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Micro displacement measured by the grating interferometer with rings pattern
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Micro displacements are measured with holographic gratings by using a grating interferometer of one order that detects the phase changes in
the diffracted orders caused by movement of the grooves in the diffraction gratings. The period can be on the order of fractions of a micron,
with high reproducibility and an error of a half period. The basic operating principle involves the superposition of order +1, with order 0.
The interferometer system produces standing waves; it works by measuring the intensity variations at the center of a ring-shaped interference
pattern, which indicate the phase shift introduced by displacement of the grating grooves. When these rings move to the center of the pattern
or to the border, the direction of the grating displacement can be detected; the interferometer system has no moving parts, except for the
diffraction grating, and is very stable and robust. This system has the ability to measure micro displacements even with damaged gratings, as
long as the gratings diffract evenly.
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1. Introduction

We propose a concept for an opto-electronic system that is
technically very simple and robust and that allows us to quan-
tify micro- to nano-displacements. It works by measuring
the intensity variations at the center of a ring-shaped inter-
ference pattern, which indicate the phase shift introduced by
displacement of the diffraction grating.

The proposed system has the following main elements: a
high quality diffraction grating, a source of laser light (diode)
and a high-speed photodetector. The system is incorporated
into a grating interferometer using only a diffracted order
(-1) that detects the displacement of the grooves in the grating
as phase shifts of the diffracted orders. The basic operating
principle involves the superposition of the +1 order or -1 or-
der diffracted by the grating, with the central order so as to
produce standing waves. The system is very sensitive to the
movement of the rows (grooves) of the grating.

The micrometer is common today, and it is used in var-
ious detection mechanisms, such as in the application of ra-
diofrequency and optical signals [1], implementation in par-
allel optical planes with variable pitch [2], blocking paral-
lel light beams to generate pulse signals [3], and measuring
changes in absorption through absorber calibration [4]. On
the other hand, diffraction gratings have been used to measure
micro-movements with several techniques, such as: overlay-
ing diffracted beams with orthogonal polarization [5]; photo-
electric measurement to moving diffraction gratings [6]; dis-
placement in the interference fringes produced by the diffrac-
tion of waves by a moving grating [7]; overlapping diffused
light in a diffraction grating to detect changes in the visibility
of the interference [8]; using diffraction gratings to measure

micro-displacements by casting shadows [9]; by phase mod-
ulation effect of the diffracted orders, through Doppler ef-
fect, generated by a grating interferometer [10]; phase shifts
by phase gratings with polarization modulation for multi-
ple interferograms [11]; multiple orders interferometer pro-
duced by rotating gratings, phase shifts generated in multiple
channels simultaneously [12]; with two diffraction gratings is
generated an interferometer that detects the shift quadrature
phase [13]; nano-displacement measurement with grating in-
terferometer [14]; and following a preliminary work, where
the proposed interferometer was published in proceedings of
spie [15]. In this manuscript, we focus on the detection of the
phase variations introduced by orders diffracted by a holo-
graphic grating by observing its Fourier spectrum [16-19].

The proposed interferometer has no moving parts, which
makes it very sturdy and stable. The diffraction grating is
the only moving part in the system; it can move in a lin-
ear or circular manner or by the rotation of a cylinder that
is etched with the diffraction grating. The phase changes due
to displacement of the grooves are detected by the proposed
interferometer regardless of whether the diffraction grating is
a transmission or reflection. We can measure the maximum
and minimum intensity of the rings pattern, and the direction
of grating movement to see if the rings pattern converges or
diverges. When the rings are moved from the center of the
ring to the edge, they diverge, and when the rings are moved
from the edge to the center, they converge. This behavior
is observed by moving the diffraction grating in one direc-
tion or another, perpendicular to the grooves. We have not
seen a similar technique for measuring micro displacements
in previously published papers; we observed significant ad-
vantages in the simplicity of the proposed interferometer pre-
sented here.
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1.1. Micro-movements of diffraction gratings

