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Investigation of electrical RC circuit within the
framework of fractional calculus
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In this paper, charging and discharging processes of different capacitors in electrical RC circuit are considered theoretically and experimen-
tally. The non-local behaviors in these processes, arising from the time fractality, are investigated via fractional calculus. In this context, the
time fractional differential equation related to electrical RC circuit is proposed by making use of Caputo fractional derivative. The result-
ing solution exhibits a feature in between power law and exponential law forms, and is obtained in terms of Mittag-Leffler function which
describes physical systems with memory. The order of fractional derivative characterizes the fractality of time and being considered in the
interval0 < α ≤ 1. The traditional conclusions are recovered forα = 1, where time becomes homogenous and system has Markovian
nature. By using time fractional approach, the discrepancies between the experimentally measured data and the theoretical calculations have
been removed.
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1. Introduction

A series combination of a resistance and a capacitor is the
simplest RC circuit and shown in Fig. 1. The initially un-
charged capacitor begins to charge when the switch is closed.
V (t) is the time dependent voltage (potential difference)
across the capacitor and can be found by using Kirchhoff’s
current law. These results are in the following differential
equation which is linear and first order

RC
dV (t)

dt
+ V (t) = ε. (1)

The solution of Eq.(1) yields the following formula

V (t) = ε
[
1− e−

1
RC t

]
. (2)

As can be seen in Fig. 2, if the circuit consists of only an
initially charged capacitor and a resistance, the capacitor be-
gins to discharge its stored energy through the resistance over
time. The differential equation written by using Kirchhoff’s
current law is as follows,

RC
dV (t)

dt
+ V (t) = 0. (3)

By solving this equation, it can be seen that the time de-
pendent voltage across the capacitor yields the formula for
exponential decay:

V (t) =
Q

C
e−

t
RC , (4)

where, Q is the capacitor charge at timet = 0 [1].
Almost all of the physical processes have a non-

conservative feature, since they involve irreversible dissipa-
tive effects such as friction. As a result of these dissipative ef-
fects, time-reversal symmetry fails for non-conservative sys-
tems. Therefore, the equations which determine the non-
conservative systems should be non-local in time. But, the
well known equations used in standard calculations are lo-
cal in time, and inadequate to take into account the non-
conservative nature of physical processes. Hence, the exper-
imental results do not comply with standard theoretical cal-
culations. As an example, the dissipative effects caused by
electrical resistance or Ohmic friction are also found in the
electrical circuits [2,3]. In the literature, there exist numerous
studies with the aim of placing these dissipation effects on to
a relevant theoretical basis. With this purpose, the fractional
calculus is applied to a variety of electrical circuit problems
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FIGURE 1. Charging a capacitor in RC circuit.

FIGURE 2. Discharging a capacitor in RC circuit.

as a useful mathematical tool. The best known of these stud-
ies is Podlubny’s applications [4–6]. Another study on this
subject was carried out by Rousanet al. In that study, the
differential equations related to RC and RL circuits were
merged in a single equation [7]. In addition to these studies,
singular fractional linear systems and positivity, and reach-
ability of fractional electrical circuits were studied by Kac-
zorek [8, 9]. Applications of integer and fractional models
in electrochemical systems, the simple free running multivi-
brator built around a single fractional capacitor and evolu-
tion of a current in a resistor were examined by Jesus and
Machado [10], Maundyet al. [11] and Obeidatet al. [12],
respectively. A new and simple algorithm was proposed to
obtain analytical solution of the time fractional Fokker–Plank
equation which arises in circuit theory by Kumar [13].

The purpose of this study is to provide a mathematical
formalism in order to compensate the incompatibility be-
tween theoretical and experimental results. It is an interest-
ing contradiction that Eq. (1) and Eq. (3) are linear and lo-
cal in time, while the realistic behavior of theRC electric
circuit is non-linear and non-local in time due to ohmic fric-
tion and temperature. It could be said that linear approach
is only an idealization of the description of theRCelectrical

circuit. According to us, the non-locality arising from time
fractality and the non-linear behavior ofRC electrical cir-
cuit can be described in a realistic manner with the help of
fractional derivatives. In the previous studies for this pur-
pose, linear equation, namely Eq. (1), is considered with
fractional derivatives, but these equations are not acceptable
physically due to the dimensional incompatibility of the so-
lutions [14–16].

