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Monte Carlo studies of critical phenomena in mixed spin-3/2 and spin-5/2
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e-mail: ndelae52@gmail.com

J. Madera Yancez
Grupo Tesseo-Departamento de Ciencias Básicas,
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We used a Monte Carlo simulation to analize the magnetic behavior of Ising model of mixed spinsSA
i = ±3/2,±1/2 and

σB
j = ±5/2,±3/2,±1/2, on a square lattice. Were studied the possible critical phenomena that may emerge in the region around the

multiphase point(D/|J1| = −3, J2/|J1| = 1) and the dependence of the phase diagrams with the intensities of the anisotropy field of
single ion (D/|J1|) and the ferromagnetic coupling of exchange spinSA

i (J2/|J1|). The system displays first order phase transitions in
a certain range of the parameters of the Hamiltonian, which depend onD/|J1| and |J2/|J1|. In the plane (D/|J1|, kBT/|J1|), the de-
crease of|D/|J1||, implies that the critical temperature,Tc, increases and the first order transition temperature,Tt, decreases. In the plane
(J2/|J1|, kBT/|J1|), Tc increases with the increasing ofJ2/|J1|, while thatTt decreases.
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1. Introduction

Actually, the mixed Ising models are a valuable theoretical
tool for the description and understanding of the thermo-
magnetic behavior of various magnetic molecular systems,
which can exhibit ferrimagnetic properties [1]. Besides, the
mixed-spin Ising models belong to the most interesting ex-
tensions of the standard spin-1/2 Ising model, which may
display more diverse critical behaviour compared with their
single-spin counterparts. Continuously from the molecular
magnetism have been working on the design and synthesis
of new magnetic molecular materials [2], since that through
of specific controls in these processes, such as the sustitu-
tion of a metal by other, is open the possibility of arising new
magnetic properties [3, 4]. The unusual magnetic properties
of the complex ferrimagnetic systems, require that the de-
sign of the processes in the creation of new materials, must
be optimal, therefore is required the understanding of the
mechanisms that originate these properties, specifically ex-
change interactions between different molecules that form
the compound, and that can affect phenomena such as tran-
sition and compensation temperatures [5]. Some of molec-
ular magnets are formed by two kinds of magnetic atoms,
alternating in a regular lattice [3, 6–10] and with the possi-
bility to display several important physical phenomena, such
as magnetoelastic transitions [11,12], compensation tempera-
tures [13, 14], first order phase transitions [15–18], tricritical
points [15, 19, 20] and reentrant phenomena [21–23]. Note

that from the experimental point of view, various physical
systems, such as classic fluids, solid3He, lipid bilayers and
rare gases [24], have been described with mixed Ising mod-
els of multispin interactions [25] and random crystal field;
and also, experimental results in amorphous ferromagnetic
oxides, whereF 3+

