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Complete solutions of the Hamilton–Jacobi equation and the envelope method
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It is shown that the parameters contained in any two complete solutions of the Hamilton–Jacobi equation, corresponding to a given Hamilto-
nian, are related by means of a time-independent canonical transformation and that, in some cases, a generating function of this transformation
is given by the envelope of a family of surfaces defined by the difference of the two complete solutions. Conversely, in those cases, one of
the complete solutions is given by the envelope of a family of surfaces defined by the sum of the other complete solution and the generating
function of the canonical transformation. Some applications of these results to geometrical optics are also given.
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Se muestra que los parámetros contenidos en cualesquier dos soluciones completas de la ecuación de Hamilton–Jacobi, correspondiente a
una hamiltoniana dada, están relacionados por medio de una transformación cańonica independiente del tiempo y que, en algunos casos,
una funcíon generatriz de esta transformación est́a dada por la envolvente de una familia de superficies definida por la diferencia de las
dos soluciones completas. Recı́procamente, en esos casos, una de las soluciones completas está dada por la envolvente de una familia de
superficies definida por la suma de la otra solución completa y la función generatriz de la transformación cańonica. Se dan también algunas
aplicaciones de estos resultados en laóptica geoḿetrica.

Descriptores: Ecuacíon de Hamilton–Jacobi; transformaciones canónicas; envolventes; ecuación iconal.
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1. Introduction

As is well known, in the framework of classical mechanics,
the solution of the Hamilton equations can be obtained from
a single complete solution of the Hamilton–Jacobi (HJ) equa-
tion (see,e.g., Ref. 1). What is no so widely known is that,
as in the case of any first-order partial differential equation
(PDE), there is an infinite number of complete solutions of
the HJ equation that cannot be obtained from a complete so-
lution substituting the parameters contained in it by functions
of other parameters (see,e.g., Refs. 2 and 3).

Lagrange found a method that leads, in principle, to the
general solution of a first-order PDE starting from a complete
solution (see,e.g., Ref. 4 and the references cited therein).
For instance, given a solutionz = f(x, y; a, b) of the first-
order PDE in two variables

F

(
x, y, z,

∂z

∂x
,
∂z

∂y

)
= 0, (1)

containing two arbitrary parameters,a, b (which, in this con-
text, means that the solution is complete), substitutingb by
some function ofa, b = φ(a), one obtains the one-parameter
family of solutions of (1),z = f

(
x, y; a, φ(a)

)
. Assuming

that the equation

∂f
(
x, y; a, φ(a)

)

∂a
= 0 (2)

can be solved fora as a function ofx andy, a = χ(x, y), and
eliminatinga one obtains a function

f
(
x, y; χ(x, y), φ(χ(x, y))

)
(3)

that is also a solution of (1); this solution is the general solu-
tion of Eq. (1) if φ is an arbitrary function, or another com-
plete solution of Eq. (1) ifφ contains two new arbitrary pa-
rameters [2,3].

In the xy-plane, f
(
x, y; a, φ(a)

)
= 0 repre-

sents a family of curves, parameterized bya, and
f
(
x, y; χ(x, y), φ(χ(x, y))

)
= 0 represents theenvelope

of this family (roughly speaking, the envelope of a family of
curves is a curve that touches tangentially each member of
the family, see,e.g., Refs. 2 and 3); therefore, this method
of finding new solutions of a first-order PDE is equivalent
to finding envelopes of families of curves (or surfaces, when
there are more variables involved) that represent solutions of
the equation.

One example of the use of the concept of envelope is en-
countered in geometrical optics where the propagation of the
light can be described with the aid of wavefronts. Accord-
ing to the Huygens principle, each point of a wavefront is the
source of secondary waves, and the new wavefronts are the
envelopes of the secondary waves (see,e.g., Refs. 5 and 6).
The wavefronts are the level surfaces of the eikonal function,
which obeys a first-order PDE (the eikonal equation).

Actually, the concept of envelope is present in many
places; for instance, finding the Legendre transform of a
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function of several variables amounts to finding the envelope
of a family of surfaces.

