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Perturbation method applied to a basic diode circuit
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Because of the exponential characteristic of silicon diodes, exact solutions cannot be established when operating point and transient analysis
are computed. To overcome that problem, the present work proposes a perturbation method which allows obtaining approximated analytic
expressions of diode-based circuits. Simulation results show that numerical solutions obtained by using the proposed method are similar to
those reported in literature, with the advantage of not requiring a user-selected arbitrary expansion point. Additionally, the method does not
use the Lambert functionW , reducing the proposed solution complexity, which makes it suitable for engineering applications.
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1. Introduction

In general terms, to find exact solutions of operating point
and transient analysis of circuits containing diodes is not
possible, mainly because the exponential characteristic of
diodes. However, it is possible to obtain expressions that al-
low modeling diode behavior by using approximate methods.

In Ref. 1, an approximate solution for transient response
current in a serial circuit composed by an independent volt-
age source, an inductor, a resistance and a diode is proposed.
Such solution have a good precision, but it requires a previ-
ous knowledge of the approximate steady state of the circuit
in order to select an arbitrary expansion point. In Ref. 2,
an explicit analytic expression for the DC current of a basic
circuit containing a voltage source, a resistor, and a diode is
achieved. Nevertheless, such expression is found in terms of
LambertW function, which increases the complexity making
harder its application in engineering. In the same manner, in
Ref. 1 two high-precision approximate analytical solutions
for DC current in the diode circuit are proposed. What is
more, to compute the first solution also requires to know a
roughly approximate value for the expected DC current to
select the expansion point, while the second solution requires
the use of the LambertW function mentioned before.

In this work, a perturbation method [3-9] which do not
need an arbitrary expansion point or the use of Lambert func-

tion W , is proposed to obtain approximate solutions for DC
and transient domains in diode-based circuits. Finally, some
comparisons between the numerical approximations obtained
using the proposed method, and the expressions reported in
Ref. 1 and 2, will be shown.

2. Circuit analysis of a basic diode circuit

Figure 1(a) shows a circuit containing a independent voltage
source (V ), a resistor (R), an inductor (L), and a diode (D).
The voltage drop at the diode is given by the expression

VD = VT ln
(

i(t)
Is

+ 1
)

, i(t) > 0 (1)

whereIs is the saturation current of the diode andVT is the
thermal voltage.

Now, we establish the nonlinear differential equation that
describes the transient behavior for the circuit

Ri(t) + L
di(t)
dt

+ VT ln
(

i(t)
Is

+ 1
)
− V = 0,

i(0) = A, (2)

where initial conditioni(0) = A stands for the the initial
current circulating through inductorL in t = 0.
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Equation (2) does not have analytic solution due to the
natural logarithm term from the diode model. Hence, Ec.(1)
can be approximated as

VD = VT ln
(

i(t)
Is

)
= VT ln(i(t))− VT ln(Is). (3)

Next, reformulating (2) using (3)

Ri(t) + L
di(t)
dt

+ VT ln(i(t))− VT ln(Is)− V = 0,

i(0) = A. (4)

From perturbation theory [3-11], the current can be ex-
pressed in function of a power series ofVT

i(t) = i0(t) + i1(t)VT

+ i2(t)V 2
T + i3(t)V 3

T + i4(t)V 4
T + · · · (5)

In order to keep solution simple, only the two first terms
of (5) are substituted in (4). By regrouping terms

R(i0(t) + i1(t)VT ) + L

(
di0(t)

dt
+

di1(t)
dt

VT

)

+ VT ln(i0(t)) + VT ln
(

1 +
i1(t)
i0(t)

VT

)

− VT ln(Is)− V = 0, (6)

Now, by replacing the first term of the Taylor expansion of
natural logarithm, we obtain

R(i0(t) + i1(t)VT ) + L

(
di0(t)

dt
+

di1(t)
dt

VT

)

+ VT ln(i0(t)) + VT
i1(t)
i0(t)

VT

− VT ln(Is)− V = 0, (7)

regrouping terms in function ofVT , and equating to zero each
coefficient, the following system is formed

V 0
T : L

i0(t)
dt

− V + Ri0(t) = 0, i0(0) = A,

V 1
T : L

i1(t)
dt

+ Ri1(t)− ln(Is) + ln(i0(t))

= 0, i1(0) = 0. (8)

FIGURE 1. a) t > 0, i(0) = A. Basic diode circuit, b) Transient
for six sets of parametersE = [E1, E2 , E3, E4, E5, E6], as it is
shown at Tables I and II. Numerical solution RK4 for (2) (circles)
and its approximate solutions (11) (solid line) and (13) (solid cir-
cles) and c) Zoom to (b). Time is in Seconds and current in Ampers.