One of the advantages of using diffraction gratings for mea-
suring micro-displacements is the mechanical and thermal
stability of the system compared to a conventional interfer-
ometer. The measuring accuracy of an interferometer is more
direct and easy to measure. We can assume that diffraction
gratings can be designed and fabricated with 1-micron peri-
ods in metric units (MU) (grating 1000 l/mm). Then, a mi-
crometer detects the metric MU without any difficulties using
an interferometer constructed with a grating and its diffracted
orders. Furthermore, conventional interferometers are lim-
ited to integral multiples of the wavelength (mλ). This is not
the same as the MU system where the wavelengths are de-
rived from natural radiation depending on the characteristics
of the light emitter.

We propose a system with only arbitrary wavelength and
using only multiples of the periods of the diffraction grating
(md), which can be designed in exact units in the metric MU
system. Further, it can be scalable to the required precision.
Gratings with: 1000, 2000, 4000, or 5000 lines/mm or more
can be readily constructed.

However, with techniques such as the Michelson inter-
ferometer that, typically yield the highest resolution, an ap-
proximation is used because of the nature of the emission
source that illuminates the interferometer, classical interfer-
ometers are naturally restricted by the wavelength. Further-
more, grating interferometers are independent of wavelength
and depend only on the grating period,i.e. a single wave-
length with several gratings may yield results with various
accuracies. In conventional interferometers, it is necessary to
change the laser or emitter source to increase accuracy.

2. Theory

2.1. Harmonic functions

We start from the basic principle of a grating of sinusoidal
form sin(2πx/d), where the grating period isd = 2π. One

FIGURE 1. Graphs of s = sin ( 2 π x / d ) (solid line),
c = cos(2πx/d) (dotted line),s1 = sin(2πx/d+π) (dashed line),
ands2 = sin(2πx/d + 3π/2) (dashed dotted line). The behavior
of the four functions is observed for a complete periodd = 2π.

FIGURE 2. Two gratings with gray levels generated from: S and
S1.

of the properties of this harmonic function, when it is imple-
mented in a holographic grating, is that when it is moved by
a factor ofd/4, we obtain the functioncos(2πx/d) [18,19].
Another important characteristic is that when we displace the
grating by a factor of d/2, the result is similar to the sine func-
tion but with inverted amplitude values, which can be repre-
sented assin(2πx/d + π). Furthermore a shift that inverts
the cosine function is expressed bysin(2πx/d + 3π/2), as
shown in Fig. 1.

The harmonic functions S and S1 are shifted by a factor
of π, represented in the form:
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The functions S and S1 are generated for a numerical simula-
tion, with gray levels from zero to 255. An offset ofd/2 = π
between the two pattern fringes is clearly visible see Fig. 2.
The features of these gratings correspond to amplitudes, so
light diffraction would yield a very high intensity at the zeroth
order and much lower intensity at the +1 and -1 diffracted or-
ders.

2.2. Fourier transform

We used the Fourier transform and plotted the real part for the
harmonic functions described in Sec. 2.1 (see Fig. 1) where
one can observe a phase shift ofd/2 = π. The diffracted
orders are depicted in Fig. 3 [20-22], where the graphs of
sf ands1f correspond to the Fourier transforms of the func-
tionsS andS1 represented by Figs. 2. The functionsS and
S1 have a phase difference ofd/2. For orders -1 and +1,
the functionsf ands1f have positive and negative values,
respectively, as shown in Fig. 3.

The result shown in Fig. 4 indicates phase changes due to
displacement of the grating, which can be detected only by an
interferometer like that proposed in Fig. 5. It is not possible
to detect this variation in intensity; however, the interferom-
eter was able to detect these phase variations.
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FIGURE 3. Real part of Fourier spectra, for sine functions sf (solid
line) ands1f (dashed line). This affords a raster phase when the
grating is displaced by a factor ofd/2.

