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It is shown that the parameters contained in any two complete solutions of the Hamilton—Jacobi equation, corresponding to a given Hamilto-
nian, are related by means of a time-independent canonical transformation and that, in some cases, a generating function of this transformation
is given by the envelope of a family of surfaces defined by the difference of the two complete solutions. Conversely, in those cases, one of
the complete solutions is given by the envelope of a family of surfaces defined by the sum of the other complete solution and the generating
function of the canonical transformation. Some applications of these results to geometrical optics are also given.
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Se muestra que los ganetros contenidos en cualesquier dos soluciones completas de lsdaamtiamilton—-Jacobi, correspondiente a
una hamiltoniana dada, ést relacionados por medio de una transforadardnica independiente del tiempo y que, en algunos casos,
una funcén generatriz de esta transformatiesd dada por la envolvente de una familia de superficies definida por la diferencia de las
dos soluciones completas. Rgmcamente, en esos casos, una de las soluciones complétas@stpor la envolvente de una familia de
superficies definida por la suma de la otra s@o@ompleta y la funéin generatriz de la transformaai carbnica. Se dan tamén algunas
aplicaciones de estos resultados eagtica geongtrica.

Descriptores: Ecuacon de Hamilton—Jacobi; transformaciones@ainas; envolventes; ecuaaiiconal.

PACS: 45.20.Jj; 42.15.Dp; 02.30.Jr

1. Introduction

As is well known, in the framework of classical mechanics, [z oy x(z,y), o(x(x,9))) 3

the solution of the Hamilton equations can be obtained from

a single complete solution of the Hamilton—Jacobi (HJ) equathat is also a solution of (1); this solution is the general solu-

tion (see.e.g, Ref. 1). What is no so widely known is that, tion of Eq. (1) if ¢ is an arbitrary function, or another com-

as in the case of any first-order partial differential equatiorplete solution of Eq. (1) if) contains two new arbitrary pa-

(PDE), there is an infinite number of complete solutions oframeters [2, 3].

the HJ equation that cannot be obtained from a complete so- |n the zy-plane, f(:c,y; a, ¢(a)) = 0 repre-

lution substituting the parameters contained in it by functionssents a family of curves, parameterized ly and

of other parameters (seeg, Refs. 2 and 3). f(x,y;x(x,y),¢(x(m7y))) — 0 represents thenvelope
Lagrange found a method that leads, in principle, to theof this family (roughly speaking, the envelope of a family of

general solution of a first-order PDE starting from a completeurves is a curve that touches tangentially each member of

solution (seeg.g, Ref. 4 and the references cited therein).the family, seeg.g, Refs. 2 and 3); therefore, this method

For instance, given a solution=f(z,y;a,b) of the first-  of finding new solutions of a first-order PDE is equivalent

order PDE in two variables to finding envelopes of families of curves (or surfaces, when
0z 0z there are more variables involved) that represent solutions of
F TyY, 2y 375 A :07 (1) h I
ox’ Ay the equation.

One example of the use of the concept of envelope is en-
countered in geometrical optics where the propagation of the
light can be described with the aid of wavefronts. Accord-
ing to the Huygens principle, each point of a wavefront is the
source of secondary waves, and the new wavefronts are the
envelopes of the secondary waves (seg, Refs. 5 and 6).
of (93, Y; a, ¢>(a)) The wavefronts are the level surfaces of the eikonal function,

da which obeys a first-order PDE (the eikonal equation).

can be solved fot as a function of: andy, a = x(z,y), and Actually, the concept of envelope is present in many
eliminatinga one obtains a function places; for instance, finding the Legendre transform of a

containing two arbitrary parameters,b (which, in this con-
text, means that the solution is complete), substitubitny
some function ofi, b = ¢(a), one obtains the one-parameter
family of solutions of (1), = f(z,y;a,¢(a)). Assuming
that the equation

=0 )
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function of several variables amounts to finding the envelopg@rovided thatP, and P; are related in such a way that
of a family of surfaces. _

The aim of this paper is to show that, for a given Hamil- o(5-5) _, (10)
tonian, any two complete solutions of the HJ equation are 9qi
reIaFed by means of a tlme—lqdependent canonical transfoE’ee the first equation in (6)]. The condition
mation, and that one obtains, in a natural manner, Lagrange
method of envelopes, with similar results for the case of the (S —5)
eikonal equation. 5 0