Gomez et al. have proposed a fractional differential
equation for mechanical oscillations of a simple system [17],
transmission line model [18], RLC circuit [19] and RC cir-
cuit [20–22]. To keep the dimensionality of the differential
equations a new parameterσ was introduced. The existence
of fractional structures in the system was characterized by the
parameterσ. They defined a relation between the fractional
derivative order(α) and this new parameter(σ).

Different from the aforementioned studies, in the present
study, Planck units are used to preserve the dimensional com-
patibility in Eq. (1). Thus, both sides of the fractional form
of the Eq. (1) have same dimension. The Planck time in
our calculations corresponds to theσ parameter introduced
by Gomezet al. [17–20]. The empirical relationship between
α andσ was defined asα = σ/RC in [20]. Theσ parameter,
characterizing the fractional structures in system, is changed
with respect to the fractional derivative orderα. However,
Planck timetp used in this study is constant.

The present paper is organized as follows. In Sec. 2, a
brief overview of fractional calculus is presented. In Sec. 3,
Eq. (1) is fractionalized by using a Caputo fractional deriva-
tive operator, and the solution of fractional equation is ob-
tained in terms of Mitag-Leffler function. In Sec. 4, by mak-
ing use of different capacitors and resistances, the numerical
calculations have been performed for charging and discharg-
ing RC circuits, and the non-linear behavior of RC electrical
circuit is investigated with the help of graphical representa-
tions. Finally, conclusions are summarized in the last section.

2. Mathematical Preliminary

Fractional calculus is a field of mathematical analysis where
integral and derivative operators of non-integer order take
place. More realistic description of the physical systems has
been proposed by making use of the derivatives of fractional
order. Some fundamental definitions used in the literature are
the Riemann-Liouville, the Grünwald-Letnikov, the Weyl and
the Caputo fractional derivatives [4, 23–28]. In the previous
section, we will prefer to use Caputo fractional derivative to
formulate the initial value problems related to RC electrical
circuit. The reason of this choice is that the initial conditions
of the problems taken into account by using Caputo fractional
derivative are physically acceptable. On the other hand, when
the Riemann-Liouville fractional derivative is used, one en-
counters physically unacceptable initial conditions [4].
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In the Riemann-Liouville formalism, the fractional inte-
gral of orderα is given by

Jαf(t) =
1

Γ(α)

t∫

0

(t− τ)α−1f(τ)dτ, (5)

where,α is any positive real number andΓ(α) is Gamma
function. By using the Riemann-Liouville fractional integral,
Caputo’s fractional derivative is defined as follows:

Dα
c f(t) = Jm−αDmf(t), (6)

Dα
c f(t) : =





1
Γ(m−α)

t∫
0

f(m)(τ)
(t−τ)α+1−m dτ, m−1 < α ≤ m,

dmf(t)
dtm α = m,

(7)

where,α > 0 is the order of fractional derivative andm is
the smallest integer greater thanα, namelym− 1 < α ≤ m.
The Laplace transform of the Caputo’s fractional derivative
is formulated as follows:

L(Dα
c f(t)) = sαF (s)−

m−1∑

k=0

sα−k−1(D(k)f(t) |t=0), (8)

where,F (s) is the Laplace transform of the functionf(t),
ands is the Laplace transform parameter. Before concluding
this section, it is useful to briefly introduce the Mittag-Leffler
function which plays an important role in the theory of frac-
tional differential equations. This function is defined by the
series expansion

Eα(x) =
∞∑

n=0

xn

Γ(nα + 1)
, (9)

and is a generalization of the exponential function,i.e.,
E1(x) = exp(x) [23-26].

3. Fractional Calculus Analysis of Electrical
RC Circuit

For analyzing the physical processes by using the related dif-
ferential equations, Planck units have a special importance
since they describe the mathematical expressions of physi-
cal laws in a non-dimensional form. In this context, Eq. (1)
which represents the charging RC circuit given in Fig. 1, can
be rewritten in a non-dimensional form by using Planck time
unit as follows:

tp
dV (t)

dt
+ tp

1
RC

V (t) = tp
ε

RC
(10)

where,tp =
√
~G/c5 is Planck time,~, G andc are reduced

Planck constant, gravitational constant and speed of light, re-
spectively. In Eq. (10), the first order time derivative can be
changed to a fractional time derivative of orderα. Thus, the

time-fractional differential equation of electrical RC circuit
is given by

tαp Dα
c V (t) + tp

1
RC

V (t) = tp
ε

RC
(11)

where, Dα
c denotes the Caputo fractional derivative. The

Planck timetp in Eq. (11) varies with powerα in order to
preserve the units ofV (t) [24]. Forα = 1, Eq. (11) reduces
to the standard one. This situation is acceptable physically
since the both sides of the Eq. (11) have same dimensions,
namely volt.

