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We consider the motion of a Brownian particle bound by a harmonic force in a thermal bath driven from equilibrium by a uniform she
imposed externally. We extend the classical theory of Brownian motion to calculate the probability distribution function for finding th
Brownian particle in a phase-space volume element when it is in the presence of the external shear. We find the explicit form of the redt
distribution for velocities in the stationary limit and show that it becomes anisotropic by extending itself over the direction of the impost
shear. We also consider the effects of the imposed shear on the time correlation functions of the Brownian particle and show that t
quantities acquire contributions depending exclusively on the nonequilibrium state of the solvent, which render them non symmetric
time-irreversible. In order to verify these conclusions we develop a hybrid mesoscopic simulation technique based on Molecular Dynar
and Multi-particle Collision Dynamics. We observe a very good agreement between the predictions of the model and the results obta
independently from the simulation method, thus suggesting that the latter could be used as a complement to current experimental proced
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1. Introduction position and velocity vectors of the BP, which acquire asym-
metric and time-irreversible contributions increasing with the
The formulation of nonequilibrium thermodynamics for sys- Magnitude of the shear rate [7].
tems under shear represents a long standing problem that has |, the present paper we will consider another relevant re-
recel\_/ed_ considerable atten_tlon during several decade_zs (1, 3bted model consisting of a BP in the presence of a simple
Special interest has been given to the case of Brownian MQear flow and simultaneously bound by a harmonic force.
tion in a shear flow, see.g. Ref. 3 and references therein, \y5rmonic Brownian motion in flowing fluids was firstly con-
since it represents one of the simplest models coupled t@igered several decades ago in Ref. 20. There, interest was
a nonequilibrium bath in which the effects of the externalgocysed in showing that harmonic constrains might lead to
forces on the thermodynamic and transport properties cag gyficiently fast decay of the velocity correlation function
be investigated with significant detail. Diverse models rang+¢ the BP to ensure the existence of a long-time diffusion
ing from kinetic theory [4, 5], Langevin and Fokker-Planck pepayior in external Couette and Poiseuille flows. Renewed
equations [6, 7], and Mesoscopic Nonequilibrium Thermodynterest for harmonically bound Brownian motion in exter-
namics [8-12], have been used to achieve this goal. In addjs5| flows has been observed recently [21-23]. This inter-
tion, Brownian mothn in a shear flow has been proved to b&st has been greatly inspired by the development of experi-
amenable for experimental [13-16], and numerical [17-19)henta| techniques based on optical tweezers which allow for
work. manipulation of micro-sized particles, as well as for detailed
The dynamics of a Brownian particle (BP) in a shearedmeasurement of their fluctuations. Theoretical analysis and
fluid exhibits special features not observed in Brownian mo-experimental results confirm that harmonically bound Brow-
tion in an equilibrated thermal bath. In particular, shear mod-ian motion in the presence of shear also exhibits the spatial
ifies the motion of the BP by introducing non-thermal con-asymmetry and time-irreversibility features predicted firstly
tributions in the diffusion tensor increasing with the magni-for free Brownian motion in sheared fluids. More precisely,
tude of the velocity gradient of the imposed flow [3, 7]. It has experiments with harmonically trapped BP’s in a simple Cou-
been suggested that this dependence of diffusion on the exteatte flow have shown that cross correlation functions between
nal shear implies that the fundamental fluctuation-dissipatiomlisplacements along the directions of shear and velocity gra-
relation used in Langevin descriptions of Brownian motiondient are indeed asymmetric and time-irreversible [21]. This
is not longer valid out of equilibrium, but must be correctedresult has been justified by a Langevin model [22], and has
to consider the effect of the external shear on the strength dfeen also predicted to exist in the problem of controlling the
the stochastic forces [7,10]. In addition, the externally im-trajectory of individual colloidal particles by means of opti-
posed flow breaks down the spatial symmetry and the timeeal traps in flowing fluids [23]. In the latter case, asymmetric,
reversibility of the dynamics of the BP [7]. This effect is time-irreversible correlations have been observed by means
exhibited by the behavior of the correlation functions of theof molecular simulations [23]. Although a similar nonequi-
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librium behavior is expected for the velocity correlation func-2. Harmonic Brownian Motion under Steady
tions, experimental techniques are not able to perform the  Shear

corresponding measurements yet [21, 22]. The main contri-

bution of the present work will consist in introducing a sim- 2.1. Langevin Dynamics

ulation technique from which it will be possible to verify the ) . ) )
theoretical predictions about the behavior of the velocity cor!" the present section we will study the motion of a spherical

relation functions of a harmonically bound BP in a shearedBP Of massV/ and radiusk, immersed in an incompressible
fluid. Newtonian fluid which is in a nonequilibrium stationary state

induced by a uniform shear. Specifically, we will consider
the case in which the velocity field of the unperturbed fluid is
Our numerical implementation will consist of a hybrid al- a plane Couette flow of the form(#) = #(0) + Z - 7, where

gorithm combining Molecular Dynamics (MD) [24], which 7, i7(0) andZ represent, respectively, the position vector, the
is used to describe the evolution of systems at the microvelocity at the origin and the constant velocity gradient ten-
scopic time scale; and Multi-particle Collision Dynamics sor of the flow. Moreover, the flow will be assumed to be
(MPC) [25, 26], that allows for incorporating thermal fluc- sheared along thé;-axis with velocity increasing along the
tuations and hydrodynamic effects. Both MD and MPC arez, direction, where vector§;, és, é3} represent the standard
particle-based methods and their coupling has been used @artesian basis. Thug, will take the form
simulations to incorporate a bridge that spans the two widely

separated characteristic time scales occurring in Brownian 7 _ 8 8 8 1
motion, corresponding to the relaxation time of the solvent I 0 0 ’ @)
g

to thermodynamic equilibrium and to the time it takes to the
BP to move a distance comparable with its own size. Numerwheres is the magnitude of the velocity gradient.