In Sec. 2 we present an elementary constructive proof of
the fact that any two complete solutions of the HJ equatioriS automatically satisfied as a consequence of Egs. (10) since,
are related by a time-independent canonical transformatioRY hypothesis;s andS are solutions of the same HJ equation
and that any complete solution of the HJ equation is obtaineés€€ Example 1, below). Equations (10) constitute a system
from any other such solution looking for the envelope of a0f n equations that, under appropriate conditions, determine

family of surfaces. In Sec. 3 we apply these results to geoth€¢: as functions of?;, F;, andt. .
metrical optics. _ Equation (9) shows that the coordinat@g;, P;) and

(Qi, P;), associated witht and S, respectively, are related

) ) by atime-independent canonical transformatji@md that
2. Complete solutions of the HJ equation,

canonical transformations, and envelopes F = S(g;, Pi,t) — S(qi, P, t) (11)

For a given HamiltonianH (¢;, p;, t), of a system witlm de-  is a generating function of this transformatibén P;, Pi) are
grees of freedom, the HJ equation is the first-order PDE  functionally independent. In this latter case, from Eq. (9), we
find that

oS a8 ~ oF oF
H 79 7t — = 0. 4 i = —, i =— X 12
(6 5ot) + 5 @ G-3z. @-—gp 12)
A complete solution of this equation is a function®f + 1 Thus, for a given HJ equation, the only difference be-

variables,S(g;, P, t), that satisfies Eq. (4) and the condition tween its complete solutions is in the sets of canonical coor-
dinates(Q;, P;) associated with them. These coordinates are

dot < %S ) y constants of motion that label the solutions of the equations
0q;0P; ’ of motion. R
_ ) _ Remark 1. Even if (P;, P;) are functionally dependent,
The functionS generates a canonical transformation Eg. (9) implies that?” can be expressed as a functionof

A _ Din . and P; only, though not in a unique way. As a consequence
Qi = Qi p5,t), P = Pi(4j,ps 1), ©) of Egs. (10),F(P;, ;) = 0 is the (equation of thegnve-
such that the new Hamiltonian is equal to zero (seg, oPeof the family of surfacess(q;, P, ) — S(¢i, Pi,t) = 0,

Ref. 1). The canonical transformation (5) is determined by Parameterized by the. _ .
Example 1. Relation between two given complete solutions

bi = 08 0 = a8 (6) of the HJ equation
" 0q’ ‘op’ By means of direct computations one can verify that the
functions

which givep; and@); as functions of;;, P;, andt, hence,
Pt Pgt? 1 2,

dS = pi(g;, Pj, t) dg; S(q, Pt) = —mgtq+ Pg—o—+———2mg (13)
— H(qi,pi(qj, Py, t),t) dt + Qi(g;, P, t)dP; - (7)  and
(here and henceforth there is sum over repeated indices). - = m gt? - 1 9,3
In a similar manner, (¢, 5, ¢) is a second complete (@ Py )=—mgtato | ¢+ -+P | —pmgt® (14)
solution of the HJ equation (4), then
~ B are complete solutions of the HJ equation
dS:pz(quj»t)dQZ 2
P o p P ! 05 _ 0 15
,H(q“pi(qj,Pj,t),t) dt+Qi(q]‘,Pj7t)dPi7 (8) % aiq +m94+af ) ( )

where(Q;, P;) is another set of canonical coordinates, all of corresponding to a particle of massin a uniform gravita-
which are constants of motion. By combining Eqgs. (7) andtional field. Then,

(8) one finds that ) 9 ) )

- - G_g M (19 5\ _po Lt Pt

QidP;, — QAP =d(S - S), 9 S5=5 (q+ 2 +P> Pat G 2 (16)
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and Eq. (10) yields which is equivalent to Eq. (17). Making use of this last rela-
) tion to eliminateP from the right-hand side of Eq. (21), one
m <q + gt= + p) _p—o. (17)  recovers the complete solution (14) of Eq. (15).
t 2 Remark 2. If the number of parameterB; contained inF’

is less tham, the solutionS of the HJ equation obtained by
means of Egs. (19) and (20) will not be complete but, nev-
ertheless, it will be a solution. Indeed, we can think that
originally hadn parameters>;, and that: of them have taken
some fixed values, leaving only—  arbitrary parameters,.