The solution of Eq. (11) can be obtained by performing
the Laplace transform to Eq. (11) which leads to

Ṽ (s) =
t1−α
p ε

RC

1
sα+1

(
sα

sα + t1−α
p

RC

)
(12)

where,Ṽ (s) is the Laplace transform of theV (t). By follow-
ing the way introduced in [24], Eq. (12) can be expressed as
a series expansion

Ṽ (s) = −ε

∞∑
n=1

(−1)n
(

t1−α
p

RC

)n

snα+1
. (13)

Then performing the inverse Laplace transform to each terms
of Eq. (13) leads to the following results;

V (t) = ε


1−

∞∑
n=0

(
− t1−α

p

RC tα
)n

Γ(nα + 1)


 , (14)

V (t) = ε

[
1− Eα

(
− t1−α

p

RC
tα

)]
, (15)

where, Eα

(
− t1−α

p

RC tα
)

represents the Mittag-Leffler func-
tion.

4. Results and Discussion

During the charging capacitor, experimental values and cal-
culated results obtained from Eq. (2) are not exactly equiv-
alent. To eliminate this inconsistency, Eq. (1) has been re-
defined by using Planck time unit and Caputo definition of
fractional derivative as Eq. (11), and the solution of this new
equation has been obtained as Eq. (15).

The laboratory experiments have been performed in Elec-
tronic Laboratory of Physics Department in Dumlupınar Uni-
versity. Eq. (2) and Eq. (15) have been used for comparison
of the standard and fractional calculations with experimental
results respectively.

To obtain the measurement data, the RC circuit in Fig. 1
has been set up by making use ofε = 1 V, R = 10 kΩ and
different capacitors such asC = 0.047 F, C = 0.0423 F,
C = 0.0376 F, C = 0.0329 andC = 0.0282 F. In calcula-
tions, the value of internal resistance of battery is included in
theR value of resistance. In Fig. 3, for the aforementioned
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FIGURE 3. During charging a capacitor, the changing of volt-
age of capacitor in the course of time forε = 1 V, R = 10 kΩ
and different capacitors which areC = 0.047 F, C = 0.0423 F,
C = 0.0376 F, C = 0.0329 andC = 0.0282 F. (The error bars
have been shown with yellow).

five different capacitors, experimental results have been com-
pared with the standard and fractional calculations respec-
tively. In fractional calculations, the values of fractional
derivative order are taken asα ≈ 0.998. As can be seen in
Fig. 3, the experimental values are smaller than the standard
ones. However, for the fractional derivative orderα ≈ 0.998,
the fractionally calculated results are almost equivalent to the
experimental values.

For the values ofε = 1 V, C = 0.047 F and five differ-
ent resistance such asR = 1 kΩ, R = 2 kΩ, R = 3 kΩ,
R = 4 kΩ andR = 5 kΩ the comparisons of standard and
fractionally obtained results with the experimental data are
shown in Fig. 4. As can be seen in Fig. 4, the voltage val-
ues obtained from standard calculations are bigger than the
experimental ones, whereas the fractionally obtained results
are consistent with the experimental data for theα ≈ 0.998
value.