ical experiments combining MD and MPC have been suc- e will consider the presence of an external foregact-
cessfully used to study concentrated nanocolloidal suspering on the BP and use a Langevin model to describe its evolu-
sions [26], colloid-fluid interactions [27], colloid sedimenta- tion in time, under the assumption that its dynamics occur at
tion [28], backtracking of colloidal particles [29], colloidal a time scale much larger than the corresponding to the fluctu-
flow in microfluidic channels [30], and tracking control of ations of the surrounding fluid. From now on, we will use the
colloidal particles in fluids in stationary flow [23]. symbol A to denote the stochastic force that models the ran-
dom collisions of the BP with the molecules of the solvent.
Finally, we will suppose that the friction term can be modeled

In Sec. 2 we will revisit the Langevin model for a har- by the Fagn th for th i f here th h
monically bound BP in a sheared environment. We will care- y the Faen theorem lor the motion of a sphere through a

fully study the conditions under which the classical theory¥'§'coufS fIw?hln a no?—hor?ogetpeou?titat;)Fr)lar)l/l flowd[31,32].
of Brownian motion can be indeed extended to this nonequi- eretore, the equation or mation ot the wil rea
librium situation. The formal solution of this model will be d2z dT

presented from which we will calculate the probability dis- Mﬁ = +70%(Z) + F + A, 2

tribution function (PDF) for observing the BP in a given vol- . - -
ume element of its phase-space. We will show that this dis\—Nhere7 is the drag coefficient and® (Z) represents the av-

tribution deviates by a significant amount from the canoni—;rggg;f the unperturbed velocity field over the surface of the
cal equilibrium distribution when the Brownian motion takes I[_et]lljs assume now that the external force has the form
place in the presence of the velocity gradient. Subsequently,

we will calculate the matrix of two-time correlation functions F=—k(&-), (3)

for the velocity components of the BP. These functions will

be shown to be non symmetric and time-irreversible due tovherek is the restoring coefficient of an isotropic harmonic
the external shear, in a similar fashion as it has been obtaindgtap. This force is meant to constrain harmonically the mo-
for ordinary Brownian motion in a plane Couette flow. In tion of the BP around a fixed position in spagg, that with-
Sec. 3 we will describe the implementation of the simulationout loss of generality is chosen in such a way that the velocity
method combining MD and MPC, designed to verify the pre-field ¢ vanishes there,e. 7 (7)) = 0.

dictions of the previously described model. In Sec. 4 we will  In addition, under the restriction of considering only
present a comparison between the analytical and the numeiBrownian motion in a plane Couette flow, we can wiitgz)

cal results. We will verify that the model based on Langevinin terms ofZ, & andr,, namelys®(z) = Z - (Z —7p) . By
dynamics and the implemented numerical method exhibit théubstitutings® () and Eq. (3) into Eq. (2), we obtain

same quantitative behavior, and that the latter can be ef- -
fectively used to observe the breakdown of the spatial and X
temporal symmetry of the velocity correlation functions of a di?
trapped BP under shear. Finally, in Sec. 5 we will summarizevhere we have written the result in terms of the position of
our conclusions and discuss the limitations of our analysis. the BP relative to the point,, X = # — 7; the damping

0w pE) X=A @
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ratio 3 = v/M; the frequencyw = \/k/M; the unit matrix,
1; and the stochastic force per unit ma$s= A /M.

Then, it can be noticed that Eq. (4) is equivalent to a set
of three stochastic damped oscillators asymmetrically cou-
pled by the velocity gradient tensiér. Actually, since in the

—

U(t)=ﬁd(t>+/d5¢<t—£>-i<§>, 6)

I . where X4 (t) and Uy (t) represent the deterministic part of
present model the position of the BP is controlled arotind the solut?cgn) of Eq ‘zi))_ anpdl and® are auxiliary mafrices
by a harmonic force, Eq. (4) turns out to be formally the Same ' \.o defined below '

as the one obtained for the general problem of tracking con- R
trol of colloidal particles in fluids in uniform shear, Eq. (23)  The components ok were already presented by one of
in Ref. 23. In that reference attention was focused mainly irS in Egs. (36)-(38) in Ref. 23.

showing that harmonic forces can be properly tuned to obli-  The components dfy are obtained by derivationg. by
gate colloidal particles to follow any prescribed trajectory in {/y = dX4/dt, and explicitly read

spite of the presence of the external flow. Here, on the other

hand, we will provide a full characterization of the stochas-

tic dynamics of the trapped BP. For this purpose, we will use Uga (t) = (12 (n1Xo1 — Up,p) €'
the formal solution of Eq. (4), obtained also in Ref. 23, and fir — H2
extend it to consider both the relative position vecforand — w1 (p2Xo — Uoa) e'], (7)
the velocity vector[/ = d)?/dt. It will prove to be conve- 1
nient to write these functions in the form Ude (t) = prr— (12 (11 Xo2 — Up,2) €2*
t

X (t) = Xa(t) + /d§ U(t—¢)- A€, (5) — pn (p2Xo2 — Up ) €], (8)

0
| and

Ugs (t) = (12 (11 Xo3 — Uos) €' — 1 (p2Xos — Uo s) €]

M1 — M2

) 2
+ _X {e#lt |:<1 + (t — )) (U071 — /.LQXOJ) + /L1X071:|
M1 — M2 M1 — M2

2
Jetat Kl + p2 <t - 1y — Ml)) (Uo,1 — mXo1) + M2Xo,1} } . )

In the previous expressionsXy,; and U, for

i = 1,2,3, represent the initial conditiong;; » = —3/2 + IIt should be mentioned here that it is in fact debatable to use

((3/2)* — w?)1/2, are the roots of the characteristic poly- a Langevin model like the one presented in this subsection
nomial of the homogeneous part associated to Eq. (4); anfibr describing Brownian motion in fluids in nonequilibrium

X = (u1 + p2) / (ue — p1) is a dimensionless parameter.  states. The main criticism that can be formulated against this

The matrix® will be cast in the form procedure lays on the lack of a well established theory for de-

scribing the statistical properties of the stochastic forces pro-

Y (t—¢§) 0 0 duced by nonequilibrated baths, while in the case in which
vE-=| 0 Y (t—¢) 0 » (10) " the solvent is in equilibriumd is very well modeled as a
e (t = §) 0 Y(t—¢) Markov-Gaussian process [33, 34].