FIGURE 4. Reversal of diffracted order values (+1) upon move-
ment of the grating period byd/2.

2.3. Phase Gratings

The complex transmittance of a sinusoidal phase grating can
be expressed as:

t(x) = exp
[
ia cos

(
2π

d
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)]
(2)

Wherea, d, andx0 are the amplitude phase modulation, pe-
riod, and displacement from the origin along thex direction
of the phase grating, respectively. Definingσ(x0) = 2πx0/d,
and using Bessel function properties [23]:
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Using the Euler expressionexp i(θ) = cos(θ)+i sin(θ), with
θ = a cos((2π/d)(x−x0)), we can rewrite Eq. 1 in the form:
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whereJm(a) is the mth order Bessel function of the first
kind. Using the identityJ−m(a) = (−1)mJm(a), the rel-
ative phase of the mth diffracted order with respect to the
zeroth order is given by [13]:
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2

]
, m ≤ 1

(6)

for a phase grating with a sinusoidal profile.
With Eq. 4, we can see that whenm=1 andx = σ(x0)

= 0, we obtain,−iJ1(a), and forx = σ(x0) = π, we ob-
tain, +iJ1(a). The change of sign is predicted by the simu-
lation in Fig. 4. The reversal of diffracted order (+1) shown
in Fig. 4 is produced when the grating period is shifted by
σ(x0) = d/2. Only these phase changes can be detected by
an interferometer [24].

3. Experimental Results

3.1. Setup of Grating Interferometer with Rings Pattern

The diffraction orders were generated with holographic grat-
ings, but they can also be constructed mechanically. We built
an interferometer in which +1 or -1 orders overlap with the
zeroth order. As seen in Figs. 5(a) and (b), this produces
standing waves. A lens is used after the laser beam output,
causing the beam to diverge with a given radius of curva-
ture because the interferometer arms are not placed at equal
distances. That is, the distance between the grating and the
output of the cube beam splitter (CBS) is slightly different be-
tween the path of the zeroth order and -1 order. This causes
the ordinarily concentric rings to overlap. The zeroth order is
usually the most intense but is attenuated with a neutral filter.
The diffracted order for angles greater than 70 has an astig-
matic deformation,i.e., the diffracted order has an elliptical
shape. To correct this anomaly, we recommend using a cylin-
drical lens. The lens that opens the laser beam has a diameter
of 1 cm and a focal length of 1m, the cylindrical lens (CL) has
a diameter of 1 cm and a focal length of 1 m. The behavior
of this interferometer is similar to a Michelson or Twyman-
Green, with mirrors M1, M2, M3, and M4; however, in this
arrangement the positions of the mirrors do not vary with re-
spect to the cube beam splitter, and only diffraction grating
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FIGURE 5. Two experimental arrangements used to measure mi-
cro movements of the grating. (a) Linear transmission grating [15].
(b) Reflection grating engraved on a cylinder which can be rotated
to the right or left. M: mirror; CBS: cube beam splitter; NF: neutral
filter; CL: cylindrical lens (optional).

grooves are displaced to the left or right. The system can be
implemented using transmission gratings or reflection grat-
ings, with the latter yielding more robust performance. Its
ability to measure can be enhanced by fabricating the diffrac-
tion grating on a cylinder that rotates to the right or left. The
system can measure displacement regardless of the physical
size of the grating, as shown by the grating on the cylinder in
Fig. 5(b).

