the equation
on the left-hand side in (44), we find that the upper compo-

f:f?wa = —Eyrw = [ Fgl } nent of the wave function in the SR, the large compo-
V2 nent, in this case) satisfies the Dirichlet boundary condition,

—Edy i.e, p(a) = ¢(b) = 0. This boundary condition is included

= [ — By } = 1 =0, in Eq. (33), and therefore, the Dirac Hamiltoniahis self-

adjoint [10]. (i) For negative energies, the boundary condi-

where we have made use of Eq. (42). Thus, becayge) =  tion in (48) implies that)s(a) = 2(b) = 0 (remember that

0, its spatial derivative also vanishes for alle Q (i.e.,  ¢1(z) = ¥{(z) = 0). On the other hand, from the equation
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on the right-hand side in (46), we find that the lower compo-boundary conditions for the Hamiltonian in the FWR. For ex-
nent of the wavefunction in the SR€,, the large component ample, the boundary condition(a) = ¢(b) = 0 (I, = —1
again in this case) satisfies the Dirichlet boundary conditionin Eq. (33)) leads t@rw (a) = ¥rw(b) = 0 for positive en-
i.e., x(a) = x(b) = 0. This boundary condition is also in- ergies but leads t@g (a) = gy (b) = 0 for negative ener-
cluded in Eq. (33), and hence, the Dirac Hamilton#ris  gies. However, the periodic boundary conditiofu) = (b)

self-adjoint [10]. in the SR {3 = 6, in Eq. (33)) also leads to the periodic
Now, let us consider the usual periodic boundary condi-boundary condition in the FWR)prw(a) = ¢rw(b) and
tion for the Foldy-Wouthuysen wave functiarg., Ypw (@) = Yy (D), for both positive and negative energies.

, , Thus, we can propose general boundary conditiongfgy
Yrw(a) = Yrw(b), Ypw(a) =vrw(d).  (49)  pased on the family of self-adjoint general boundary condi-

tions for« given in Eq. (33). i) For positive energies, using

In the SR (and also in the other trivial representations), th?he fact that, in this case, the wavefunction in the FWR has
periodic boundary condition is defined only by the condition, formz//w; — [ 0]T, \;ve obtain the following family of

Y(a) = ¥(b), i.e, the derivative ofy(x) need not satisfy | bound ditions f E 44) and (33
the periodicity condition (this is true because the correspondgenera oundary conditions from Egs. (44) and (33):

ing Hamiltonian is considered to be self-adjoint [10]). Then, iAo (B) 4 6 A
using the periodic boundary condition fgt-vw (z), we ob- Vew (B) = Xpw (b) + 0 [Yrw (@) + iAVpw(a)]

tain the following results:if For positive energies, we obtain = Tz{wa(b) + iMw (b) + 64 [Yrw (a)
from Eq. (44) the conditiong(a) = ¢(b) andyx(a) = x(b), o
and thereforey(a) = ¢ (b). Likewise, {i) for negative en- — iMpw(a)] }, (51)

ergies, we obtain from Eq. (46) the conditiop&z) = (b) L . :
andy(a) = (b), and hencey(a) = ¥(b), i.e., the periodic where\ = hc/(E + mc?). Likewise, (i) for negative en-

boundary condition. A similar analysis considering the an- _ergies, using the fact that, in this case, the wave function in
tiperiodic boundary condition.e., Yrw(a) = —Yrw(b) and the FWR has the formew = [0 42]T, we obtain the fol-
Yo (@) = —hy (b), yields the antiperiodic boundary con- lowing family of general boundary conditions from Eqgs. (46)

dition for ¥, i.e., ¥)(a) = —u(b) (for both positive and nega- 2"d (33):
tive energies). Naturally, both the conditigiia) = (b) as ) . _
well as the conditions(a) = —1(b) are included in Eq. (33), —Ypw(a) + iANPpw (@) + 62 [Yrw (b) + iApyw (0)]
and hence, the Dirac Hamiltoniat is self-adjoint [10]. = Ty {tbrw(a) + iIXpy ()
We can also consider a slightly less common example,
the Neumann boundary condition for the Foldy-Wouthuysen + &0 [~ rw (D) + iAEw (B)] }- (52)

wave functionj.e.,
Notice that some of the boundary conditions in (51) and (52)

Ypw (@) = Ypw (b) = 0. (50)  are energy dependemg., these boundary conditions should
be applied only to a stationary state with definite energy. We
(i) For positive energies, the latter boundary condition leadsyij| not elaborate further on the consequences of this energy

to 1y (a) = ¢1(b) = 0 (remember that,(x) = ¥5(z) =0),  dependence in this article.
and from Eqg. (44), we find that the lower component of

the wave function in the SRi.é., the small component,
in this case) satisfies the Dirichlet boundary conditioa, 4. Conclusions
x(a) = x(b) = 0. (ii) For negative energies, the boundary
condition in (50) leads tg), (a) = ¥4 (b) = 0 (remember that In summary, we have studied several essential properties as-
¥1(x) =¥ (z) = 0), and from Eq. (46), we find that the up- sociated with the hermiticity and self-adjointness of four dif-
per component of the wavefunction in the SR.( the small  ferential Dirac operatorshy = —ihcIl'4 0/0x, for xz €
component again in this case) satisfies the Dirichlet boundar§2 = [a, b]. The hermiticity leads t@'4 (b) = C4(a), where
condition,i.e., p(a) = ¢(b) = 0. As we know, both the con- C4 = T 44). The self-adjointness additionally leads to
dition x(a) = x(b) = 0 and the conditionp(a) = ¢(b) =0  specific families of boundary conditions, each to be included
are included in Eq. (33), and hence the Dirac Hamiltordian in its respective domait(h.4). In  general, because in any
is self-adjoint [10]. trivial representation the matricds, = &, I's = ﬁ and

To summarize, we have imposed certain boundary cont, = i3a are (essentially) the three (anticommuting) Pauli
ditions on the wave functiogrw. These boundary condi- matrices (the latter satisf§;6, = ig; for cyclic {j, k,1}),
tions lead to physically acceptable boundary conditions fothe families of general boundary conditions for the operators
the (self-adjoint) Dirac Hamiltonia#/ in its standard form, ha, hs, andhy are linked. In particular, we obtained the fam-
i.e., the Hamiltonian given by Eq. (37) with general bound-ilies of general boundary conditions fog and i from the
ary conditions given by Eq. (33) (because we have preciselgeneral family forh, in the WR. To transform these fami-
consideredH in the SR). On the other hand, a physically lies of boundary conditions into any other trivial represen-
acceptable boundary condition féf can lead to different tation, such as the SR, is a simple task. We were also able
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to obtain boundary conditions for the free Dirac Hamilto- Hamiltonian, we could obtain (in certain cases) two different
nian in the FWR from boundary conditions for the free (self-boundary conditions for the Dirac Hamiltonian in the FWR
adjoint) Dirac Hamiltonian in the SR. In fact, these boundarydepending on the sign of the energy of the state in question.
conditions can be obtained because they are consistent witllte hope that this article will be of interest to those interested
the self-adjointness of the standard free Dirac Hamiltonianin the mathematical aspects of relativistic quantum mechan-
However, given a boundary condition for the standard Diradcs, presented in a simple and pedagogical fashion.
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