For Brownian motion in sheared fluids, analytical mod-

where the functiong andx are defined through

a1 pn (=€) _ pua(t—€)
R G ) R CEY
D
c(t- 9= (-0 (-0 - Z—u-0| . @2
with
C(t—¢) = 1 (em(t—é) + euz(t—ﬁ)) : (13)

M1 — H2
and the matrix® can be obtained fro® = d¥ /dt.

els [10], experimental results [14] and numerical simula-
tions [17] suggest that the fluctuating force is modified by
the imposed velocity gradierd. However, it has been also
discussed that nonequilibrium corrections to the strength of
the stochastic forces are expected to be negligible since they
have been shown to be of the order of the ratio of the fluid
molecular relaxation time to the characteristic time of the
imposed sheat,e. to the ratio of a microscopic to a macro-
scopic quantity [5]. In the following we shall assume that
the time scales of the white noise and the imposed flow are
well separated and that, consequently, in the nonequilibrium
situation A is still a Markovian Gaussian stochastic vari-
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able, with zero mean and obeying the classical (equilibrium) The probabilityW (R, S;t)dRdS that vectorsk and S

Fluctuation-Dissipation relation will be found in the interval§R, R + dR) and(S, S + dS),
. 2%kpTH ., respectively, at time after NV accelerations, can be obtained
(A A(t) = ——6(" —1t) 1, (14)  analogously to the case of the general problem of random

flights [33], under the assumption th&t follows a Markov

where the bracketsgy. ..)), indicate the average over fluctu- process. Thus we obtain

ations and initial conditions; s is the Boltzmann constant;

T is the temperature of the bath; afidt’ — ¢) is the Dirac Lo Lo I | .
delta function. w (R7S;t) dRdS = dRdS—— /dp
(2m)
2.2.  Nonequilibrium Probability Distribution Function " /dgefi(ﬁyﬁﬁpg)ﬂ]v 7.5).  (18)

Equations (7)-(13) clearly illustrate that the nonequilibrium
coupling induced by the velocity gradient in the motion of thewherep anda are auxiliary vectors, the superscript T denotes
harmonically bound BP is asymmetric since the componentthe transpose of the corresponding vector or matrix, and the
along the shear are perturbed by the stochastic forces and irfisnction2 5 (p, &) is defined by

tial conditions in the direction of the velocity gradient, but

the converse fact is not true. The effects of this asymmetry N . .

produced by the external shear will be analyzed by generaliz- 2y (7.3) = [ | /dBj w (Bj)

ing the classical theory of Brownian motion as presested Jj=1

in Refs. 33 and 35, to the present nonequilibrium case.

_ With this purpose let us define firstly the auxiliary vectors
R(t)=X(t)— Xq(t),andS (t) = U (t) — Uq(t). Their . . . . .
prc(Jb)abiIity (d?stribudti(or)1 can bé )calculagte):d byd l(Js)ing the as-With w(B;)dB; the probability of observing an acceleration
sumption that the stochastic forcdsvary in time extremely Bjin the mtervaI(Bj, Bj+ dBj)' .

rapidly when compared with the variables representing the /AS it was previously mentioned, one of the main assump-
state of the BP. In this case, the integrals appearing in Eqs. (3)°"S t0 be introduced in the present analysis will consist in
and (6) can be written as sumsSfintegrals over equal time considering that the_ probability of occurrence oj d|_ffe_rent val-
intervals of sizest — t/N, such thatyt is large with re- U€S of the stochast|c force, and cor!sequ.entlxggfls inde-
spect to the characteristic time of relaxation of fluctuationg®@ndent of the imposed external shéar,it is the same than
but small in comparison with the time scale for change&in N the equilibrium case. Thus, we have [33]

andS. This procedure yields 1

Xei[ﬁ'T-\Il(t—jAt)-§j+€T-¢(t—jAt)-§j}7 (19)

} 3\ 8. — (—B;-B; /4q6t)
) < ) w (B(,) dB; e (20)
R(t)=> W (t—jét) B, (dt), (15)
j=1 with ¢ = BkgT /M. By replacing Eqg. (20) into Eqg. (19),
and ) and calculating the resulting Gaussian integrals in the limit
. N . o0t — 0, we obtain the following expression for the auxiliary
S(t)=>_ ®(t—jot)- B (6t), (16)  functionQ,
j=1
yvhereéj is the net stochastic acceleration suffered by the BP Q (7,6) = exp | — }(w P.-j
in the jth time interval,.e. 2
(G+1)t ST S, 2T BT =~ =T ~
- . +p R+ R -p+0 ~Q~0), (21)
Bion= [ dde©. )
jot where the matrice® = P (1), Q = Q(¢t) andR = R.(t)
| have, respectively, the form
‘ ¥?(€) 0 Y (§) K (§)
P =2 [dc| 0 w2 0 , (22)
0 WErE 0 Y () +2K2(E)
! ¢* (€) 0 36 () A (&)
Q=2 [d| o @ 0 , (23)
0 FOEAE) 0 (O +H2N ()
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C O 0 5 (€A ()
R(1) = 2 / il 0 w©e© 0 . (24)
L Ge©re) 0 w©6©) 12RO