When the -1 order overlaps the zeroth order (Fig. 5), we
note a clear zone surrounding the ring center, which corre-
sponds to the maximum, whereas the dark center of the ring
corresponds to a minimum. Between the maximum and min-
imum displacement is a holographic grating ofd/2 = π. Fig-
ure 6 shows the concentric ring patterns obtained by the ar-
rangement in Fig. 5(a) with 1000 lines/mm, withd = 1 µm
(grating #2, Table II). The behavior of these rings is peculiar
in that they converge if the grating is shifted to the right and
diverge if the grating is moved to the left, that is, when we
superimpose orders -1 and 0. Moreover, the opposite behav-
ior occurs when we superimpose orders +1 and 0; that is, the
rings diverge if the grating is shifted to the right and converge
if the grating is moved to the left. All the figures are illustra-
tive, to show the idea, the figures shown in this manuscript
are not the exact dimensions as for a design of a device.

This behavior is also important because it indicates the
direction of movement of the diffraction grating. Figure 6
shows the half period shiftd/2 = π. This can be quantified
in terms of the distance between the dark center of the ring
pattern and the next bright centered ring pattern by counting
the maximum and minimum numbers of measured displace-
ments of the grating (linear) or rotations (cylinder).

By counting the number of rings (counting variations of
maximum and minimum in the center of the rings) with a
high speed photo sensor, we can measure physical move-
ments of the diffraction grating, which can be easily mounted
on a precision mechanical device.

To get the rings pattern is very criticizes the system alien-
ation, with a small error of alienation cannot be produced the
rings pattern. The basic to align the system, the experimental
procedure is to work without lenses (laser output and CL) in
accordance with Fig. 5, They just have to superimpose the
light spots observed through the cube beam splitter (CBS) re-
flected by the mirror M4. When a single point is observed,
the system is aligned. Then the lenses can be then added. If
the rings are distorted by astigmatism, then it is advisable to
use the cylindrical lens CL. this lens is optional if the defor-
mation is smaller.

FIGURE 6. a) Maximum at the center of the ring groove determining the position of the grating. b) Minimum displacement, which corre-
sponds tod/2 = π of the grating with respect to image (a).
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TABLE I. Parameters holographic gratings made in the laboratory.

Wavelengthλ X (mm) Y(mm) Θ (deg) f(lines/mm) d (mµ) η(%)

± 0.5 mm ± 0.5 mm ± 0.05 deg ± 2.5 ± 0.005 mµ ± 0.5 %

Grating # 1

λ = 633 nm 510 141 15.17 826.9 1.209 20.3

λ = 604 nm 510 134 14.45 826.3 1.210 10.3

λ = 594 nm 510 132 14.24 828.4 1.207 18.8

λ = 543 nm 510 120 12.99 828.2 1.207 28.5

(average) 827.5 1.208

Grating # 2

λ = 633 nm 510 173 18.40 997.5 1.002 18.1

λ = 604 nm 510 165 17.60 1001.2 0.998 8.8

λ = 594 nm 510 162 17.30 1001.1 0.998 13.0

λ = 543 nm 510 147 15.78 1002.2 0.997 14.0

(average) 1000.5 0.999

Grating # 3

λ = 633 nm 510 243 25.04 1338.1 0.747 16.2

λ = 604 nm 510 230 23.86 1339.1 0.746 6.6

λ = 594 nm 510 225 23.39 1337.2 0.747 6.7

λ = 543 nm 510 203 21.32 1339.1 0.746 6.7

(average) 1338.4 0.747

3.2. Construction and characterization of holographic
gratings

To check the operation of the interferometer in Fig. 5(a),
we made three holographic gratings with different periods to
demonstrate that, in fact, the movement of the grooves of the
gratings is related to the movement of the rings in the inter-
ferometer. In Table I, the parameters of the gratings used
are shown. We use a He-Ne tunable laser (Research Electro-
Opticsr) with 4 wavelengths in order to have more certainty
in measuring the gratings period. Table I shows the X param-
eter, which corresponds to the distance between the grating
and the screen that projects the diffracted orders. The Y pa-
rameter corresponds to the distance between the zeroth order
and the +1 or -1 order; andθ is the angle formed between
the−1 order diffracted beam and the zeroth order. Spatial
frequency,f , of the gratings (lines/mm) was calculated us-
ing the Bragg equation;d is the inverse of the frequency in
microns; andη corresponds to the diffraction efficiency of
gratings reconstructed for each used wavelength.

