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We used a Monte Carlo simulation to analize the magnetic behavior of Ising model of mixed $fims+3/2,4+1/2 and

ajB = 45/2,43/2,4+1/2, on a square lattice. Were studied the possible critical phenomena that may emerge in the region around the
multiphase poin{D/|J.| = —3, J2/|J1] = 1) and the dependence of the phase diagrams with the intensities of the anisotropy field of
single ion (O/|J1]) and the ferromagnetic coupling of exchange sgjh (J2/|J1]). The system displays first order phase transitions in

a certain range of the parameters of the Hamiltonian, which deperd /st | and|Jz2/|J1|. In the plane D/|J1|, ksT/|J1]), the de-

crease of D/|J1||, implies that the critical temperaturé,, increases and the first order transition temperafliredecreases. In the plane
(J2/|J1|, kBT /|J1|), Tc increases with the increasing #f/|J: |, while thatT; decreases.

Keywords: Ising system; single-ion anisotropy; Monte Carlo simulation; critical temperatures; first-order transitions.
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1. Introduction that from the experimental point of view, various physical
systems, such as classic fluids, sdlid., lipid bilayers and

Actually. th ived Isi del luable th i |rare gases [24], have been described with mixed Ising mod-
ctually, the mixed Ising models are a valuable tneorelical, g multispin interactions [25] and random crystal field;

tool for the description and understanding of the thermo—and also, experimental results in amorphous ferromagnetic

m;?gr;]etlc behha}g!?; Of. varlou?_ magnetltc_: moiec%lar .zyStetr;Soxides, where’3+ ions are present [26]. It has been demon-
which can exnibit Terrimagnetic properties [ ]'. esIdes, Meqtrated that Ising systems of mixed spins, are interesting mod-
mixed-spin Ising models belong to the most interesting ex

tens: t the standard soin-1/2 Isi del. which els for the study of the ferrimagnetic ordering and the rich
ensions ot the standarc spin-_/= 1sing model, whic m"’?3(/ariety of multicritical phenomena presented by the molec-
display more diverse critical behaviour compared with thelrular magnets, for this have been used various methods and

single-spin counterparts. Continuously from the mOIecLIIarlattice structures. T. Kaneyoshi by using mean field theory,
magnetism have been working on the design and synthes ’

f i lecul terials [2]. si that th ,ﬁvestigated the longitudinal and transverse thermal variation
Of new T_agne ;C rlno eiﬁ ar materials 2], smﬁe ?h rou%t f the magnetization in a ferroelectric nanoparticle, simulated
Of Specific controls In NEse Processes, such as e SUstithzy, 5 wyo-dimensional hexagonal structure, through a trans-
tion of a metal by other, is open the possibility of arising new,

. . ) ._verse Ising model [27]; Y. Liret al by using two-dimensional
magnetic properties [3, 4]. The unusual magnetic Properties, yice Ising, they simulated a field programmable gate ar-
of the complex ferrimagnetic systems, require that the de '

ray (FPGA), which is a valuable contribution to the sci-
5éntific computing platforms, especially in the field of the

be optimal, therefore is required the understanding of th onte Carlo simulation method [28]; Strecka al, solved

mechanisms that originate these properties, specifically X5 an exact form the spin systéi'2, 1) on two totally frus-

change interactions between different molecules that fomﬂrated triangular lattices, finding reentrant phase transitions
the compound, and that can affect phenomena such as trafy

i, X ith two or three successive critical points and a sponta-
sition and compensation temperatures [5]. Some of molec:r—1

| ; f d by two kinds of tic at eous ordering system [23]; Taherkhaatial using renor-
uar magnets are formed by o Kinds of magnetic alomsy, ;7 4tjon group theory demonstrated for anisotropic Ising

a!t_ernatin_g in a regular_lattice [3, 6_10_] and with the POSSFyvo-dimensional models, in triangular, square and hexago-
bility to display sgveral '.”.‘po”a”t physical phenomena, S“C*hal lattices, that the magnitude of the spin coupling interac-
as magnetoelastic transitions [11,12], compensation LeMPEI{s with anisotropic ferromagnetic characteristics does not

tures [13, 14], first order phase transitions [15-18], tricritical s
. change the values of the critical exponent [29] and the mag-
points [15, 19, 20] and reentrant phenomena [21-23]. Note g P [29] g
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netic properties of Ising spin systegih/2, S), on a decorated The interaction Hamiltonian of the system is defined as:
Bethe lattice were calculated exactly in a previous work by J. _ A_B A A
Strecka and C. Ekiz [30]. On the other hand, high-spin sys- H== Z Sioy =2 Z ST 5%

tems, such a$3/2,5/2) and(5/2,2) [31-36], are the most pjesnn> phesnnn>
important and used for analysis of the thermomagnetic be- - D 2(5;4)2 - D Z(Ufy (1)
havior of many cooperative physical systems. For the study e A jeB

of these systems have been considered coupling of ferr?ﬂ/hereS{‘: 1372, 41/2 andajB = 45/2,43/2, +1/2, are

magnetic exchange, external magnetic fields and crystallinﬁ1e spins on the sites of the sublattickand B, respectively.