Solving the system (8), we obtain

i0(t) =
V

R
+ exp

(
−Rt

L

) (
A− V

R

)
,

i1(t) =
[
ln(Is)

R
exp

(
Rt

L

)
+ G(t) +

(
1
L
− RA

V L

)
t

− ln(Is)
R

+
A

V
ln(A)

]
exp

(
−Rt

L

)
, (9)

where

G(t) =
(

1
R

[
1− exp

(
Rt

L

)]
− A

V

)

× ln
(

1
R

[
V + (RA− V ) exp

(
−Rt

L

)])
. (10)
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Using (5) and (9), we obtain the following first order ex-
pression for the transient current

i(t) = i0(t) + i1(t)VT ,

=
V

R
+ exp

(
−Rt

L

)(
A− V

R

)

+ VT

[
ln(Is)

R
exp

(
Rt

L

)
+ G(t) +

(
1
L
− RA

V L

)
t

− ln(Is)
R

+
A

V
ln(A)

]
exp

(
−Rt

L

)
, (11)

The expression for steady state current (DC current) can
be obtained calculating the limit (11) as

idc = lim
t→∞

i(t) =
1
R

(
V + VT ln

(
IsR

V

))
,

V > 0. (12)

3. Another approximations

In Ref. 1, the transient response for the same circuit was cal-
culated, given the result

i(t) = idc + (A− idc) exp
(
− (RB + VT )t

BL

)
, (13)

where the DC currentidc is

idc =
B(V − VT ln (B/Is) + VT )

RB + VT
,

V ≥ VT ln(B/Is)− VT . (14)

whereB is the is the current at the expansion point. After
several algebraic manipulations of (14), the need of an ex-
pansion point for B [1] is not longer required, resulting

idc = Is exp
(

V

VT
−W

(
IsR

VT
exp

(
V

VT

)))
, (15)

whereW represents the LambertW function [12-22].

TABLE I. Transient (2) RK4 and its approximate solutions (11) and (13); DC exact solution (16) and its approximations (12), (14)
and (15); for 3 different sets ofE =[V (Volts), R (Ω), L (H), A (Ampers)].

Transient Time (Sec) E1=[3,5,0.1,0] E2=[4,10,0.2,0.1] E3=[5,15,1,0.2]

This work (11) 0.00 0.0000000000 0.1000000000 0.2000000000

RK4 0.00 0.0000000000 0.1000000000 0.2000000000

(13) [1] 0.00 0.0000000000 0.1000000000 0.2000000000

This work (11) 0.02 0.2940427361 0.2469713801 0.2228947813

RK4 0.02 0.2948394355 0.2471752991 0.2229078118

(13) [1] 0.02 0.2932367519 0.2466090191 0.2227823932

This work (11) 0.05 0.4235142569 0.3124639698 0.2465129412

RK4 0.05 0.4247266709 0.3128637547 0.2465683401

(13) [1] 0.05 0.4242469063 0.3125006693 0.2463499002

This work (11) 0.10 0.4568994517 0.3294586538 0.2683204993

RK4 0.10 0.4582435276 0.3299344440 0.2684483344

(13) [1] 0.10 0.4581825403 0.3297197849 0.2681875195

This work (11) 0.15 0.4595585919 0.3308233101 0.2785541171

RK4 0.15 0.4609175439 0.3313083307 0.2787337170

(13) [1] 0.15 0.4608970616 0.3311150649 0.2784762497

This work (11) 0.30 0.4597884740 0.3309423605 0.2866721322

RK4 0.30 0.4611492802 0.3314284941 0.2869128044

(13) [1] 0.30 0.4611329550 0.3312380295 0.2866836894

DC E1=[3,5,0.1,0] E2=[4,10,0.2,0.1] E3=[5,15,1,0.2]

This work (12) 0.459788589306 0.330942421957 0.287609148788

Exact (16) [2] 0.461149372833 0.331428537242 0.287861896561

Aprox. (14) [1] 0.461133075751 0.331238094926 0.287642323377

Aprox. (15) [1] 0.461149372834 0.331428537241 0.287861896560

Rev. Mex. Fis.61 (2015) 69–73



72 H. VAZQUEZ-LEAL et al.

As in Ref. 2, an exact expression for the current in the
circuit shown in Fig. 1(a) is formulated

idc = −Is +
VT

R
W

(
IsR

VT
exp

(
V + IsR

VT

))
. (16)