The aim of this paper is to show that, for a given Hamil-
tonian, any two complete solutions of the HJ equation are
related by means of a time-independent canonical transfor-
mation, and that one obtains, in a natural manner, Lagrange’s
method of envelopes, with similar results for the case of the
eikonal equation.

In Sec. 2 we present an elementary constructive proof of
the fact that any two complete solutions of the HJ equation
are related by a time-independent canonical transformation
and that any complete solution of the HJ equation is obtained
from any other such solution looking for the envelope of a
family of surfaces. In Sec. 3 we apply these results to geo-
metrical optics.

2. Complete solutions of the HJ equation,
canonical transformations, and envelopes

For a given Hamiltonian,H(qi, pi, t), of a system withn de-
grees of freedom, the HJ equation is the first-order PDE

H

(
qi,

∂S

∂qi
, t

)
+

∂S

∂t
= 0. (4)

A complete solution of this equation is a function of2n + 1
variables,S(qi, Pi, t), that satisfies Eq. (4) and the condition

det
(

∂2S

∂qi∂Pj

)
6= 0.

The functionS generates a canonical transformation

Qi = Qi(qj , pj , t), Pi = Pi(qj , pj , t), (5)

such that the new Hamiltonian is equal to zero (see,e.g.,
Ref. 1). The canonical transformation (5) is determined by

pi =
∂S

∂qi
, Qi =

∂S

∂Pi
, (6)

which givepi andQi as functions ofqi, Pi, andt, hence,

dS = pi(qj , Pj , t) dqi

−H
(
qi, pi(qj , Pj , t), t

)
dt + Qi(qj , Pj , t) dPi (7)

(here and henceforth there is sum over repeated indices).
In a similar manner, ifS̃(qi, P̃i, t) is a second complete

solution of the HJ equation (4), then

dS̃ = pi(qj , P̃j , t) dqi

−H
(
qi, pi(qj , P̃j , t), t

)
dt + Q̃i(qj , P̃j , t) dP̃i, (8)

where(Q̃i, P̃i) is another set of canonical coordinates, all of
which are constants of motion. By combining Eqs. (7) and
(8) one finds that

Q̃idP̃i −QidPi = d(S̃ − S), (9)

provided thatPi andP̃i are related in such a way that

∂(S̃ − S)
∂qi

= 0 (10)

[see the first equation in (6)]. The condition

∂(S̃ − S)
∂t

= 0

is automatically satisfied as a consequence of Eqs. (10) since,
by hypothesis,S andS̃ are solutions of the same HJ equation
(see Example 1, below). Equations (10) constitute a system
of n equations that, under appropriate conditions, determine
theqi as functions ofPi, P̃i, andt.

Equation (9) shows that the coordinates(Qi, Pi) and
(Q̃i, P̃i), associated withS and S̃, respectively, are related
by atime-independent canonical transformation, and that

F ≡ S̃(qi, P̃i, t)− S(qi, Pi, t) (11)

is a generating function of this transformationif (Pi, P̃i) are
functionally independent. In this latter case, from Eq. (9), we
find that

Q̃i =
∂F

∂P̃i

, Qi = − ∂F

∂Pi
. (12)

Thus, for a given HJ equation, the only difference be-
tween its complete solutions is in the sets of canonical coor-
dinates(Qi, Pi) associated with them. These coordinates are
constants of motion that label the solutions of the equations
of motion.
Remark 1. Even if (Pi, P̃i) are functionally dependent,
Eq. (9) implies thatF can be expressed as a function ofPi

andP̃i only, though not in a unique way. As a consequence
of Eqs. (10),F (Pi, P̃i) = 0 is the (equation of the)enve-
lopeof the family of surfaces̃S(qi, P̃i, t)− S(qi, Pi, t) = 0,
parameterized by theqi.
Example 1. Relation between two given complete solutions
of the HJ equation