Making use of this last relation in order to eliminatérom
Eqg. (16) we obtain [see Eq. (11)]

F(P,P) = PP. (18)
It may be noticed that disappeared together witfy and

that the canonical transformation generated by the genera8. Geometrical optics
ing function (18) is the “exchange transformatio®)’= P,

P = —Q[see Egs. (12)]. As pointed out in the Introduction, in classical mechanics, the
On the other hand, assuming tli&, ;) are functionally ~knowledge of a single complete solution of the HJ equation is
independent, from Eq. (11) we have enough to find the solution of the equations of motion, so that
usually there would be no need of additional complete solu-

S(qi, Pi,t) = S(qi, Py, t) + F(P;, P;). (19) tions of the HJ equation. By contrast, in geometrical optics it

is important to have different (not necessarily complete) so-
In order to expresS as a function of;, P;, andt only, the pa-  lutions of the eikonal equation, which is analogous to the HJ
rametersP; appearing on the right-hand side of this last equa-equation.
tion are eliminated making use of the relations [see Egs. (6) The eikonal equation is given by
and (12)]
IS+F) (VS)? =n?, (22)
OP;

which are analogous to Egs. (10). In this case, owing t
Egs. (20),5(q:, Pi,t) = 0 is the envelope of the family of
surfacesS(q;, P;,t) + F(P;, P;) = 0, parameterized by the
P,

The remaining case, whe(e;, 131») are functionally de-
pendent, can be reduced to the first case by replacing one 95\ 2 99\ 2 1/2 Y

. . . . 2

or several parameter’, contained inS, by their conjugate + |n® — <6> — (8) ] + i 0, (23)
variables,Q;, in order to obtain a set of parameters that r Yy o

together with theP; form a functionally independent set. For which has the form of the HJ equation (4), witfin place of
instance, instead df(qg;, P;, t) we can make use of its Legen- . (See also Ref. 7.) '

dre transforms’(q;, Qi, t) = S(qi, Pi, t) — PiQy, if (Qi, P;)
are functionally independent. Then, by relabeling the param

=0, (20)
wheren is the refractive index of the medium, arstland

Q. are functions of the space coordinates only (assuming that
the medium is isotropic) (see,g, Refs. 5 and 6). In terms

of Cartesian coordinatesr, y, z), the eikonal equation (22)
can be writtene.g, as

The surfaces’ = const. are the wavefronts and the rays
ing’ btain a functiors’ (¢, P hat will b of light are the curves orthogonal to the wavefronts. Each
eters inS’, we obtain a functiort’ (g;, £, t) that will be re- solution of the eikonal equation corresponds to a family of

IatedhtoS (i, P, 1) Iaccor:mg? to (19).and (20). | lut fwavefronts in such away thatf andas are constants (such
Thus, we conclude that from a given complete solution o thatS — a, andS — a, are nonempty sets), the wavefront

the HJ equation, or a Legendre transform of it, one can oby, _ as is obtained fromS — a; by the propagation of the

tain any other complete solution by means of an appropriatﬁght by a time(as — a1)/c, wherec is the speed of light in
canonical transformation.

Example 2. Obtaining a complete solution of the HJ equa-
tion from another complete solution

It is illustrative to consider again the complete solu-
tion (13) of the HJ equation (15), with' given by Eq. (18), S(x,y, P, Py, 2) =n\/(z — P12+ (y — P2)% + 22 (24)
so that the right-hand side of Eq. (19) is

vacuum.
For instance, if the refractive index ¢®nstant one can
readily verify that

~ is a complete solution of the eikonal equation [with P, €
S(q, P,t)+ F(P, P) = —mgltq (—00, 0)] and the wavefront$' = const. are spheres [cen-
P2 Pg? 1 tered at Py, P»,0)]. Choosing the generating function

Pg— — —mg*t> + PP. (21
TRty g (1)

Then, Eq. (20) yields [cf. Eq. (18)], which generates the exchange transformation,
Pt gt> - Q; = P;, P, = —(Q);, from Egs. (20) we obtain the conditions

F(P, P;) = P,P; (25)
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— P -
- nw — P +P =0,
V(@ = P12+ (y — Py)? + 22
_P -
- nly — Fo) + By =0.
Ve =P+ (y - P)? + 22 n,
Making use of these relations to eliminate thefrom S + F
[see Eq. (19)], we obtain a second complete solution of the
eikonal equation, namely

S(%yaphpz,z) = 151:c+]52y+ \ n? — 1512 - 1522 z (26)

(with P2 + P,2 < n2). The wavefrontsS = const. are X
planes[with normal(Py, Py, v/n? — P12 — P52) |

Other generating functions lead to other families of wave-
fronts. According to the results of Sec. 2, with a suitable
function F', one can obtain any possible family of wavefronts,
starting fromany complete solution of the eikonal equation FIGURE 1. A light ray emanating from the poirftzo, o, 7o) is re-

[such as (24) or (26)]. . fracted at the plane = 0 at(z1, y1,0). The coordinates, andyg
Example 3. Refracted wavefronts produced by a point sourceys the source are taken as the new parameferand 2, and the

In this example we shall consider two homogeneous meparameters;, P, define the direction of the refracted ray.