In the last two equations functiomsand, have been defined @s= dv/dt and A = dk/dt, respectively.
Finally, by replacing Eq. (21) into Eqg. (18), and calculating the integral over the space of the auxiliary yeais, we
arrive at

—.

exp{—é(ﬁT’ gT)'H_l(t).(];)} Se

W (R,S:t)dRdS = dR dS, (25)
( ) (2m)® (det H (1))"/?
whereH () is a6 x 6 symmetric matrix defined by the par-
tition P(H) R !
H(t) = (RT © Q (t)> : (26)  2.3. correlation Functions

. . : N
As it is usual, in the previous expressiah - (¢) and The effects of the velocity gradient of the solvent on the dy-

det H () denote the inverse and determinanti{z), re- namics of the BP can be also analyzed in terms of the two-

spectively. . ; : A -

. : time correlation functions of the variablésandU. Since no
Equatlor_1$ (.22)'(26) contain all the_ effects pro_duced bynumerical neither experimental measurements of correlation

the nonequilibrium bath on the statistical properties of th

Sunctions of the type(U; (t') U; (t))) have been reported in
) . 1 f f
harmonically bound BP. They show that the PDF for this par.the literature, our interest will be focused in the calculation of

ticle is a Gaussian, as in the equilibrium case, but anisotroplﬁ1ese quantities, where double brackets will be used to indi-

due to the presence of the external shear. The effects of thceate the average over both fluctuations and initial conditions.

imposed flow on the distributio” can be analyzed by con- It can be readily seen from Eqs. (6)-(9) that the desired cor-

sidering the explicit form acquired by this function in the im- relations will have the general form
portant limit of large timest > 3~!, whereW becomes

stationary. In particular, by considering the stationary limit / _ / e

of the matricesP, R and Q, and integrating over the co- (U () Us (0 = {(U: (£) U5 ()
ordinates{ X, X5, X3, U}, we obtain the reduced proba- + ((U; (') U; (8)))"4, (28)

bility of observing the velocitied/; and Us in the ranges

(U1,U1 + dUy) and(Us, Us + dUs), respectively, which ex-  where the superscripts eq and neq represent, respectively,

plicitly reads those contributions independent of the external velocity gra-
M dient, and those induced exclusively by the nonequilibrium
W (Ur,Us) dU1dU3 = T LT state of the solvent and explicitly dependingan
) The correlation functions defined in the previous equation
X exp {_ M [ 2 Us } } dU,dUs. (27)  Will be calculated over an ensemble of BPs that have been
2kpT [ 1+42/2w2 allowed to evolve in the nonequilibrium thermal bath for a

This result shows that the net effect of the external sheasufficient long time in such a way that the initial conditions
on the distribution of velocities of the BP consists in extend-Xo,; and Uy ; appearing in Egs. (7)-(9) can be assumed to
ing it along the direction of the imposed flow, while in the be sampled from the nonequilibrium PDF in the asymptotic
direction of the velocity gradient the distribution is not mod- limit. Thus, in calculating the correlation functions the ele-
ified and remains the Maxwell function of equilibrium. ments of the following dyad matrix containing the averages
|  of products of initial coordinates will be used

(XoXo)) <<X'oﬁo>>> / > / > = (xx )?(7)
20 2000 = [ aX [d0w (X, 0) (355 45
<<< 0Xo0))  ((Uolo)) ( ) UX UU
10 2% 0 0 !
0 1 0 0 0 0
: .9 w2432 :
_ keT |25 O [Hﬂzﬂf] —3 0 0 00
k| o o -1 w2 0 0
0 0 0 0 w? 0
10 0 0 w? <1+3;§)
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A direct but rather long algebraic procedure consisting in evaluating the formal solution of the Langevin equation, Egs. (6)-
(9), at two different time¢’ and¢, with ¢ > ¢, multiplying the results and calculating the average over the initial conditions and
stochastic forces, with the help of Egs. (14) and (29), yields the expressions presented below for the elements of the correlation
matrix.

As they should, the equilibrium contributions are stationaey,they depend only on the time differenee= ¢’ — ¢, and
have the classical form [33]

ksT
U (YU ()= —== [1eMT — pget27] ;5. 30
(U @) U; (1)) M(m_m)[m p2€"27] b (30)

On the other hand, it can be noticed from Egs. (7)-(9) that the only non vanishing nonequilibrium elements of the correlation
matrix are{((Us (') Us (£)))™% ((Us (¢') U1 (t)))"%and((Us (t') Us (¢)))"9 They are found to be stationary as the equilibrium
contributions, and to have the following explicit form

kT .
12 neq__ _ Q1T _ 2T
(0L () Uy ()™= = s (o7 — o), (31)
kT . u1+u2>2 i+ o
Us (YU ()= —————— 1+2< — 2 T—————| 7
W () U (00 2M(u1—u2)7{ fi1 = pi2 M = iz
2
—|1+2 (W) _ QMQTW] euz‘r} 7 (32)
H1 — p2 M2 — 1
and
2 2 (0 2
(@) vaye = RoL T [ MO LT
M2 () — pa) I
29 2
+ Ha (3 :uQT) + p1 (1 + MQT) ep,g'r:| ’ (33)
H2
respectively.