e ions are present [26]. It has been demon-
strated that Ising systems of mixed spins, are interesting mod-
els for the study of the ferrimagnetic ordering and the rich
variety of multicritical phenomena presented by the molec-
ular magnets, for this have been used various methods and
lattice structures. T. Kaneyoshi by using mean field theory,
investigated the longitudinal and transverse thermal variation
of the magnetization in a ferroelectric nanoparticle, simulated
with a two-dimensional hexagonal structure, through a trans-
verse Ising model [27]; Y. Linet alby using two-dimensional
lattice Ising, they simulated a field programmable gate ar-
ray (FPGA), which is a valuable contribution to the sci-
entific computing platforms, especially in the field of the
Monte Carlo simulation method [28]; Streckaet al, solved
as an exact form the spin system(1/2, 1) on two totally frus-
trated triangular lattices, finding reentrant phase transitions
with two or three successive critical points and a sponta-
neous ordering system [23]; Taherkhaniet al using renor-
malization group theory demonstrated for anisotropic Ising
two-dimensional models, in triangular, square and hexago-
nal lattices, that the magnitude of the spin coupling interac-
tion with anisotropic ferromagnetic characteristics does not
change the values of the critical exponent [29] and the mag-
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netic properties of Ising spin system(1/2, S), on a decorated
Bethe lattice were calculated exactly in a previous work by J.
Strecka and C. Ekiz [30]. On the other hand, high-spin sys-
tems, such as(3/2, 5/2) and(5/2, 2) [31–36], are the most
important and used for analysis of the thermomagnetic be-
havior of many cooperative physical systems. For the study
of these systems have been considered coupling of ferro-
magnetic exchange, external magnetic fields and crystalline
fields originating the anisotropy of the lattice, which affect
the magnetic properties of these mixed models, as influence
on its molecular magnetism. Preliminary studies based on
mean-field methods suggest that the ferrimagnetic Ising spin
model(3/2, 5/2) presents an interesting magnetic behavior
[11, 12, 16, 17, 37], and would be interesting to solve it with
nonperturbative methods such as Monte Carlo model [38].
Of this system have been investigated the compensation tem-
peratures induced by single ion anisotropy and external lon-
gitudinal fields, on square and cubic lattices [39]; the phase
diagrams for different ground state interactions in the Hamil-
tonian and the magnetic behavior by Monte Carlo methods
[40, 41]; the phase diagrams and internal energy on a hexag-
onal lattice with interlayer coupling, using effective field the-
ory with correlations [22]; up to two compensation points
in a Bethe lattice by exact recursion relations [16]; transi-
tions of first and second order in a two-fold Cayley tree,
through the method of exact recursion relations [11]; phase
transitions and dynamic temperature compensation, with a
mean field approximation [12]. G. Weiet al [38], made a
Monte Carlo study on the critical phenomena around a mul-
tiphase point in the phase diagram of the ground state of
mixed Ising spin(1, 3/2), achieving interesting results for
the modelJ − DA − DB , especially first order phase tran-
sitions, and compared with those reported by JW Tucker, via
variational theory of cluster pair approximation [42], demon-
strating more complete results of the investigated system. On
the other hand, De La Espriella and Buendı́a [40, 41] calcu-
lated energy diagrams of the ground state and the magnetic
behavior of the system of Ising mixed spinSA

i =±3/2,±1/2
andσB

j = ±5/2,±3/2,±1/2, on a square lattice, under the
modelJ1−J2−D. The ground state diagram of this model,
presents several points where more than two phases can coex-
ist, as in the case of(D/|J1| = −3, J2/|J1| = 1) in the plano
(D/|J1|, J2/|J1|)(Fig. 1 of [41]). The main objective of our
research is to analyze the various critical phenomena that can
emerge around of the multiphase point. We studied the ef-
fects of the anisotropy of simple ionD/|J1| and exchange
energyJ2/|J1|, on the magnetization and the specific heat of
the system. Additionally, Sec. 2 describes the model and the
Monte Carlo simulation, Sec. 3 presents and discusses our
results, and finally the conclussions in Sec. 4.

2. Methodology

The model studied is a mixed Ising ferrimagnet with spins
3/2 and5/2, alternating on a square lattice of sideL = 80.

The interaction Hamiltonian of the system is defined as:

H = −J1

∑

i,jε<nn>

SA
i σB

j − J2

∑

i,kε<nnn>

SA
i SA

k

−D
∑

iεA

(SA
i )2 −D

∑

jεB

(σB
j )2 (1)

whereSA
i = ±3/2,±1/2 andσB

j = ±5/2,±3/2,±1/2, are
the spins on the sites of the sublatticesA andB, respectively.
J1 is the exchange interaction between pairs of spins to near-
est neighbors,J2 is the exchange parameter between pairs
of spins next nearest neighbors of the sublatticeA, andD is
the crystal field, it causes anisotropy of the system. The first
sum is performed over all pairs of spins with nearest neigh-
bor interaction,i.e. between sites with spinsSA

i = 3/2 and
σB

j = 5/2, the second sum runs over all pairs of spins with
next nearest neighbors interaction of spinsSA

i , and sums
∑

i

and
∑

j are performed on all sites of spins of the sublattices
A andB, respectively. We choose a ferrimagnetic coupling
to nearest neighbors,J1 < 0, and we take periodic boundary
conditions. All variables in the Hamiltonian are in units of
energy.

We applied standard importance-sampling algorithms to
simulate the model. Data were generated with 50.000 Monte
Carlo steps per site after discarding the first 10.000 steps [43].
We defineβ = 1/kBT . Our program calculates the internal
energy〈H〉 , the specific heat per site,

C =
β2

L2
[〈H2〉 − 〈H〉2] (2)

and the sublattice magnetizations per site, defined as

MA =
2
L2
〈
∑

iεA

SA
i 〉 , MB =

2
L2
〈
∑

jεB

σB
j 〉 (3)

and the total magnetization per siteMT = (MA + MB)/2.