By means of direct computations one can verify that the
functions

S(q, P, t) = −mgtq+Pq−P 2t

2m
+

Pgt2

2
−1

6
mg2t3 (13)

and

S̃(q, P̃ , t)=−mgtq+
m

2t

(
q+

gt2

2
+P̃

)2

−1
6
mg2t3 (14)

are complete solutions of the HJ equation

1
2m

(
∂S

∂q

)2

+ mgq +
∂S

∂t
= 0, (15)

corresponding to a particle of massm in a uniform gravita-
tional field. Then,

S̃−S=
m

2t

(
q+

gt2

2
+P̃

)2

−Pq+
P 2t

2m
−Pgt2

2
(16)
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and Eq. (10) yields

m

t

(
q +

gt2

2
+ P̃

)
− P = 0. (17)

Making use of this last relation in order to eliminateq from
Eq. (16) we obtain [see Eq. (11)]

F (P, P̃ ) = PP̃ . (18)

It may be noticed thatt disappeared together withq, and
that the canonical transformation generated by the generat-
ing function (18) is the “exchange transformation,”Q̃ = P ,
P̃ = −Q [see Eqs. (12)].

On the other hand, assuming that(Pi, P̃i) are functionally
independent, from Eq. (11) we have

S̃(qi, P̃i, t) = S(qi, Pi, t) + F (Pi, P̃i). (19)

In order to express̃S as a function ofqi, P̃i, andt only, the pa-
rametersPi appearing on the right-hand side of this last equa-
tion are eliminated making use of the relations [see Eqs. (6)
and (12)]

∂(S + F )
∂Pi

= 0, (20)

which are analogous to Eqs. (10). In this case, owing to
Eqs. (20),S̃(qi, P̃i, t) = 0 is the envelope of the family of
surfacesS(qi, Pi, t) + F (Pi, P̃i) = 0, parameterized by the
Pi.

The remaining case, where(Pi, P̃i) are functionally de-
pendent, can be reduced to the first case by replacing one
or several parametersPi, contained inS, by their conjugate
variables,Qi, in order to obtain a set ofn parameters that
together with thẽPi form a functionally independent set. For
instance, instead ofS(qi, Pi, t) we can make use of its Legen-
dre transformS′(qi, Qi, t) ≡ S(qi, Pi, t)− PiQi, if (Qi, P̃i)
are functionally independent. Then, by relabeling the param-
eters inS′, we obtain a functionS′(qi, Pi, t) that will be re-
lated toS̃(qi, P̃i, t) according to (19) and (20).

Thus, we conclude that from a given complete solution of
the HJ equation, or a Legendre transform of it, one can ob-
tain any other complete solution by means of an appropriate
canonical transformation.
Example 2. Obtaining a complete solution of the HJ equa-
tion from another complete solution

It is illustrative to consider again the complete solu-
tion (13) of the HJ equation (15), withF given by Eq. (18),
so that the right-hand side of Eq. (19) is

S(q, P, t) + F (P, P̃ ) = −mgtq

+ Pq − P 2t

2m
+

Pgt2

2
− 1

6
mg2t3 + PP̃ . (21)

Then, Eq. (20) yields

q − Pt

m
+

gt2

2
+ P̃ = 0,

which is equivalent to Eq. (17). Making use of this last rela-
tion to eliminateP from the right-hand side of Eq. (21), one
recovers the complete solution (14) of Eq. (15).
Remark 2. If the number of parameters̃Pi contained inF
is less thann, the solutionS̃ of the HJ equation obtained by
means of Eqs. (19) and (20) will not be complete but, nev-
ertheless, it will be a solution. Indeed, we can think thatF
originally hadn parameters̃Pi, and thatk of them have taken
some fixed values, leaving onlyn−k arbitrary parameters̃Pi.

3. Geometrical optics

As pointed out in the Introduction, in classical mechanics, the
knowledge of a single complete solution of the HJ equation is
enough to find the solution of the equations of motion, so that
usually there would be no need of additional complete solu-
tions of the HJ equation. By contrast, in geometrical optics it
is important to have different (not necessarily complete) so-
lutions of the eikonal equation, which is analogous to the HJ
equation.