Equations (31)-(33) summarize some of the main con-

clusions of the present work. They show tHabreaks the ‘The behavior of the nonequilibrium correlations described in
spatial symmetry of the dynamics of the Brownian oscil-the preceding paragraph is similar to the one derived in pre-
lator by inducing a clear difference in its correlation func- vious models for correlations of free BPs moving in a plane
tions in the directions of sheaés, and of increasing ve- couette flow [7], and guided by harmonic traps in a sheared
locity, é;. Accordingly, the autocorrelation function in the fig [23]. However, one fundamental difference can be ob-
shear direction becomes higher than the corresponding co&zrved to exist between our results and those reported previ-
relation in the direction of the velocity gradient by the term gysly, namely, that our nonequilibrium correlation functions
proportional toj” given by Eq. (33). More strikingly, cross-  are stationary while they have been claimed to be non station-
correlations along these directions, which vanish in Browniarhry in the previous references. The source of this discrepancy
motion in a fluid at rest, become visible in the nonequilibriumis that in Refs. 7 and 23 initial conditions have been assumed
case and one another exhibit a completely different time degy he sampled from the canonical equilibrium distribution,
pendence, namely whil&U, (¢') Us (t)))"*? decreases ini-  while here we have used the proper nonequilibrium PDF in
tially from zero as function ofr, ((Us (t') U1 (£)))™in-  the asymptotic limit to perform the average over initial condi-
creases, and both correlations eventually decay asymptotiipns, Eq. (29). By following this procedure we observe that
cally. Furthermore, it can be observed from Egs. (31) andy| the non stationary contributions to the correlation func-
(32) that cross correlations are time-irreversible, i.e. thations cancel each other exactly and vanish.

(UL (¢ +7) Us (£)))"9 # ((Us (¢ + 7) Us (£)))" and con- Finally, in order to conclude the present section we would

sequently;y is found to break also the time-reversibility in the like to notice that the diagonal elements of the matrix in

dynamics of the harmonic BP. These features will be further . . !
analyzed in Sec. 4., where we will show that the nonequi-Eq' (29), are directly related with the average potential and

librium induced effects can be significai. of the same kinetic energies of the harmonically bound BP. Consequently,

X L ) Eqg. (29) indicates that one additional effect of the imposed
order of magnitude of the equilibrium correlations, and can, o on the dynamics of the trapped BP consists in modifying
be actually seen in numerical experiments.

its total energy, an effect that can be described in terms of an
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effective nonequilibrium temperature increasingidg36], and

and showing that the net effect of the external shear flow is

to increase the strength of the random thermal motion of the i (t+ Atwp) = @ (t)
harmonic BP. Atwp

+2M

3. Simulation Method respectively, Wherg?is the total force acting on the BRe.
; : : the sum of the contribution arising from its interaction with
3.1 Hybrid MD-MPC Algorithm the solvent particles, as stated by Eq. (34), and the external

We performed numerical experiments in order to observéiarmonic forcer”.

the effects produced by the externally imposed shear on the The dynamics of the solvent was simulated in a coarse-
dynamics of the harmonically bound BP. As it was previ- grained manner by avoiding the use of direct interactions be-
ously mentioned in Sec. 1, our implementation consisted ofween particles of the fluid but incorporating the characteris-
a hybrid technique combining MD and MPC. We consid-tic collision step of MPC. Specifically, we implemented the
ered N fluid partides of massn, and a Sing|e BP of mass Origiﬂal collision rule for MPC, known as Stochastic Rotation

M, moving in a cubic simulation box of volumg?. Sol-  Dynamics (SRD) [27,38,39]. Accordingly, at the regular pe-
vent partides were assumed to be point partides and in OII'J-OdS of time of SiZ%t, the simulation box was subdivided
der to achieve their coupling with the BP an explicit interac-into smaller cells of volume?®. The observed number of par-
tion force was introduced. This force was derived from theticles varied from cell to cell, although the average number

Weeks-Chandler-Andersen (WCA) potential [37] of particles per cellpg, was fixed throughout the simulation.
The center of mass velocity was then calculated for every cell

o e {(W.‘if‘)m B (\f-ii‘|)6+%} i |7—2] < 280 (39) and the partiqlgs Iocat(_eo! within the same ce.II were .fc_Jrced to
- ’ ! perform a fictitious collision by changing their velocities ac-

0, otherwise X
cording to
wheree is the interaction strengtly, the effective diameter ., . . . .
of the interaction, and; andz the position vectors of thih U (t) = tom (t) + R (e; € (1)) - [@ () — tem (1)] . (39)

fluid particle and the BP, respectively. _ In the previous expressioii., represents the center of
_In hybrid MD-MPC simulations the system evolves in mass velocity of the cell where thith particle is located and
time in a succession of propagation and collision steps. Whilgy (¢ (1)) is a stochastic rotation matrix. IndedR! rotates
propagation steps are carried out at short time intervals gf,a elocities by a fixed angle around the axig, which
size Atwp, collision steps take place only at regular, larger, a5 chosen at random for each collision cell by selecting a

periods of time of sizelt > Atyp. In a propagation step, pint on the surface of a sphere from a uniform probability
the positions and velocities of all the particles in the systenyistribution.

are updated by integrating the N(_ewton's equations of.motion We applied a homogeneous displacement of the MPC
through a MD scheme over the time-st@pvp. In our Sim- a5 by g vector with random components uniformly dis-
ulations we achieved the coupling between MD and MPC by, e in between-a/2 anda/2, before the collision took
applying the velocity-Verlet propagation algorithm [24]. AC- pjace. in order to guarantee the Galilean invariance of the
cordingly, for fluid particles we used the rules [24] method as it was noticed firstly by Ihle and Kroll [40, 41].
- - In Fig. 1 we present a schematic illustration of the
Ti (t+ Atwo) = 7 (1) simulated system, where the three Cartesian directions are
. (AtMD)2 - shown. For this reference frame we used periodic bound-
+ Atwpd; (t) + — == fi(t),  (35)  ary conditions along the, and x; directions, and Lees-
Edwards boundary conditions (LEBC) [42] along the-
and direction in order to drive the system to a nonequilibrium
state characterized by a stable linear velocity profile. Thus,
if a particle was observed to leave the simulation box at
the point (—L/2,x;9,2;3), it was replaced by a parti-
cle with coordinategL/2, z; 2, x; 3 + 4tL/2) and velocity
(u;1,ui2,u;,3 +vL/2); while every particle that moved
out of the box at(L/2,z;2,z;3) was substituted by an-
other particle at(—L/2,x;2,x;3 — ¥Lt/2) with velocity
(ui1,ui2,u,3 —¥L/2). The application of these bound-
ary driven conditions allowed for simulating a planar Couette
flow in the system of the formd’ () = ¢ (0) + Z - 7, with Z
(AtMD)2 . given by Eq. (1) and?'(o) :.—"y.L/Z. This velocity profile is
;@) (37 also shown schematically in Fig. 1.