4. Numerical Simulation and Discussion

It was considered for all numerical examples that
Is = 1E-12 A and VT = 25.85 mV just as re-
ported in Ref. 1. Some representative points from
the circuit transient analysis, for six sets of parameters
E = [E1, E2, E3, E4, E5, E6], are shown in Table I and
Table II. Previously reported numerical solutions, such as the
approximation (13) reported in Ref. 1 (EmployingB = 0.5
as an expansion point), and the numerical curve obtained by
using a fourth order Range-Kutta numerical method (RK4),
are compared with the approximation obtained in this work
(11). Therefore, Table I and Table II show the DC steady
current value obtained by using the proposed approximation
(12), the exact solutions (16) obtained by [2], and the approx-
imations (14) and (15) reported by [1]. It can be noticed that
expression (15) is the most exact, followed by (14) and (12),

which have similar precision. For instance, for the caseE6,
relative errors of DC analysis are 8.2E-12, 1.5E-4, and 3.1E-4
for (15), (14), and (12), respectively. Besides, from both Ta-
bles, it can be observed that the proposed approximation (11)
achieved a good accuracy, similar to the obtained by (13).
For instance, for caseE6, the average relative error of tran-
sient analysis for the selected points is 5.7E-5 and 1.9E-5 for
(11) and (13) respectively. However, (11) and (12) have the
advantage of not requiring any arbitrary expansion pointB,
which implies to know the approximate value for DC current
in the circuit (see Fig. 1(a)). For that reason, the proposed
method provides a more general analytic approximation for
both transient current and DC expression.

In addition, Eq. (12), besides its simplicity, is just ex-
pressed in terms of exponentials and natural logarithms, and
the LambertW function is not required as in the exact (16)
and approximate expressions (15), which reduces its com-
plexity and makes it suitable for engineering applications.
Finally, Figs. 1(b) and 1(c) are a graphical comparison of
numerical data presented in Table I and Table II, where it can
be observed the high accuracy of the proposed approxima-
tions. Based on those results, further works can be focused

TABLE II. Transient (2) RK4 and its approximate solutions (11) and (13); DC exact solution (16) and its approximations (12), (14)
and (15); for 3 different sets ofE =[V (Volts), R (Ω), L (H), A (Ampers)].

Transient Time (Sec) E4=[6,50,0.5,0.3] E5=[7,30,2,0.4] E6=[8,20,2.5,0.5]

This work (11) 0.00 0.3000000000 0.4000000000 0.5000000000

RK4 0.00 0.3000000000 0.4000000000 0.5000000000

(13) [1] 0.00 0.3000000000 0.4000000000 0.5000000000

This work (11) 0.02 0.1327916582 0.3508506734 0.4800694461

RK4 0.02 0.1328176289 0.3508526347 0.4800704783

(13) [1] 0.02 0.1326159952 0.3508437863 0.4800704512

This work (11) 0.05 0.1080892378 0.2999834489 0.4555697682

RK4 0.05 0.1081446676 0.2999938148 0.4555755750

(13) [1] 0.05 0.1077772223 0.2999615267 0.4555749149

This work (11) 0.10 0.1068193756 0.2528235002 0.4258116764

RK4 0.10 0.1068791939 0.2528539440 0.4258306310

(13) [1] 0.10 0.1064887143 0.2527677354 0.4258266654

This work (11) 0.15 0.1068109940 0.2305930709 0.4058814021

RK4 0.15 0.1068708896 0.2306427324 0.4059161317

(13) [1] 0.15 0.1064800771 0.2305037616 0.4059064256

This work (11) 0.30 0.1068109383 0.2128518485 0.3776080977

RK4 0.30 0.1068708682 0.2129315062 0.3776843143

(13) [1] 0.30 0.1064800188 0.2127081260 0.3776537615

DC E4=[6,50,0.5,0.3] E5=[7,30,2,0.4] E6=[8,20,2.5,0.5]

This work (12) 0.106810938331 0.210778575971 0.365471210979

Exact (16) [2] 0.106870843487 0.210865816323 0.365587482915

Aprox. (14) [1] 0.106480018836 0.210620562523 0.365530401850

Aprox. (15) [1] 0.106870843487 0.210865816323 0.365587482912
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to find an equivalent circuit based on Ec. (12), which allows
the analysis of larger circuit in DC domain. In the same fash-
ion, applications of Ecs. (11) and (12) can be extended to ex-
plore their possibilities of being used to calculate other ana-
lytical characteristics, such as transitory power consumption,
symbolic small signal analysis [23] and symbolic sensitivity
analysis, among many others.

5. Conclusions

In this work, two approximate solutions for a basic diode,
both in DC domain and transient analysis, were proposed.
Several simulations results allowed us to conclude that pro-
posed approximations have a similar accuracy in comparison

which similar works reported in literature, but with a reduced
complexity derived from the fact of not requiring: a pre-
viously known expansion arbitrary point and the use of the
Lambert functionW . Finally, the obtained expression for the
steady state current or DC current is easier to use than other
solutions reported in recent literature, with no significant loss
in accuracy.

Acknowledgments

The authors wish to acknowledge to Rogelio Alejandro
Callejas-Molina and Roberto Ruiz-Gomez for their technical
support. Besides, this work has been supported by CONA-
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