3. Results and discussions

It was found that the phase diagrams of the ground state of the
mixed model Ising, are useful for the study of phase diagrams
at finite temperature, are also a useful tool to identify regions
in which the models could present an interesting magnetic
behavior, especially around the points where more than two
phases can coexist, in addition they can check the reliability
of the simulation results [38]. According to Fig. 1 of the
Ref. 41, around the point(D/|J1| = −3, J2/|J1| = 1), im-
portant critical phenomena can emerge as first order phase
transitions, where their behavior can be judged by consider-
ing the presence of discontinuities in the magnetization and
energy, as well as hysteresis loops [44]. We will focus on
this multiphase point, considering the effects of parameters
D/|J1| andJ2/|J1| on first order transition temperature(Tt),
second order(Tc) and the magnetic properties of the system.
For all calculationsJ1 < 0, the critical points are estimated
by the location of the peaks of the specific heat and(Tt) by
discontinuities in the magnetization [44]. Initially the values
of J2/|J1| are fixed, then do the inverse case.
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FIGURE 1. Magnetization of the system,|MS |, |Mσ| and
|MT | as functions of temperature forJ2/|J1| = 0.975 and
D/|J1| = −3.14.

FIGURE 2. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.975 y D/|J1| = −3.01.

3.1. Effect of single ion anisotropyD

We fix the exchange parameterJ2/|J1| = 0.975 and vary the
crystal field in the range−3.14 ≤ D/|J1| ≤ −3.01, these
are points very close to the multiphase point(D/|J1| = −3,
J2/|J1| = 1). Figures 1 and 2 exhibit the magnetizations of
the sublattices and the total lattice as functions of tempera-
ture, for extreme values of the selected range,D = −3.14
andD = −3.01. In these cases, only second order phase
transitions occur; the system goes from a ferrimagnetic phase
to a paramagnetic phase whenT > Tc. Due to the ferromag-
netic coupling(J2 > 0) exerted on the spins typeSA

i , is seen
in Fig. 2 that the sublatticeA is more ordered that the sublat-
tice B. In addition, the decrease of the single ion anisotropy
module, leads to an increase in the critical temperature of the
system(Tc) as the maximum of the magnetizations disap-
pear, and experience higher values forT = 0K.

As the magnitude of the single ion anisotropy decreases
to D < −3.01, appear interesting phenomena such as first

FIGURE 3. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.975 y D/|J1| = −3.12.

FIGURE 4. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.975 y D/|J1| = −3.09.

order phase transitions, as reflected in the discontinuous
behavior of the magnetization curves of ferrimagnetic sys-
tem [44], in Figs. 3, 4 and 5. ForD/|J1| = −3.12,
D/|J1| = −3.09 andD/|J1| = −3.03, the system present
non-continuos phase transitions in the magnetization, and
as |D/|J1|| decreases, the first order transition temperature,
(Tt), decreases and critical temperature increases.

With the increasing temperature, to the first order phase
transition(T ≤ Tt), in Figs. 3, 4 and 5 shows that the mag-
netic moments are moving towards higher values, while for
(T > Tt) transiting towards lower values, which is reflected
in the values of the magnetization. This indicates that the
first order phase transitions ferri-ferri, occur when the crys-
tal field module is a little larger as thatD/|J1| = −3. For
values close toD/|J1| ≥ −3 the phenomenon of the first or-
der phase transitions is not found, as seen in Fig. 6, which
exhibits the behavior of the magnetization as a function of
temperature, whenD/|J1| = −2.99. The behavior of the
specific heat of the system is reflected in Fig. 7. Addition-
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FIGURE 5. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.975 y D/|J1| = −3.03.

FIGURE 6. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.975 y D/|J1| = −2.99.

FIGURE 7. Specific heat per spin as functions of temperature for
different values ofD/|J1| y J2/|J1| = 0.975.

ally, are observed secondary peaks toT . 0.75, where
the system undergoes noncontinuous phase transitions in
T = Tt. It is possible that the secondary peaks arise from

FIGURE 8. Detailed study of the transition temperatures as
functions of the ionic anisotropy of the total lattice, with
J2/|J1| = 0.975.