[F e+ ato)+ 0], @8

w; (t + Atmp) = 4; (¢)

AQTID filt+atwo) + i (1), (36)
wherei = 1,2,..., N; u; is the velocity of the-th particle
andﬁ is the total force exerted on it, produced only by the
WCA potential given by Eq. (34).

Analogously, the position and velocity vectors of the BP
were integrated by

F(t+ Atwp) = 7 () + Atwp () +
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8 J. FERNANDEZ AND H. HiJAR

short-time simulations and finite systems it might induce a
net flow of the solvent that will eventually perturb the dynam-
ics of the BP. In a first approach we decided to implement a
momentum reset step with the purpose of reducing this effect.
This situation is similar to the one discussed in Refs. 23 and
43 where procedures for sustaining a zero net momentum in
MPC simulations supplemented with LEBC have been intro-
duced. Once again, we chose the simplest scheme in which
a uniform velocity shift of the solvent particles was produced
according to

5 (1) 7
“_’t:"it L
il (t) = (1) + L

(42)
wherep” (t) andp are the total momentum of the solvent at
time ¢t and at the beginning of the simulation, respectively.
< X3 This velocity shift was incorporated after the application of
x2 y L/2 the thermostatting step.

- y We performed our simulations according to the following

FIGURE 1.(Color online) Schematic illustration of the simulated gen_eral schedule. Inltlally,_partlcles were placed in the sim-
system. The BP is represented by a big blue sphere, while solvenwat".)n hox at ran.dom p(_)SIt!OnS. and with randqm velocities
particles are represented by small red spheres. The application o?bta'n?d fr0|_”n uniform distributions. _Overlappmg between
LEBC, as it is described in the text, establishes the planar Couettdhe fluid particles and the BP was avoided, the total momen-
flow represented by the red arrows. The harmonic force on the BPtUM of the system was fixed to zero, and its total energy was
F, is directed towards the center of the simulation box. fixed to the value of the equipartition law at the temperature
of the thermostat. Then, the hybrid MD-MPC algorithm was
It should be remarked that viscous heating is generated iapplied over a sufficiently large time period in order to guar-
MPC fluids when a plane Couette flow is established by theantee that the proper distribution of velocities and hydrody-
application of LEBC, and it is necessary to apply a thermo-namic fields were established. At this thermalization stage
stating procedure to prevent this effect and to achieve a trughere was no restoring force acting on the BP. Finally, this
thermodynamic stationary state [28, 43-45]. Diverse therforce was applied according to Eq. (3) with fixed at the
mostatting procedures exist in literature which can be usedenter of the simulation box, as it is schematically shown
to keep the temperature of MPC systems fluctuating arounth Fig. 1. The position and velocity vectors of the BP were
an average value [38]. The effects of these thermostats on thgored as functions of the simulation time in order to calculate
thermodynamic and transport properties of MPC fluids haveubsequently their statistical properties.
been discussed recently [38, 46, 47]. Here we incorporated The specific implemented numerical setups and the re-
into our algorithm one of the simplest thermostatting imple-sults obtained from them will be presented in the subsequent
mentations in which the temperature is fixed at the local levetections, where we will use simulation units rather than phys-
by rescaling the velocities of the particles located within thejcal units.
same cell. Thus, velocities were changed after each collision
step according to 3.2. Simulation Parameters
T’ (t)

i (t) = tem () +

In Eq. (40),T is the fixed temperature of the thermostat
andT"’ (t) is the current temperature of the cék.

[i; (t) — tem ()] - (40) Inthe present work we decided to use the quantitied’, a,
At, a, andng as the independent parameters of the MPC
method [25, 39]. Specifically, they were chosen to be, in
simulation units,n = 1, kgT = 1,a = 1, « 135°,
1 ) ) At = 0.1 andng = 3. These values were selected with the
T'(t) = 3@ =1k > my li; (t) — iiem (t)]°, (41)  purpose of tuning the properties of the MPC fluid in a regime
Bj=1 where collisional effects dominate over propagation or kine-
where the summation extends over the particles contained imatic effects. More precisely, for these parameters the colli-
the cell at time, n (¢). sional dynamics contributes to the kinematic viscosity of the
It can be noticed that due to the application of the externaMPC fluid with a termy.o = 0.648, while the contribution
harmonic force there exists a momentum transfer from the Bf the propagation dynamics is ondy, = 0.085, as it can
to the solvent. Although this amount of transferred momenbe verified from the analytical expressions obtained for these
tum would be expected to average zero for long-lasting simuguantities in the SRD scheme in Refs. 40, 41, 48 and 49. On
lations and to be negligible for sufficiently large systems, forthe other hand, MD parameters were fixed at 2.5 kg7,

n(t
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202 0 0.2 ) 0 0.2

FIGURE 2. (Color online) Probability distribution function for the velociti&s andUs of the harmonically bound BP coupled to a nonequi-
librium fluid with velocity gradienty = 0.1, in the case of critically damped dynamics. Caaemdb were obtained analytically from
Eq. (27), while casesandd were obtained independently from the simulation method combining MD and MPC described in Sec. 3.

o = 2a, Atmp = At/200, andM = 200m. Finally, the size  4.1. Nonequilibrium Probability Distribution Functions
of the simulation box was fixed dt = 20 a.

