
RESEARCH Revista Mexicana de Fı́sica61 (2015) 132–136 MARCH-APRIL 2015

Transmission and escape in finite superlattices with Gaussian modulation
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We study the transmission and escape energies dependent as a function of the electron energy in superlattices where the barriers height is
modulated by a Gaussian function and they are compared with those produced by regular superlattices where all the barriers have the same
height. We use for the calculations the effective mass approximation using the transfer matrix formalism. For Gaussian systems with 7 and
9 barriers, the transmission coefficient has passbands with almost perfect transmission. The escape energiesE = Er + iΓ are situated near
these transparency bands but they do not coincide with them and they can be far from the passbands.Er is the electron energy andΓ describe
the width of the states. For these systems the escape states are very wide. In the case of regular systems there are transmission bands which
present only resonance peaks with unit value. The escape states are narrow and coincide with these resonances much better than in the case
of Gaussian superlattices but the coincidence is not perfect. For 3 barriers where the height of the lateral barriers is reduced gradually, the
resonances transform to transparency bands and the width of the escape energies increases. Although there is no coincidence, we associate
the increase of width of the escape energies with the formation of transparency bands.
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Estudiamos la transmisión y enerǵıas de escape como función de la enerǵıa en superredes donde las alturas de las barreras están moduladas
por una funcíon gaussiana y son comparados con los producidos por una superred regular donde todas las alturas de las barreras es la misma.
Para los ćalculos utilizamos la aproximación de masa efectiva usando el formalismo de matrices de transferencia. Para sistemas gaussianos
con 7 y 9 barreras, el coeficiente de transmisión tiene bandas de paso con transmisión casi perfecta. La energı́as de escapeE = Er + iΓ
est́an situadas cerca de las bandas de paso.Er es la enerǵıa del electŕon yΓ describe el ancho de los estados. Para estos sistemas los estados
de escape son amplios. En el caso de los sistemas regulares existen bandas de transmisión que śolo presentan picos de resonancia con valor
unitario. Los estados de escape son estrechos y coinciden con las resonancias mucho mejor que en el caso de superredes gaussianas pero la
coincidencia no es perfecta. Para 3 barreras donde la altura de las barreras laterales se reduce gradualmente, las resonancias se convierten
a las bandas de transparencia y la anchura de las energı́as de escape aumenta. Aunque no hay una coincidencia, asociamos el aumento del
ancho de las energı́as de escape con la formación de bandas de transparencia.

Descriptores: Masa efectiva; transmisión; escape; formalismo de matrices de transferencia.

PACS: 73.21.Cd; 73.40.Gk

1. Introduction

At the 70’s years, Esaki and Tsu [1] proposed to make artifi-
cial semiconductor structures where the charge carriers were
confined. First results were obtained confining electrons in
two dimensions (quantum wells and superlattices), followed
by confining electrons in one and zero dimensions (quantum
wires and dots). The necessity to control the optical and
electronic properties of semiconductor systems, caused the
birth of the heterostructures with a variable number of in-
terfaces [2]. The technological progress in information and
communication these last years has had an enormous influ-
ence not only in aspects of research but also in the soci-
ety, [3,4] for example, in lasers designing, information stor-
age and development of devices for saving and producing en-
ergy, etc. Nowadays it is usual the access to portable and
non-portable personal computers or the usage of cellular tele-
phones which have a lot of services that not long ago were
inimaginable. Therefore, it is indispensable to study semi-

conductor heterostructures in order to understand their funda-
mental properties. Formerly in the literature the transmission
for superlattices with a Gaussian modulation in the barriers
or potentials heights has been studied. For these systems, the
highest barrier is at the center of the structure and the heights
of the adjacent barriers decrease in a Gaussian way toward the
ends of the superlattice. These systems have the outstanding
characteristic that the transmission spectrum presents trans-
parency bands or passbands with almost perfect transmission,
separated by gaps or stopbands where practically there is not
transmission at all. We establish, in this work, that these type
of structures allow that the electrons can escape more eas-
ily from the system, causing that the lifetime of those energy
states be short. Therefore, the energy width of the states in-
creases due to the Heisenberg’s Uncertainty Principle. The
overlap of these energy resonances would cause the rise of
the transparency bands. We calculate the transmittance and
escape energies of electrons in superlattices with 7 and 9 bar-
riers with Gaussian modulation for the barriers height, and
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we compare this transmittance with that produced by regu-
lar superlattices where all the barriers have the same height.
Likewise, we make a study of the transmission and escape
energies for a three barriers structure where the height of the
lateral barriers is gradually reduced in relation to the central
barrier. These structures with Gaussian modulation could be
useful as filters where electrons can be transmitted almost
totally when their energy corresponds to a transparency band
(passband), and rejected if their energy corresponds to a stop-
band [5-7].