The measured distances between the diffraction grating
and the screen, parameter X, and the diffracted orders, pa-
rameter Y, are critical. In the laboratory, they measure in
units of mm with an error of± 0.5 mm, to calculate some dif-
ferences in frequencies and periods due to the magnitude of
the error. However, to reduce these discrepancies with these
four measurements, for each grating we can get an average
of the frequency and period of the gratings, which we use in

our calculations. The angleθ was calculated numerically as
= a tan(Y/X)∗180/π, with an accuracy of± 0.05 deg. This
uncertainty is introduced by the error propagation of param-
eters X and Y. In the case of spatial frequencyf , the corre-
sponding error is± 2.5 lines (fringes) per number of lines
calculated with the angleθ using the Bragg equation. That
is, if we calculate 1000 lines/mm we have an error of 2.5
lines, corresponding to 997.5 lines/mm or 1002.5 lines/mm
per calculation, which is quite acceptable. The diffraction ef-
ficiencyη, as expected, is different for each wavelength and
corresponds to the sum of the intensities of the orders± 1,
divided by the incident beam intensity Ii, per one hundred;
that isη = (I±1/Ii)× 100, with an error of±0.5 %.

The twisting effect is feasible if the grating is built with
a soft material, generally a glass substrate is used for remove
this problem.

3.3. Grating interferometer with overlap orders vs.
grating interferometer with rings pattern

To determine the relationship between the phase changes
generated by the movement of the gratings and the rings gen-
erated by the setup of Fig. 5(a). We use the schemes de-
scribed in Figs. 7 and 9 with overlapping orders, and am-
plification and gratings respectively. The gratings 1, 2 and 3
described in Table I, could be visualized with an amplify-
ing power of 60x (Edmundr). The intensity of the projected
fringes was measured by two sensors (Silicon Photodiode
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FIGURE 7. Diagram comparing the phase changes introduced by
the grating in motion, grating interferometer with overlap orders,
channel 1; grating interferometer with rings pattern, channel 2, of
the oscilloscope.

FDS100r). We measured intensity variations by moving the
fringes generated by the grating interferometer with overlap
orders, and by the interferometer with rings pattern as shown
in Fig. 5(a). In this figure, the oscilloscope channel 1 corre-
sponds to the information reading obtained with overlapping
+1 and 0 orders, and channel 2 corresponds to a standing
waves interferometer with the reading obtained by overlap-
ping -1 and 0 orders, showing that both channels have similar
behavior in the detection of signals (see Fig. 7). Measure-
ments were made for the three gratings described in Table I.
Figure 7 illustrates the scheme used to obtain the results of
the two interferometers.

Both interferometers detect the same intensity distribu-
tion variation within their respective scales for the holo-
graphic gratings in motion. This is consistent with the theory
outlined in Sec. 2. A point to note is that both interferometers
have the same sensitivity for detecting phase changes intro-
duced by the gratings in motion. However, it is much more
practical to display fringes with the standing wave interfer-
ometer in Fig. 5(a) because only a low-power single lens is
needed to generate spherical wavefronts sufficient for visual-
izing the rings. Furthermore, the interferometer constructed
by overlapping the +1 and zeroth orders, reflected by the BS,
is about 20 degrees (see Fig. 7), they requires a microscope
objective of 60x or higher power, which greatly reduces the

intensity owing to the cone of light emerging from the 60x
objective and the inherent noise it produces that overlaps with
the fringe pattern. The distance of the microscope objective
to the magnified image with the interference fringes (lines)
was 2 m; the image diameter was 60 cm. On the other hand
the rings diameter was the order of 1 cm.

In Fig. 8 measured signals of 3 gratings, are shown from
lowest frequency gratings to higher frequency gratings. The
grating of 1000 l/mm was used to build the interferometer
that displayed the rings in Figs. 6 and 8.