fields originating the anisotropy of the lattice, which affect -, . . . : .
: . . , J1 is the exchange interaction between pairs of spins to near-
the magnetic properties of these mixed models, as influencée . . .
. ) o . est neighbors,/; is the exchange parameter between pairs
on its molecular magnetism. Preliminary studies based on

. : o .of spins next nearest neighbors of the sublatticand D is
mean-field methods suggest that the ferimagnetic Ising SPhe crystal field, it causes anisotropy of the system. The first
model (3/2,5/2) presents an interesting magnetic behavior Y ’ Py Y X

[11,12, 16,17, 37], and would be interesting to solve it Withsum is performed over all pairs of spins with nearest neigh-

. I . . CaA
nonperturbative methods such as Monte Carlo model [38]?%r interaction;.e. between sites with spmSll 3/2 .and .

: . . . g2 = 5/2, the second sum runs over all pairs of spins with

Of this system have been investigated the compensation tem- . . .

. ; . : next nearest neighbors interaction of spiif§ and sums_,

peratures induced by single ion anisotropy and external lon- . L »

L . : ; i and>_ . are performed on all sites of spins of the sublattices
gitudinal fields, on square and cubic lattices [39]; the phaseiz4 andJB respectivelv. We choose a ferrimaanetic coulin

diagrams for different ground state interactions in the Hamil- ’ P Y- 9 ping

tonian and the magnetic behavior by Monte Carlo method%0 ne'a'rest ne|ghbo.r§,1 < O and we “"?"e penodlc poungiary
[40, 41]; the phase diagrams and internal energy on a hexa onditions. All variables in the Hamiltonian are in units of
onal lattice with interlayer coupling, using effective field the- nergy. . . . .

ory with correlations [22]; up to two compensation points We applied standard importance-sampling algorithms to

in a Bethe lattice by exact recursion relations [16]; transi_S|mulate the model. Data were generated with 50.000 Monte

tions of first and second order in a two-fold Cayley tree,Carlo steps per site after discarding the first 10.000 steps [43].

through the method of exact recursion relations [11]; phasc\aNe definefs = 1/kBT_._Our prograrm calculates the internal
e . : . energy(H) , the specific heat per site,
transitions and dynamic temperature compensation, with &

mean field approximation [12]. G. Weit al [38], made a C— 6—2[<H2> —(H)?] @)
Monte Carlo study on the critical phenomena around a mul- L2

tiphase point in the phase diagram of the ground state adind the sublattice magnetizations per site, defined as
mixed Ising spin(1,3/2), achieving interesting results for 9 )

the modelJ — D4 — Dp, especially first order phase tran- My = ﬁ(Z S, Mp= ﬁ(Z o’y (3)
sitions, and compared with those reported by JW Tucker, via ied jeB

variational theory of cluster pair approximation [42], demon-and the total magnetization per sitér = (M4 + Mp)/2.
strating more complete results of the investigated system. On

the other hand, De La Espriella and Buenf#0, 41] calcu- 3. Results and discussions