FIGURE 9. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.955 y D/|J1| = −3.1.

FIGURE 10. Magnetization of the system,|MS |, |Mσ| and|MT | as
functions of temperature forJ2/|J1| = 0.978 y D/|J1| = −3.1.

the thermal rearrangement of the spins ofB sublattice [41].
A detailed study of the transition temperatures as functions
of the single ion anisotropy is shown in Fig. 8. The curve
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FIGURE 11. Specific heat per spin as functions of temperature for
different values ofJ2/|J1| with D/|J1| = −3.1.

FIGURE 12. Detailed study of the transition temperatures as func-
tions of theJ2/|J1|, with D/|J1| = −3.1 andD/|J1| = −3.109.

Tt separates the first order phase transitions ferri-ferri, while
the curveTc separates the second order phase transition ferri-
para. When|D/|J1|| decreasesTt andTc tend to constant
values.

3.2. Effect of the exchange interactionJ2/|J1|

We analyze the influence of the exchange interactionJ2/|J1|
on the Ising spin ferrimagneticSA

i = 3/2 andσB
j = 5/2 in

the range0.95 6 J2/|J1| 6 0.98, considering fixed values
D/|J1| = −3.1 andD/|J1| = −3.109 for the crystal field.
The Figs. 9 and 10 show first order phase transitions, in the
abrupt jump of the curves of the total magnetization and sub-
lattices, around the temperature range0.6 . T . 0.8. By
increasing the ferromagnetic coupling of the spins typeSA

i ,
the first order transition temperature,Tt, decreases, and once
appearsTt the system magnetizations decrease toward the
second order transition atT = Tc. On the other hand, the

increase of the exchange parameter implies an increase in the
critical temperature of the system. Figure 11 shows that the
maxima of the specific heat is transferred to the region of high
temperatures, as the parameterJ2/|J1| grows positively,i.e,
the critical temperature increases. All curves exhibit a second
non-critical peak, right where the ferrimagnetic model under-
goes the noncontinuous phase transition(0.6 . T . 0.8),
which are independent of the lattice size; this characteristic
was reported by Selke and Oitma in ferrimagnetic Ising mod-
els on the square lattices, as a result of interaction of the sys-
tem with the crystal field [45]. The critical behavior of the
system as a function ofJ2/|J1| is summarized in Fig. 12, for
D/|J1| = −3.1 andD/|J1| = −3.109. It is evident that the
increase of|D/|J1||, causes an decrease in the critical tem-
perature, and as the ferromagnetic exchange energy,J2/|J1|,
increases on the spins of the sublatticeA, the transition tem-
peraturesTt andTc tends to a constant value.

4. Conclusion

We investigate the critical behavior of a mixed spins
ferrimagnetic Ising SA

i = ±3/2,±1/2 and σB
j =

±5/2,±3/2,±1/2, on a square lattice around the point
(D/|J1| = −3, J2/|J1| = 1), using the Monte Carlo
method and periodic boundary conditions. For the fixed
value J2/|J1| = 0.975 and the value range−3.14 ≤
D/|J1| ≤ −3.01, the system exhibits first order phase
transitions ferri-ferri, as for fixed valuesD/|J1| = −3.1
and D/|J1| = −3.109 of the crystal field, in the range
0.95 ≤ J2/|J1| ≤ 0.98. First order phase transitions ferri-
ferri, occur when the crystal field module is a bit larger than
D/|J1| = −3, and for values close toD/|J1| ≥ −3 no phe-
nomenon of first order phase transitions was found. With the
decrease of|D/|J1||, the Tt decreases to a constant value,
while theTc is increased to a limit value. When|D/|J1||
is fixed, the increase ofJ2/|J1| produces a decrease ofTt,
and an increase inTc, to a constant value. The limit values
reaching both transition temperatures are independent of the
value of|D/|J1||. The study on the spin system(3/2, 5/2),
yielded qualitatively similar results to those reported in the
Refs. 45 and 38, for specific heat non-critical peak and first
order phase transitions, respectively. It also confirms that
the ground state diagrams are not only useful to check the
reliability of the results at finite temperatures, but are valu-
able for identifying multiphase points and study the magnetic
behavior of the system in their neighborhoods, as in our case.
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