In order to perform the calculations for the systems men-
tioned above, we rely on the effective mass approximation,
using the transfer matrix formalism; this approach is pre-
sented in Sec. 2. In Sec. 3 we describe the structures we
are interested in. In Sec. 4 we present our results. Finally, in
Sec. 5 we formulate our conclusion.

2. Theoretical model

We describe the propagation of electrons with variable mass
by means of the Ben Daniel Duke’s equation [8-11]
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m(z)
dΨ(z)
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]
+ (V (z)− E)Ψ(z) = 0, (1)

whereΨ(z) andΨ′(z)/m(z) are continuous functions. We
study one-dimensional systems where the profile for the po-
tentialVsys(z) and for the massmsys(z) is described as

Vsys(z) =





VL (−∞, zL)

V (z) (zL, zR)

VR (zR, +∞)

(2)

msys(z) =





mL (−∞, zL)

m(z) (zL, zR)

mR (zR, +∞).

(3)

In other words, we consider a system where at its ends,
the potentials and the masses are constant (VL, VR, mL and
mR), while in the intermediate zone the potentialV (z) and
the massm(z) are dependent on the position (the growth di-
rection of the heterostructure).

We use the next definition

Ψ(z) =

(
ψ(z)
ψ′(z)
m(z)

)
. (4)

To study the problems of transmission and escape we use
the transfer matrix formalism, specifically the called associ-
ated transfer matrix (ATM) [12].

According to the potential and mass profiles (Eqs. 2 and
3), the solution of the problem expressed in terms of the
ATM, can be written as follows

Ψ(z) =





AE+
L(z) + BE−L (z) z ∈ (−∞, zL)

T(z, zL)Ψ(zL) z ∈ (zL, zR)

CE+
R(z) + DE−R(z) z ∈ (zR, +∞)

(5)
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whereT(z, zL) is the ATM [13] and the magnitudeskL, kR

are defined by

kL =

√
2mL

~2
(E − VL) (8)

kR =

√
2mR

~2
(E − VR) . (9)

The continuity conditions onzL andzR gives the match-
ing condition

ATE+
L + BTE−L = CE+

R + DE−R . (10)

In order to simplify the notation, we write

E±L ≡ E±L (zL)

E±R ≡ E±R(zR)

T ≡ T(zR, zL) . (11)

The transmission coefficient is given by the ratio of the
probability current for the transmitted wave over that of the
incident wave:T = |jtrans|/|jinc|. This coefficient indicates
the probability that a particle goes through a barrier due to the
tunnel effect [14]. We consider the scattering problem where
there is an incident wave from left, other reflected back to the
left and a transmitted wave to the right of the structure, which
means thatD = 0. The system of equations to solve for ob-
taining the expression for T is given by Eq. 10. The result
is

T=
4kRkL

mRmL

[(
T21− kRkL

mRmL
T12

)2

+
(

kL

mL
T22+ kR

mR
T11

)2
] . (12)

The reflection coefficientR is obtained in a similar way,
or taking into account thatR + T = 1 [15].

The problem of escape is related to having electrons con-
fined in the heterostructure and due to the tunnel effect they
leave the system. We consider only outgoing waves, and the
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coefficientsA = 0 andD = 0 out of the interval(zL, zR).
Then Eq. 10 gives the transcendental equation [16]

kR

mR
T11 +

kL

mL
T22 + i

(
T21 − kRkL

mRmL
T12

)
= 0. (13)

The solutions to Eq. 13 have the formE = Er + iΓ,
where the real partEr represents the energy levels while the
imaginary partΓ describe the fact that the energy levels are
not stationary and they decay.

3. Mass and potential profiles

We have expressions relatively general for the transmission
coefficient and for the trascendental equation of the escape
problems, in terms of the ATM. To determine the elements
of the matrix is necessary to establish the potential and mass
profiles in which we are interested. The ATM of the system
is obtained using the properties of these matrices [13,17-19].
The first case at we are interested is a superlattice where the
height of the barriersVi are centered atzi, and modulated by
the Gaussian functionV (z) = V0 exp

(−z2/σ2
)
, whereV0 is

a constant andσ/
√

2 is the standard deviation. We present in
Fig. 1 the Gaussian profile for a superlattice of 9 barriers. The
structure is made of the materials AlGaAs/GaAs. The wells
are made of GaAs and the barriers can be built varying the
molar fractionx for the alloy Alx Ga1−xAs. The highest bar-
rier isV0 = 0.02425 Ry and corresponds to Al0.45Ga0.55As.
Until this value of Al concentration the alloy has direct gap.
In order to calculate the concentrationx and the electron ef-
fective mass in the alloy, we use the crystal virtual approxi-
mation [20-22] with

V = 0.0539x

1
mi

=
xi

mA
+

1− xi

mG
, (14)

wheremA and mG are the effective masse for AlAs and
GaAs, respectively. It is clear that we have potential and mass

FIGURE 1. Gaussian potential profile. Potential is given in Ry and
position inÅ.