lated energy diagrams of the ground state and the magnetic

behavior of the system of Ising mixed spif=+3/2,+1/2  |twas found that the phase diagrams of the ground state of the
andoP = 45/2,+3/2,4+1/2, on a square lattice, under the mixed model Ising, are useful for the study of phase diagrams
model.J; — J> — D. The ground state diagram of this model, at finite temperature, are also a useful tool to identify regions
presents several points where more than two phases can cogX-which the models could present an interesting magnetic
ist, asinthe case ¢D/|J1| = -3, J2/|J1| = 1) inthe plano  behavior, especially around the points where more than two
(D/|1], J2/]J1)(Fig. 1 of [41]). The main objective of our phases can coexist, in addition they can check the reliability
research is to analyze the various critical phenomena that cajf the simulation results [38]. According to Fig. 1 of the
emerge around of the multiphase point. We studied the efRef. 41, around the poirtD/|.J;| = —3, J»/|J1| = 1), im-
fects of the anisotropy of simple iof/|.J;| and exchange portant critical phenomena can emerge as first order phase
energy.J>/|.J:|, on the magnetization and the specific heat oftransitions, where their behavior can be judged by consider-
the system. Additionally, Sec. 2 describes the model and thgg the presence of discontinuities in the magnetization and
Monte Carlo simulation, Sec. 3 presents and discusses Oéhergy, as well as hysteresis loops [44]. We will focus on
results, and finally the conclussions in Sec. 4. this multiphase point, considering the effects of parameters
D/|J;| and.J3/|.J1| on first order transition temperatu(g; ),
second ordefT..) and the magnetic properties of the system.
2. Methodology For all calculations/; < 0, the critical points are estimated
by the location of the peaks of the specific heat &fid by
The model studied is a mixed Ising ferrimagnet with spinsdiscontinuities in the magnetization [44]. Initially the values
3/2 and5/2, alternating on a square lattice of sile= 80.  of .Jy/|.J;| are fixed, then do the inverse case.
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FIGURE 1. Magnetization of the system|Ms|, |M,| and
|Mr| as functions of temperature fof;/|J1| = 0.975 and
D/|J1| = —3.14.
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FIGURE 2. Magnetization of the system} 5|, | M| and|Mr| as
functions of temperature fof, /|Ji| = 0.975y D/|J;| = —3.01.

3.1. Effect of single ion anisotropyD

We fix the exchange paramet&y/|.J;| = 0.975 and vary the
crystal field in the range-3.14 < D/|J;] < —3.01, these
are points very close to the multiphase pdqibt/|.J;| = —3,
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FIGURE 3. Magnetization of the system}s|, | M| and|M~r| as
functions of temperature faf, /| J1| = 0.975y D/|J1| = —3.12.
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FIGURE 4. Magnetization of the system}/s|, | M| and|Mr| as
functions of temperature faf, /|J1| = 0.975y D/|J:1| = —3.09.

order phase transitions, as reflected in the discontinuous
behavior of the magnetization curves of ferrimagnetic sys-
tem [44], in Figs. 3, 4 and 5. FoD/|J1|] = -3.12,
D/|J1| = —3.09 andD/|J;| = —3.03, the system present
non-continuos phase transitions in the magnetization, and

Jo/|J1| = 1). Figures 1 and 2 exhibit the magnetizations ofas|D/|.J; || decreases, the first order transition temperature,
the sublattices and the total lattice as functions of temperafT;), decreases and critical temperature increases.

ture, for extreme values of the selected ranfle= —3.14

With the increasing temperature, to the first order phase

andD = —3.01. In these cases, only second order phaseransition(7" < T}), in Figs. 3, 4 and 5 shows that the mag-
transitions occur; the system goes from a ferrimagnetic phasgetic moments are moving towards higher values, while for

to a paramagnetic phase whén> T.. Due to the ferromag-
netic coupling(J, > 0) exerted on the spins ty#’, is seen

(T > T;) transiting towards lower values, which is reflected
in the values of the magnetization. This indicates that the

in Fig. 2 that the sublatticd is more ordered that the sublat- first order phase transitions ferri-ferri, occur when the crys-
tice B. In addition, the decrease of the single ion anisotropytal field module is a little larger as th@/|.J;| = —3. For
module, leads to an increase in the critical temperature of thealues close td/|.J;| > —3 the phenomenon of the first or-
system(7,) as the maximum of the magnetizations disap-der phase transitions is not found, as seen in Fig. 6, which

pear, and experience higher valuesos= 0K.

exhibits the behavior of the magnetization as a function of

As the magnitude of the single ion anisotropy decreasetemperature, whe®/|.J;| = —2.99. The behavior of the
to D < —3.01, appear interesting phenomena such as firstspecific heat of the system is reflected in Fig. 7. Addition-
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functions of temperature fof, /|J1| = 0.975y D/|J1| = —2.99.
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FIGURE 10. Magnetization of the systerl/s|, | M, | and| M| as

FIGURE 7. Specific heat per spin as functions of temperature for functions of temperature fof /| 1| = 0.978 y D/|Ji| = —3.1.

different values oD /|J1| y J2/|J1| = 0.975.

ally, are observed secondary peaksTto< 0.75, where the thermal rearrangement of the spinsibBublattice [41].
the system undergoes noncontinuous phase transitions # detailed study of the transition temperatures as functions
T =T;. It is possible that the secondary peaks arise fromof the single ion anisotropy is shown in Fig. 8. The curve
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increase of the exchange parameter implies an increase in the