3.4. Detecting phase changes by both interferometers

Figure 8 shows the results obtained from the setup described
in Fig. 7 for the three gratings. Figure 8 (a), (b) and (c) cor-
respond to gratings 1, 2, and 3, respectively. The upper sig-
nals correspond to the grating period, and the lower signals
correspond to rings period of the oscilloscope. Upper sig-
nals in Figs. 8(a), (b), and (c) represent the phase changes of
the grating interferometer with overlap orders, which is gen-
erated by superimposing the +1 order and the zeroth order.
The photosensor (FDS100r) detects the maximum and min-
imum variation of the projected fringes, which are displayed
on the oscilloscope as a harmonic signal. The lower signals in
Figs. 10(a), (b) and (c) represent phase changes of the grating
interferometer with standing waves forming the rings pattern
shown in Fig. 5(a), which is generated by superimposing the
-1 order and the zeroth order. The fringes produced by this in-
terferometer, move when the grating is shifted, and the photo
sensor detects the maximum and minimum variation of the
rings, which are displayed on the oscilloscope as a harmonic
signal.

In all gratings Fig. 8 shows that the phase variations de-
tected by both interferometers are the same. This is demon-
strated by counting the number of crests of the harmonic
functions for upper and lower signals of Fig. 8. Except for
slight phase shifts, this is due primarily to the physical po-
sitioning of the photo sensor on the fringes. To ensure that
both channels were in phase, the photo sensor was located in
a dark fringe for both signals. A significant problem in this
setup is the noise introduced when the beam is expanded with

FIGURE 8. Comparison of the phase changes by grating movement generated by the grating interferometer with overlap orders (upper signal)
and the grating interferometer with rings pattern (lower signal) with (a) grating 1, (b) grating 2, and (c) grating 3.
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microscope objectives of 60x and 100x for the grating inter-
ferometer. This noise signal overlaps with the fringes making
the correct location difficult to pinpoint. As can be seen in
Fig. 8(b), the information from upper signal is more diffuse
due to the lighting generated by the noise that was introduced
to expand the beam, and by small defects in the substrate of
the grating. This noise effect was prevalent when increasing
the voltage amplitude in the signal at the oscilloscope. Con-
versely, there is no such problem in detecting the fringes for
lower signal. In Fig. 8(c) both signals were scaled to display
additional voltage signals because of similar noise problems
as seen in the 8(b) grating. Figures 8(a), (b), and (c) clearly
show that the phase variations introduced by the movement of
the gratings are the same for the grating interferometer with
overlap orders and for the grating interferometer with rings
pattern.

Clearly, the grating interferometer with rings pattern is
much more robust than the grating interferometer with over-
lap orders. Specifically, with the grating interferometer with
rings pattern, only with a simple low power lens is required to
display the rings. Moreover, the photosensor area is not crit-
ical for measuring the intensity of the rings. By contrast, this
area is very important when trying to measure the intensity
of the fringes projected by the conventional grating interfer-
ometer with overlap orders. In this latter case, it is crucial
that the photosensor area be lower than the projected fringes
period in order to measure the intensity variations as shown
in Fig. 8. The photosensor area is of 2 mm2; the period of the
fringes was approximately 2.5 mm. On rings, the photosen-
sor is in the centre of the rings pattern, which changes from
maximum to minimum when the grating is moved regardless
of the period of the rings.