The eikonal equation is given by

(∇S)2 = n2, (22)

wheren is the refractive index of the medium, andS and
n are functions of the space coordinates only (assuming that
the medium is isotropic) (see,e.g., Refs. 5 and 6). In terms
of Cartesian coordinates,(x, y, z), the eikonal equation (22)
can be written,e.g., as

±
[
n2 −

(
∂S

∂x

)2

−
(

∂S

∂y

)2
]1/2

+
∂S

∂z
= 0, (23)

which has the form of the HJ equation (4), withz in place of
t. (See also Ref. 7.)

The surfacesS = const. are the wavefronts and the rays
of light are the curves orthogonal to the wavefronts. Each
solution of the eikonal equation corresponds to a family of
wavefronts in such a way that, ifa1 anda2 are constants (such
thatS = a1 andS = a2 are nonempty sets), the wavefront
S = a2 is obtained fromS = a1 by the propagation of the
light by a time(a2 − a1)/c, wherec is the speed of light in
vacuum.

For instance, if the refractive index isconstant, one can
readily verify that

S(x, y, P1, P2, z) = n
√

(x− P1)2 + (y − P2)2 + z2 (24)

is a complete solution of the eikonal equation [withP1, P2 ∈
(−∞,∞)] and the wavefrontsS = const. are spheres [cen-
tered at(P1, P2, 0)]. Choosing the generating function

F (Pi, P̃i) = PiP̃i (25)

[cf. Eq. (18)], which generates the exchange transformation,
Q̃i = Pi, P̃i = −Qi, from Eqs. (20) we obtain the conditions
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− n(x− P1)√
(x− P1)2 + (y − P2)2 + z2

+ P̃1 = 0,

− n(y − P2)√
(x− P1)2 + (y − P2)2 + z2

+ P̃2 = 0.

Making use of these relations to eliminate thePi from S +F
[see Eq. (19)], we obtain a second complete solution of the
eikonal equation, namely

S̃(x, y, P̃1, P̃2, z) = P̃1x+P̃2y+
√

n2 − P̃1
2 − P̃2

2 z (26)

(with P̃1
2 + P̃2

2 6 n2). The wavefrontsS̃ = const. are
planes

[
with normal(P̃1, P̃2,

√
n2 − P̃1

2 − P̃2
2)

]
.

Other generating functions lead to other families of wave-
fronts. According to the results of Sec. 2, with a suitable
functionF , one can obtain any possible family of wavefronts,
starting fromany complete solution of the eikonal equation
[such as (24) or (26)].
Example 3.Refracted wavefronts produced by a point source

In this example we shall consider two homogeneous me-
dia, of (constant) refractive indicesn0 andn1, separated by
a plane, and we want to find the wavefronts in the second
medium produced by a point source in the first medium.

A complete solution of the eikonal equation in the second
medium is given by

S(x, y, P1, P2, z) = P1x

+ P2y +
√

n1
2 − P1

2 − P2
2 z, (27)

its wavefronts are planes and the parametersP1, P2 specify
the normal to the planes and, therefore, the direction of the
light rays. We want to replace the parametersP1, P2 by some
new parameters,̃P1, P̃2, that specify the position of the point
source in the first medium. To this end we find the light rays
emanating from a point source placed at(x0, y0, z0). Assum-
ing that

n(x, y, z) =
{

n0, if z < 0,
n1, if z > 0,

from the Hamilton equations applied to the Hamiltonian

H = −
√

n2 − px
2 − py

2

[see Eq. (23)], we find that, sinceH does not depend onx or
y, px andpy are constant (which is equivalent to Snell’s law)
and

dx

dz
=

∂H

∂px
=

px√
n2 − px

2 − py
2
,

dy

dz
=

∂H

∂py
=

py√
n2 − px

2 − py
2
. (28)