- @ L] =05 critical temperature of the system. Figure 11 shows that the
'.' '\\ & J1,1=096 maxima of the specific heat is transferred to the region of high
e @ 1L1=0598 temperatures, as the paramefgy|.J;| grows positively,.e,
5 L o) d? 200 D/ 1=-3.1 the critical temperature increases. All curves exhibit a second
A i R $§k non-critical peak, right where the ferrimagnetic model under-
T o5k goes the noncontinuous phase transitiors < 7' < 0.8),
& which are independent of the lattice size; this characteristic
was reported by Selke and Oitma in ferrimagnetic Ising mod-
G els on the square lattices, as a result of interaction of the sys-
tem with the crystal field [45]. The critical behavior of the
O_Dgfj S S T S B system as a function ak,/|J1| is summarized in Fig. 12, for
0 0,5 1 1,5 7] 2,5 3 D/|J,| = —=3.1andD/|J;| = —3.109. It is evident that the
ke TAT,| increase of D/|J;||, causes an decrease in the critical tem-
FIGURE 11. Specific heat per spin as functions of temperature for P€rature, and as the ferromagnetic exchange engsgy/, |,
different values ot/> /| J1| with D/|J1| = —3.1. increases on the spins of the sublattitethe transition tem-
peratured; andT, tends to a constant value.
2
L A AN i
1,81 LA AN A B EEO 4. Conclusion
1,6_— 8 B o & HEH We investigate the critical behavior of a mixed spins
L ferrimagnetic Ising S#= +3/2,+1/2 and of =
— L4 A T, (DAY =-3.1) +5/2,£3/2,£1/2, on a square lattice around the point
§m12— @ T, (DAl = -3.109) (D/|J1] = =3,J3/|J1] = 1), using the Monte Carlo
<7 & T (DA 1=-31) method and periodic boundary conditions. For the fixed
1 O T, (D/lI| =-3.109) value Jy/|J1| = 0.975 and the value range-3.14 <
© D/|J;| < —3.01, the system exhibits first order phase
b % B9 U transitions ferri-ferri, as for fixed valueB/|.J;| = —3.1
©® © OO O - .
0.6l > o CoOO0 and D/|J;| = —3.109 of the crystal field, in the range
0"95 : o,l% ' 0"97 : 0,1)8 —G59 0.95 < Ja/|J1] < 0.98. First _order phase_ transitions ferri-
1T ferri, occur when the crystal field module is a bit larger than

_ » D/|J;| = —3, and for values close t®/|J;| > —3 no phe-
FIGURE 12. Detailed study of the transition temperatures as func- nomenon of first order phase transitions was found. With the
tions of theJz/| /], with D/ i = =3.1andD/|.i| = =3.109. gecrease ofD/|J; ||, the T; decreases to a constant value,
while the T, is increased to a limit value. Whe®/|.J;]

T, separates the first order phase transitions ferri-ferri, whild> fixed, the increase of;/|J1| produces a decrease of,

the curvel, separates the second order phase transition ferrf'énd a_n increase iiifc_, _to a constant value. The limit values
para. WhenD/|J;|| decreased, andT. tend to constant reaching both transition temperatures are independent of the
values value of|D/|J1||. The study on the spin systef8/2,5/2),

yielded qualitatively similar results to those reported in the
Refs. 45 and 38, for specific heat non-critical peak and first
order phase transitions, respectively. It also confirms that

We analyze the influence of the exchange interacfigh.J | the ground state diagrams are not only useful to check the
on the Ising spin ferrimagnetifA= 3/2 ando? = 5/2 in  reliability of the results at finite temperatures, but are valu-

the ranged.95 < Jo/|J;| < 0.98, considering fixed values able fqr identifying mult!phasg points and study thg magnetic
D/|Jy| = —=3.1 andD/|J;| = —3.109 for the crystal field. behavior of the system in their neighborhoods, as in our case.
The Figs. 9 and 10 show first order phase transitions, in the

abrupt jump of the curves of the total magnetization and subAcknowledgments

lattices, around the temperature rartige < 7" < 0.8. By

increasing the ferromagnetic coupling of the spins tgge  N. De La Espriella want to thank to Dr J. Emmanuel for the
the first order transition temperatuf®, decreases, and once scientific recommendations made to the paper and the Uni-
appearsl; the system magnetizations decrease toward thegersidad del Sia for the support with the laboratory of com-
second order transition & = T.. On the other hand, the putational physics.

3.2. Effect of the exchange interaction/s/|.J1|
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