3.5. Grating period vs. phase shift due to displacement

Figure 9 shows the experimental setup used to measure the
displacements of the grating grooves with respect to the phase

change, detected by the grating interferometer with rings pat-
tern. In principle, when the grating is enlarged (grating 2)
along with its projected image using a 100x microscope ob-
jective noise is introduced by the microscope objective (inter-
nal lenses, rayons, and dust, for example.). Noise may also be
introduced by small variations of uniformity of the substrate
material where the grating is recorded. The noise is then su-
perimposed on the projected fringes (typically low contrast)
that correspond to the grooves of the amplified grating. This
is detected by a photosensor (FDS100r), which ensures that
the area of the photosensor is less than the space between the
projected fringes. This information was detected on upper
signal of Fig. 10. However, the generated ring by the grating
interferometer of standing waves described in Figure 5 does
not have these drawbacks, because the amplification is min-
imal with very good signal reception and the interferometer
forms fringes of rings with very good contrast. The signal for
this interferometer is detected by the photosensor on, lower
signal (Fig. 10). it is clear that, the angle between the zero
order and the +1 is about 30 degrees, the cylindrical lens in
this case is not necessary, so in Figs. 7 and 9 is not shown.

FIGURE 9. Experimental setup for detecting the grating grooves
channel 1 and the phase shifts introduced by displacement of the
grating, detected by grating interferometer with rings pattern chan-
nel 2.

FIGURE 10. Measurements obtained from the setup of Fig. 9, where the upper signal corresponds to grating period, and the lower signal to
rings period. (a) displacement measurement one, (b) displacement measurement two.
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Figure 10 shows the results obtained by the experimental
setup of Fig. 9. On upper signal, the signals vary in amplitude
and smaller phase shifts, due to overlapping of noise inherent
in the experiment. However, in lower signal there are no vari-
ations in amplitude, and the signal is much clearer. The re-
sults demonstrate that there is a correspondence between the
grating grooves and the phase shift introduced by the grating
displacement, which is supported by the theory outlined in
Sec. 2. These measurements were performed with grating 2.
From the results shown in Figs. 10(a) and (b), we can quan-
tify the physical displacement in a portion of the sampling
time. There are 19 spaces between the peaks in Fig. 10(a),
which correspond to approximately 19 microns of displace-
ment. In Fig. 10(b) there are 16 spaces, which correspond to
16 microns of displacement.

The upper signals in Fig. 10 are clearer than those shown
in Figs. 9 and 11. This is because the use of a 100x oil im-
mersion microscope objective (Edmundr), with a diameter
of 3 mm, which provides more energy and amplification. In
Figs. 9 and 11, the results were obtained with a microscope
objective of 60x with 2 mm diameter, with lower intensity
and lower amplification. Therefore, the distance from the
photosensor and the grating was greater, producing increased
noise and resulting in a low contrast in the projected fringes.

3.5.1. Measurement of displacement, with damaged grat-
ings

One problem with using gratings is that they may suffer wear
and tear and have embedded noise in the substrate, due to
such things as scratches or dirt. However, if the grating
diffracts properly, it is sufficient for measuring displacements
of the grating interferometer with rings pattern (Fig. 5).
These measurements were made with gratings (Edmundr)
in a substrate of acetate with 1000 l/mm (old and battered by
use). Using a microscope objective of 60x, and noting the
details of Fig. 11, we can quantify the physical displacement
in a portion of the sampling time. We count 7 spaces between
the peaks, which corresponds to about 7 microns of displace-
ment.

The results reaffirm the instrument’s capacity, which re-
inforces our proposed grating interferometer with rings pat-
tern (Fig. 5). In all experimental measurements, the signal
obtained by the oscilloscope on lower signal (channel 2), in
the schemes of Figs. 5, 7 and 9, was the best. This clearly
demonstrates the improved efficiency of measuring grating
displacements using this technique. One advantage of this
technique is the robustness of the system to measure with
diffraction grating damaged. This is shown in Fig. 11.