It should be remarked that this selection of parameters igVe performed numerical experiments for harmonic Brown-
identical to one used in Ref. 23 for the simulation of track-ian motion in fluids under plane Couette flows with five dif-
ing control of colloidal particles. There it was discussed thafferent values of the velocity gradient. In numerical units these
no instabilities are expected for the MD algorithm and thatvalues were chosen to Be= 0 (equilibrium), 0.01, 0.025,
the Brownian dynamics is expected to behave close to the.05 and0.1. Notice that for these values &f the Stokes
Markovian description [27]. Moreover, the effective friction numberS = 5/, characterizing the deviation from equi-
coefficient for the BP was also calculated for this numericallibrium in terms of the BP’s dynamics [7, 23], takes a max-
setup and it was found to be within the range- 48.9 + 1.6. imum value ofS = 0.4, which is one order of magnitude

We kept the previous parameters fixed and consideregmaller than those considered in the study of Brownian mo-
two implementations in which the force constantiook val-  tion in shear flow in the absence of harmonic constraints [7].
ues selected to reproduce the dynamics of the bound BP in th¢owever, we will show that the nonequilibrium effects of the
critically damped and under damped regimes. Respectivelyaxternal flow can be significant even for such small values
these values were = 2.9928 ~ v2 /4M andk = 4.0. of S.

4. Results As it was mentioned before, we carried out the simula-
tions for nonequilibrium stochastic harmonic oscillators in
We shall present now the results obtained from the numerithe regimes of critically-damped: (= 2.9928) and under
cal method described in Sec. 3. and compare them with thdamped £ = 4.0) dynamics. Thus, we performed a total
analytical predictions of the model based on Langevin dy-of ten simulation experiments. Due to limitations in the com-
namics introduced in Sec. 2.. We will present our results irputational resources available for the present research, our
two subsections, the first one describing the comparison besimulations were executed by allowing systems to thermalize
tween the analytical and numerical nonequilibrium distribu-in 2 x 10° steps of the MD-MPC algorithm, and extending
tion functions, and the second one describing the behavior dtirther overs x 107 steps used to generate a time series were
the correlation functions of the harmonically bound BP. the values taken b at regular time intervals of izt Atyp
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C
WU, Us) |

~0.2 0 0.2 —02 0 0.2

FIGURE 3. (Color online) The same as in Fig. 2 for the PDF of the velocity comporiénandUs of the harmonically bound BP, in the
case of under damped dynamics.

were stored. The time series was used to estimate the correrere estimated for each one of these shorter series according
sponding nonequilibrium PDFs and correlation functions. Itto the usual formula

should be stressed that from these time series we eliminated 1 M-

the first4 x 10* data in order avoid introducing into the calcu- (Ui (t +7) Uj (£))) ~ na D Uity +7)Uj (), (43)
lations values corresponding to the first stages of the applica- T =1

tion Of the harmonic force. The nonequilibrium VelOCity PDF, Where the index/ runs over the recorded Va|ues of the cut
W (U1, Us), obtained in numerical experiments for the casetime series, andV is the total data available to perform the

¥ = 0.1, is compared in Figs. 2 and 3 with their analytical ayerage corresponding to a time differenc&inally, the cor-
counterparts as expressed by Eq. (27). Figure 2 correspongsiations obtained for all the short time series were averaged
to the critically-damped case, while Fig. 3 corresponds to untg give the final numerical estimation @fU; (t) U; (1))

der damped dynamics. First, it can be noticed that the anaye applied this procedure to the ten time series correspond-
|ytica| and numerical distributions are very similar and that|ng to the five different values of the simulated Ve|0city gra-
a very good agreement between these two independent agrents and to the two restoring coefficients.

proaCheS is obtained. These figures illustrate that the effect W|th the purpose Of S|mp||fy|ng the Subsequent Compar_
of the imposed shear oV (U1, Us) consists in spreading it json between the numerical and analytical results, we will

over the direction of flow, as predicted in Sec. 2. introduce the notatioy;; for correlations normalized with
) i , respect to their maximum value at equilibrium. In the an-
4.2 Velocity Correlation Functions alytical case the normalized functions are simply given by

We also carried out the measurement of the two-time correla¥;; = M ((U; (t + 7) U; (t)))/ksT, while in the numerical
tion functions((U; (¢') U; (t))), analytically derived through case the normalization is performed by dividing with respect
Egs. (28)-(33) in Sec. 2.3. to the maximum value obtained experimentally for the corre-

Numerically, we calculated the correlations by using thelation ((U1 (t + 7) Ui (¢))). We will also introduce the nota-
time series of values of the velocity vecfdrecorded during  tion Y;5*andY;7*", to represent, respectively, the equilibrium
the experimental stage. In order to reduce the computation@nd nonequilibrium contributions of the normalized correla-
time used in the calculation of these functions, the completdions, withY;; = Y57+ v *% Timest’ andt will be also
series for each experiment was dividedsinshorter series of normalized with respect to the relaxation tifiz/2) ", and
equal length, extending over a periodif times the char- we will introduce the symbat to represent the dimensionless
acteristic relaxation timés/2)~'. The correlation functions time differencer = r3/2 = (t' —t) 5/2.
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FIGURE 4. (Color online) Normalized correlations; s, Y31 and Y33 as function of the normalized time difference,for a BP confined