This discrepancy between the experimental data and the
results obtained from standard calculations means that, some
losses are not taken into account in the standard approach.
We think that, the resistances caused by circuit components
lead to these losses. The standard mathematical approach

FIGURE 4. During charging a capacitor, the changing of voltage
of capacitor in the course of time forε = 1 V, C = 0.047 F and
different resistances which areR = 1 kΩ, R = 2 kΩ, R = 3 kΩ,
R = 4 kΩ andR = 5 kΩ. (The error bars have been shown with
yellow).

presumes this event as a linear process, and recommends us-
ing a linear differential equationi.e., Eq. (1). Whereas the
physical process observed in electrical RC circuit is nonlinear
and non-local in time. Hence, using a linear differential equa-
tion is not an appropriate mathematical tool for description of
this process. The realistic manner of the process is that, the
resistance value(R) of circuit elements is not a constant pa-
rameter, and typically increases with increasing temperature.
The temperature dependence of resistance is usually defined
in the following equation

R = R0 [1 + a (T − T0)] (16)

where,a is called the temperature coefficient of resistance,
T0 is a reference temperature (room temperature), andR0

is the resistance at temperatureT0. Here,a is a fitting pa-
rameter obtained from measurement data, and varies with the
reference temperature. Therefore, Eq. (16) is only a linear
approximation, and assuming the temperature coefficient of
resistancea as a constant parameter is an idealization for de-
scription the physical process [25]. It is concluded from this
fact that, the parametera is not a constant, and the temper-
ature dependence of the resistance has a nonlinear form in
a realistic manner. Since the values of resistance increase
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FIGURE 5. During discharging a capacitor, the changing of volt-
age of capacitor in the course of time forR = 10 kΩ and different
capacitors which areC = 0.047 F, C = 0.0423 F, C = 0.0376 F,
C = 0.0329 andC = 0.0282 F.

nonlinearly with increasing temperature, the voltage value of
capacitor leads to a lower value than the predicted value by
Eq. (2). This loss of voltage due to the temperature is taken
into account by using fractional calculus approach. As seen
in Figs. 3 and 4, fractional calculus approach places the ex-
perimental results on a more realistic theoretical basis, and
defines the nonlinear behavior of the physical process more
close to reality. From these results, it could be said that there
is a close relationship between temperature and fractional
derivative order alpha. From microscopic point of view, it is
well known that temperature could be considered as a mea-
sure of energy. According to Heisenberg uncertainty princi-
ple, energy and time are closely related to each other. So,
it is plausible to think that a similar relation could be found
between temperature and time. According to our opinion, in-
creasing temperature of the resistance gives rise to fraction-
alization of time. In fractional formalism, this fractality of
time is measured by fractional derivative order alpha, and the
non-locality behavior of the physical process in time can be
determined by Eq. (11). Since the temperature coefficient of

resistancea depends on the reference temperature, a similar
relationship may also be exist between thea coefficient and
the fractional derivative orderα. Consequently, fractional
derivative orderα can be accepted as a measure of nonlinear-
ity of the physical process and non-locality behavior in time.
The case ofα = 1 corresponds to linear situation (ideal case
or local behavior in time) where the resistance values(R)
are considered as a constant parameter, and the temperature
(energy) and time are not conjugate to each other, whereas
the case ofα 6= 1 corresponds to nonlinear situation of the
physical process (realistic behavior that is non-local in time).

For the circuit shown in Fig. 2, it is seen from Fig. 5
that the experimental data are equivalent to the results ob-
tained from the solution of Eq. (3). In this case, since there
is no power supply in circuit, the effect of temperature could
be omitted. Hence there is no need to make time-fractional
approach(α = 1).

5. Conclusion

In this study, different from the Refs. 17 to 20, the Planck-
time has been used to preserve the dimensional compatibility
in equations. Hence, fractional differential equation of the
electrical RC circuit is determined as Eq. (11). Dimension of
each side of this equation is equal to each other.

As can be seen in Figs. 3 and 4, the traditional (standard)
results are bigger than the experimental results for both dif-
ferent capacitors and resistances. This situation shows that
there are some dissipative effects which are not considered
in the standard theoretical calculations. These dissipative ef-
fects, which occur due to the ohmic friction and temperature,
make the behavior of the electrical RC circuit be nonlinear
and non-local in time. Consequently, instead of the standard
calculations, Eq. (11) is more useful to describe the nonlin-
ear behavior of the electrical RC circuit in a more realistic
manner. In this context, the measured experimental results
could be exactly obtained within the fractional calculus ap-
proach for the orderα ≈ 0.998 of the fractional derivative.
For the case ofα = 1, the fractionally obtained solutions
which emerge in the scope of the study recover the solutions
of the traditional calculations.