These last two equations mean that the light rays are straight
lines forz < 0, or z > 0 (wheren is constant). Integrating
both sides of the first equation in (28) overz, betweenz0 and
0 (with z0 < 0), we obtain

x1 − x0 = − z0px√
n0

2 − px
2 − py

2
, (29)

FIGURE 1. A light ray emanating from the point(x0, y0, z0) is re-
fracted at the planez = 0 at(x1, y1, 0). The coordinatesx0 andy0

of the source are taken as the new parametersP̃1 andP̃2, and the
parametersP1, P2 define the direction of the refracted ray.

wherex0 andx1 are the values ofx at z = z0 andz = 0,
respectively (see Fig. 1) and, in a similar manner,

y1 − y0 = − z0py√
n0

2 − px
2 − py

2
. (30)

Being the solution of the Hamilton equations, the relation
between the values of the canonical coordinates(x, y, px, py)
atz = z0 and atz = 0 must be a canonical transformation (in
fact, we shall find its generating function below). Since we
are looking for a canonical transformation to replace the pa-
rametersPi that specify the direction of the light rays in the
second medium by parameters̃Pi that specify the position
of the point source, the values of the canonical coordinates
(x, y, px, py) at z = 0 will be denoted as(Q1, Q2, P1, P2),
and those atz = z0 will be denoted as(P̃1, P̃2,−Q̃1,−Q̃2)
(the minus signs are necessary to have a canonical transfor-
mation); then, from Eqs. (29) and (30), we obtain

Q̃1 = −P1, P̃1 = Q1 +
z0P1√

n0
2 − P1

2 − P2
2

,

Q̃2 = −P2, P̃2 = Q2 +
z0P2√

n0
2 − P1

2 − P2
2

.

A straightforward computation shows thatQ̃idP̃i−QidPi is
the differential of [see Eq. (9)]

F (Pi, P̃i) = −P1P̃1−P2P̃2−z0

√
n0

2 − P1
2 − P2

2. (31)

(Note thatz0 is treated as a parameter.) The generating func-
tion (31) coincides with thecharacteristic functionW ob-
tained by calculating optical lengths in Ref. 5 [Eq. (6·23)].
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Then, from Eqs. (19), (27), and (31), we obtain

S̃ = P1x + P2y +
√

n1
2 − P1

2 − P2
2 z

− P1P̃1 − P2P̃2 − z0

√
n0

2 − P1
2 − P2

2, (32)

with thePi determined by the conditions [see Eqs. (20)]

x− zP1√
n1

2 − P1
2 − P2

2

− P̃1 +
z0P1√

n0
2 − P1

2 − P2
2

= 0, (33)

y − zP2√
n1

2 − P1
2 − P2

2

− P̃2 +
z0P2√

n0
2 − P1

2 − P2
2

= 0. (34)

In this case, instead of giving the refracted wavefronts in the
implicit form S̃ = const., it is simpler to express them in pa-
rameterized form: for a given value of̃S, Eqs. (32)–(34) can
be employed to find the coordinatesx, y, z of the points of
the wavefront in terms of the parametersP1 andP2 (with the
coordinates of the source,(P̃1, P̃2, z0) = (x0, y0, z0), fixed).

It should be remarked that the eikonal functions (24),
(26), (27), and (32) correspond to homogeneous media (i.e.,
constant refractive indices), but that the basic results are ap-
plicable to any isotropic medium.

4. Concluding remarks

The results of Sec. 2 show that the Lagrange method of en-
velopes arises in a natural way in the cases considered here,
and that the new solutions obtained in this manner have a very
special structure, being sums of the form (19). Furthermore,
we have shown that the functionF , appearing in Eq. (19), is
related to a canonical transformation. It may be pointed out
that the results derived here are applicable to any first-order
PDE that contains the unknown functionS only through its
derivatives.

As we have shown in Sec. 3, the formalism of Hamilto-
nian mechanics can be conveniently applied to the geometri-
cal optics, allowing us to derive the relevant relations without
having to use other standard tools (such as the Fermat princi-
ple, Snell’s law, or the concept of optical length).
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