3.6. Measurements

Measurements made with the diffraction grating 2 and a me-
chanical micrometer newport, Model 425 of linear precision.
Table II shows the accuracy of the proposed system Fig. 5(a),
noting, that the read error newport mechanical micrometer
425 is of± 5 µm. Furthermore the proposed system has a
read error± 5 µm. The accuracy of the proposed system is
10 times more. The procedure for obtaining the data in Ta-
ble II, was to displace the grating 2 with mechanical microm-
eter. We measured with the graduated lines of the vernier
from micrometer newport 425. Moreover, with the photosen-

FIGURE 11. Measurements obtained from the setup of Fig. 9, with
damaged gratings (grating with high noise). The upper signal cor-
responds to grating period, and the lower signal to rings period.

TABLE II. Compare measurements with a mechanical displacement interferometer Newport, and the proposed interferometer with the grat-
ing 2.

Mechanical Micrometer Mechanical Micrometer Grating # 2 Grating # 2

Newport Micrometer Newport Micrometer Grating Interferometer Grating Interferometer

N Lines (10µm per line) Displacement (± 5 µm) N Rings (1µm per ring,d) Displacement (± 0.5µm, d/2)

5 50 51 51

12 120 119 119

27 270 271 271

38 380 378 378

45 450 451 451

78 780 778 778

93 930 931 931
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sor (FDS100r), the number of rings (N) generated by shift-
ing the grating were counted.

4. Discussion and conclusions

A key feature of the proposed system is its robustness. The
physical diffraction grating can be constructed from a poly-
mer and can be modulated by relief, refractive index or am-
plitude. A low thermal expansion polymer can be used. The
grating can be read by transmission or reflection. What is
important is whether the +1 or -1 order diffraction grating
overlaps with the zeroth order.

The interferometer moves the grooves or the periods of
the grating, and whether the rings converge or diverge de-
pends on the direction of the displacement of the grating. The
maximum to maximum detected in the rings are related to
the grating periodd = 2π. Our proposal is based on multi-
ples and submultiples of the periods of the diffraction grating
(md). It can also be scaled to the precision needed. Diffrac-
tion gratings with 1000, 2000, 4000, or 5000 lines/mm or
more can be readily constructed. The maximum and min-
imum values of ring pattern intensity are easily measured,
so the interval between those two measurements would be
d/2 = π and would correspond to the measurement uncer-
tainty. That is, in a grating of 1000 lines/mm, the period
would bed = 1 µm± 0.5µm, which is quite acceptable.

Figure 5 is an experimental scheme to produce standing
waves in the form of rings. These allow for more easily mea-
sured intensity variations that are independent of the photo-
sensor area. The proposed instrument demonstrates the abil-
ity to measure the phase changes introduced by the motion
of the gratings. The data obtained with the channel 2 of os-
cilloscope showed more uniformity and clarity, and the ro-
bustness of this proposed instrument was demonstrated when
phase changes could be measured using damaged gratings.

Other research relating to grating interferometers, does not
appear to investigate measurements with damaged gratings.
We demonstrated that the grating interferometer with overlap
orders and the grating interferometer with rings pattern both
detect the same phase changes, introduced by the motion of
the gratings. Furthermore, we demonstrated experimentally
that there is a clear correspondence between the displacement
of the grooves and the detected phase changes,i.e., when a
groove is shifted half a periodd/2 = π. Finally, another
important finding is the robustness of the system in detecting
phase shift information, despite the noise that may be implicit
in the diffraction grating due to such things as structural de-
fects, damage from wear and tear, misuse, or scratches.

The geometry to produce standing waves with the grat-
ing interferometer is very similar to that of the Michel-
son or Twyman-Green interferometers, with an accuracy of
λ/2± λ/4, while the grating interferometer has an accuracy
of d ± d/2. While the Michelson interferometer by its na-
ture is more accurate, the grating interferometers is scalable
by changing the grating, and since grating interferometers are
independent of wavelength, we can easily achieve various ac-
curacies. In conventional interferometers, it is necessary to
change the laser or emitter source to increase accuracy.

To get high robustness in the system, the entire interfer-
ometer can be isolated adiabatically to give it more thermal
and mechanical stability or protection against corrosive ele-
ments. The only moving part is the grating itself.
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