In the microscopic level, energy and time cannot be han-
dled independently from each other. From thermostatistics
point of view, energy and temperature are also closely re-
lated to each other. Hence, it is plausible to say that temper-
ature and time are conjugate to each other, and the change
of temperature gives rise to fractionalization of time. Con-
sequently, the energy losses, caused by dissipative effects
such as ohmic friction (or temperature dependent electrical
resistance), could be taken into account by time fractional
approach.

Rev. Mex. Fis.61 (2015) 58–63



INVESTIGATION OF ELECTRICAL RC CIRCUIT WITHIN THE FRAMEWORK OF FRACTIONAL CALCULUS 63

1. R.A. Serway, R. Beichner,Physics for Scientists and Engi-
neers with Modern Physics. (Saunders College Publishing, Fort
Worth, 2000).

2. F. Riewe,Phys. Rev. E53 (1996) 1890.

3. L.H. Yu, C.P. Su,Phys. Rev. A49 (1994) 592.

4. I. Podlubny, Fractional Differantial Equations, (Academic
Press, San Diego, 1999).

5. I. Podlubny, I. Petras, B.M. Vinagre,et al., Nonlinear Dynam-
ics29 (2002) 281.

6. D. Sierociuk, I. Podlubny, I. Petras,IEEE Transactions on Con-
trol Systems Technology21 (2013) 459.

7. A.A. Rousan, N.Y. Ayoub, F.Y. Alzoubi,et al., Fractional Cal-
culus & Applied Analysis9 (2006) 33.

8. T. Kaczorek,Int. J. Appl. Mat. Comput. Sci.21 (2011) 379.

9. T. Kaczorek,Acta Mechanica et Automatica5 (2011) 42.

10. I.S. Jesus, J.A.T. Machado,Mathematical Problems in Engi-
neering2012(2012).

11. B. Maundy, A. Elwakil, S. Gift,Analog Integr. Circ. Sig. Pro-
cess62 (2009) 99.

12. A. Obeidat, M. Gharaibeh, M. Al-Ali,et al., Fractional Calcu-
lus & Applied Analysis14 (2011) 247.

13. S. Kumar,Z. Naturforsch68a(2013) 777.

14. S. Westerlund, L. Ekstam,IEEE Transactions on Dielectrics
and Electrical Insulation1 (1994) 826.

15. B.T. Krishna, K.V.V.S. Reddy,Journal of Electrical Engineer-
ing 8 (2008) 41.

16. V. Uchaikin, R. Sibatov, D. Uchaikin,Phys. Scr.2009(2009).

17. J.F. Gomez-Aguilar, J.J. Rosales-Garcia,et al., Revista Mexi-
cana de Fisica58 (2012) 348.

18. J.F. Gomez-Aguilar, D. Baleanu,Z. Naturforsch69a(2014) 1.

19. F. Gomez, J. Rosales, M. Guia,Central European Journal of
Physics11 (2013) 1361.

20. J.F. Gomez-Aguilar, J. Rosales-Garcia,et al., Ingenieria Inves-
tigacion y Tecnologia15 (2014) 311.

21. J.F. Gomez-Aguilar, R. Razo-Hernandez, D. Granados-
Lieberman,Rev. Mex. Fis.60 (2014) 32.

22. M. Guia, J.F. Gomez, J.J. Rosales,Central European Journal
of Physics11 (2013) 1366.

23. K.B. Oldham, J. Spanier,The Fractional Calculus, (Academic
Press, San Diego, 1974).

24. K.S. Miller, B. Ross,An introduction to the Fractional Cal-
culus and Fractional Differential Equations, (John Wiley and
Sons Inc., New York, 1993).

25. R. Hilfer, Applications of Fractional Calculus in Physics,
(World Scientific, Singapore, 2000).

26. A. Carpinteri, F. Mainardi,Fractals and Fractional Calculus in
Continuum Mechanics, (Springer Verlag: New York, 1997).

27. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo,Fractional
Calculus Models and Numerical Methods. Series on Complex-
ity, Nonlinearity and Chaos, (World Scientific, 2012).

28. D. Cafagna, Fractional Calculus,A mathematical tool from past
for present engineers, (IEEE Industrial Electronics Magazine,
Summer, 35-40, 2007).

29. M. Naber,J. Math. Phys.45 (2004) 3339.

30. M.R. Ward, Electrical Engineering Science, (McGraw-Hill,
New York, 1971).

Rev. Mex. Fis.61 (2015) 58–63