in a harmonic trap in sheared flows with different velocity gradieftsCurves in casea andb have been obtained from Egs. (28)-(33);
while curves in cases andd, were calculated from independent numerical experiments based on MD and MPC. The specific simulatic
parameters correspond to a harmonic Brownian oscillator in the critically-damped case.
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FIGURE 5. (Color online) The same as in Fig. 4 for a BP confined in a harmonic trap in the under damped regime.
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We performed then the calculation of the correlationfor describing the drag force on the particle and with the as-
functionsYis (7), Y31 (7) andYzs (7) in the nonequilibrium  sumption that the stochastic forces have the same statistical
situations. We illustrate our results for the case of critically-properties than those observed in a bath in thermodynamic
damped harmonic Brownian motion in Fig. 4, and of un-equilibrium, i.e. that stochastic forces follow a Markov-
der damped harmonic Brownian motion in Fig. 5, whereGaussian process characterized by the classical Fluctuation-
the experimental and analytical correlation functions are diDissipation relation. Based on this model, we have derived a
rectly compared. It can be observed once again that there fsrmal expression for the PDF for observing the BP around
a very good agreement between these two independent ag-given point in its associated phase-space. This PDF turned
proaches, and that correlations obtained from simulations e»aut to be a Gaussian but, contrary to the case of harmonic
hibit precisely the behavior expected from the model base@rownian motion in a fluid at rest, it exhibits anisotropic con-
on Langevin dynamics. Specifically, the heightgf; is  tributions increasing with the magnitude of the externally im-
observed to increase as function ©f while the cross- posed shear. We have studied this effect in detail in the sta-
correlation functiong’;3 andYs; vanish in the equilibrium tionary limit, and shown that it could be significant even for
case and emerge with a clearly different time dependencemall values of the Stokes number characterizing the devia-
whens # 0. tions from equilibrium.

Curves presented in Figs. 4 and 5 show that the effects of - \ye have also used the Langevin model to calculate the ef-

the external shear on the correlation functions of the harmong,cts that the external shear produces on the time-dependent
ically trapped BP can be significant even for small deviationgqrrejation functions of the velocity of the confined BP. We
from equilibrium. More precisely, it can be observed in thosey e shown that the nonequilibrium bath causes an increment
figures that a numerical velocity gradient with magnitudet the autocorrelation function along the direction of the ex-

7 = 0.1, corresponding to & .Stolfesngumk@r: 0.4, Pro- ternal flow. Moreover, the imposed nonequilibrium state cou-
duces a nonequilibrium contributiary; K Whe'Ch has a mag- pjes the components of the BP’s velocity along the directions
nitude abouB0% of the equilibrium tern¥’;' In addition,  of the external shear and of the external velocity gradient.
for the same value of the Stokes number; (7) reaches a  Thjs coupling was found to increase linearly with the strength
maximum height whose magnitude represents abo¥t of ¢ the velocity gradient and to be non symmetric and time-
the maximum value of the equilibrium correlatidiy;’, while  jreversible.

for the cross-correlatioki; (7) this percentage is abod%.

These observations and those presented in Sec. 4.1 con- In the second part of this work we have used a numeri-

firm the existence of the nonequilibrium effects induced bycaI method based on MD and MPC to simulate the motion of

the coupling of the Brownian dynamics with the sheared batht.he harmonically confined BP in plane Couette flows with

We conclude that the Langevin model from which these ef_velocity gradients of diyerse magnitude. This a”o"Y?d.“S
fects were derived is satisfactory within the range of the nul0 measure from n.umerlcall experlments_ the nonequilibrium
merical parameters used in the present work. PDFs and correlation functions derived independently from
It must be finally stressed that although the very good cor:[he Lat?]gel\)/mh mpdel. -I(;het r(;ulr)n etrLcaI rezulltsﬂ\:v ere foundt_to
respondence exhibited by the analytical and numerical curve ow the behavior predicted by the model, thus suggesting

in Figs. 4 and 5, a small difference between them can be ot this is good enough to describe the stochastic dynam-

served consisting in that the numerical correlations extend ifcS of the harmonically bound BP within the range of the

time over slightly longer periods than the theoretical corre—Sme.Cted S|mulat|on.parameters. More importantly, .t.he_ nu-
lations. The reason for this difference is that in the simula-Merical results confirm the existence of the nonequilibrium

tion method used in the present study, hydrodynamic corre(-:c’ljplmg mechanism which breaks the spatial symmetry and

lations and compressibility effects are naturally incorporatec}'me'revers'b'“ty of |.ts ('jyna'mlcs.

via the application of the MPC algorithm [25, 26]. These ef-  The slight quantitative differences found between the an-
fects are well known to produce a broadening of the correalytical and the numerical results could be attributed to the
lation functions in the form of long-time tails [50-53], and incompleteness of the theoretical description, which is unable
can not be correctly obtained from the Langevin model preto describe the effects of compressibility and hydrodynamic
sented here. An extension of the present analysis is undé&errelations on the motion of the BP, while those are naturally
current research [36], in which compressibility and hydrody-incorporated by the used simulation technique.

namic effects on the dynamics of the harmonically bound BP |t must be also stressed that our basic assumption con-

in a shear flow are considered. cerning the independence of the stochastic forces on the ex-
ternal imposed shear, is not strictly correct [3, 22], and it
5. Conclusions could be interesting to consider the solution of the present

problem from an alternative methodt.g. Mesoscopic
We have studied the Brownian motion of a particle confinedNonequilibrium Thermodynamics which would allow us to
in a harmonic trap and a nonequilibrium environment sub-obtain a Fokker-Planck equation with corrections to the dif-
jected to a uniform shear. For this purpose we have considusion tensor, and to check whether they improve the agree-
ered a Langevin model supplemented with theéffetheorem  ment with the present numerical results.
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