AZ

(XthO)

)
(X0, Yor2Zo)

dia, of (constant) refractive indices, andn,, separated by

a plane, and we want to find the wavefronts in the secong\,herex0 andz, are the values of at

medium produced by a point source in the first medium.

z = zgandz = 0,
respectively (see Fig. 1) and, in a similar manner,

A complete solution of the eikonal equation in the second

medium is given by
S(l’,y,PhPQ,Z) :Plx

+ Py +vn?2—-P2-P2z (27)

its wavefronts are planes and the paramef&rsP, specify

Z0Py

Y1 — Yo = — .
V nOQ 7p.7:2 7py2

(30)

Being the solution of the Hamilton equations, the relation
between the values of the canonical coordinéteg, p,, p,)

the normal to the planes and, therefore, the direction of the;, _ 20 and atz = 0 must be a canonical transformation (in

light rays. We want to replace the parametgysP, by some
new parameterd;;, P», that specify the position of the point

fact, we shall find its generating function below). Since we
are looking for a canonical transformation to replace the pa-

source in the first medium. To this end we find the light raySrametersP; that specify the direction of the light rays in the

emanating from a point source placeda, yo, z0). Assum-
ing that
n(xyz):{ if 2z <0,
o if 2 >0,

from the Hamilton equations applied to the Hamiltonian

H:_\/n2_pw2_py2

[see Eq. (23)], we find that, sindé does not depend anor

no,
ny,

y, p, andp,, are constant (which is equivalent to Snell’s law)

and
e _OH ____ p
dz N apm N ,/n2 —pm2 —pyz’
d O0H
4y _ ot _ Py . (28)
dz  9p, n? — pg? — py?

second medium by parametefs that specify the position

of the point source, the values of the canonical coordinates
(z,y,pz,py) atz = 0 will be denoted agQ)1, Q2, P, ),

and those at = z, will be denoted agP;, P, —Q1, —Q3)

(the minus signs are necessary to have a canonical transfor-
mation); then, from Egs. (29) and (30), we obtain

~ ~ 20 P
- P, P=Q+ ,
1 1 1 =CQ1 T pr pe
- - 20 P
Q2 = — P, Py =Q2+ 02

A straightforward computation shows th@td P, — Q;dP; is
the differential of [see Eq. (9)]

These last two equations mean that the light rays are straight

lines forz < 0, orz > 0 (wheren is constant). Integrating
both sides of the first equation in (28) ovebetween:, and
0 (with 2y < 0), we obtain

20Px

iV, no? — pa? — py2 ’

(29)

1 — Ty — —

_Plpl—PQpQ—Zo\/ 77,02 —P12 —P22. (31)

F(P;, P) =

(Note thatz is treated as a parameter.) The generating func-
tion (31) coincides with theharacteristic functionit’ ob-
tained by calculating optical lengths in Ref. 5 [Eq.28)].
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Then, from Egs. (19), (27), and (31), we obtain
g:P1$+P2y+ n127

— PPy = PPy — 20\/no® — P2 = P%, (32)

with the P; determined by the conditions [see Eqgs. (20)]

ZP1
.
~ ZOP1
- P+ =0, 33
Ty 3
ZP2
4 ’fl12 — P12 — P22
- P
Pt 072 0. (34)

Vgt =P P?

4. Concluding remarks

The results of Sec. 2 show that the Lagrange method of en-
velopes arises in a natural way in the cases considered here,
and that the new solutions obtained in this manner have a very
special structure, being sums of the form (19). Furthermore,
we have shown that the functidn, appearing in Eq. (19), is
related to a canonical transformation. It may be pointed out
that the results derived here are applicable to any first-order
PDE that contains the unknown functi¢honly through its
derivatives.

As we have shown in Sec. 3, the formalism of Hamilto-
nian mechanics can be conveniently applied to the geometri-
cal optics, allowing us to derive the relevant relations without
having to use other standard tools (such as the Fermat princi-
ple, Snell’s law, or the concept of optical length).

In this case, instead of giving the refracted wavefronts in the

implicit form S = const., it is simpler to express them in pa-
rameterized form: for a given value §f Egs. (32)—(34) can
be employed to find the coordinatesy, » of the points of
the wavefront in terms of the parametétsand P, (with the
coordinates of the sourceP;, P, z9) = (o, yo, 20), fixed).
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