FIGURE 2. Regular potential profile. Potential is given in Ry and
position inÅ.

piecewise constants, and then the Eq. 1 becomes the
Schr̈odinger equation for each interval.

A potential with regular or uniform distribution is that
made by barriers and wells like that of Fig. 2, that is to say,
the potential is constant and is the same for all the barriers.
The effective mass is the same for all the barriers but different
from that of the wells.

4. Results and discussion

We present in Fig. 3 the transmittance T and the escape
energiesE = Er + iΓ for a superlattice with 9 barri-
ers whose height has Gaussian modulation. The maximum
height for the central barrier isV0 = 0.0242542 Ry. The
barriers thickness isWb = 15 Å and the thickness for the
wells is Ww = 62 Å. The total length for the structure is
L = 631 Å. We use Eq. 14 in order to find the concentra-
tions xi and effective massesmi. We takemA = 0.15m0,
mG = 0.067m0, wherem0 is the free electron mass. The
widths(Er − (Γ/2), Er + (Γ/2)) associated to each energy
Er are presented as shaded rectangles with different gray

FIGURE 3. T (continuous line) and the escape energies (dashed
lines) with their associated width for a Gaussian superlattice with 9
barriers.Wb = 15 Å, Ww = 62 Å andL = 631 Å.
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FIGURE 4. T and the escape energies with their associated widths
for a 9 barriers regular structure.Wb = 15 Å, Ww = 62 Å and
L = 631 Å.

FIGURE 5. T and the escape energies for a three barriers regular
structure.V = 0.0242542 Ry for the three barriers.

tones. The height of the rectangles has no meaning. The
transmitance has two passbands with almost perfect transmis-
sion below the highest central barrier, separated by a stop-
band, and another passband before the first narrower pass-
band. We found 8 escape energiesEr that tend to group in
the passbands but no necessarily are inside the passbands.
SomeEr can be situated outside of the passband. The es-
cape energies for this Gaussian system have large widths
(Er − (Γ/2), Er + (Γ/2)), which means that these states
have short lifetimes. Figure 4 shows the transmittance and
the escape energies for a regular superlattice with 9 barri-
ers with the the same heightV0 = 0.0242542 Ry. In this
case there are also transmission bands separated by stopbands
or gaps where there is no transmission, but the transmission
bands consist of narrow transmission resonances. The num-
ber of peaks is equal to the number of wells in the structure,
in this case, 8 resonances. This corresponds to the splitting
of each level of one quantum well in 8 levels. For the regu-
lar structure the coincidence between the transmission reso-
nances and the escape energies is much better than in the case
of Gaussian superlattices. The escape energies almost coin-
cide with the transmission resonances, but the coincidence is
not perfect. The coincidence is almost perfect for the escape
energies and resonances at the middle of the transmission

FIGURE 6. T and the escape energies for a three barriers
structure. Central barrierV = 0.0242542 Ry, lateral barriers
Vl = 0.0187709 Ry, Wb = 15Å andWw = 62Å.

band, and moves away a little for the energies at the extremes
of the band. For the regular structure the escape energies are
much narrower than for those of the Gaussian superlattice,
which means that these states have larger lifetimes. We find
that, in general, the values of the escape energies are differ-
ent from the energy resonances in the transmittance, and this
is much more pronounced for Gaussian superlattices than for
regular ones. Maksimović also found this fact in his study
of propagation of electromagnetic waves in open multilayer
systems [23]. They found that the escape frequencies and the
transmission resonance frequencies are very similar but are
different in general. However in his treatment on resonant
tunneling in multilayer structures, Price does not distinguish
between escape energies and resonance energies [24]. In the
case of a structure with only three barriers, when the struc-
ture is regular, with the same height for the three barriers,
Fig. 5 shows that the transmittance presents bands with only
transmission resonances and the behavior is similar like that
of the former regular superlattices with more barriers. Also
the width of the escape energies is narrow and the values of
the escape energies is near of the resonances. But when the
height of the lateral barriers is reduced, Fig. 6 shows that the
resonances transform to passbands with high transmission in
an interval of energy and the width of the escape energies in-
creases. Likewise, the position of the energies escape moves
away from the transmission maxima. Although there is no
exact coincidence of the escape energies and the transmission
maxima, we associate the large width of the escape energies
to the formation of transparency bands.

5. Conclusion

We have calculated the transmittance and escape energies
for a finite superlattice where the barriers height follows a
Gaussian modulation, and for a regular superlattice where all
the barriers have the same height. The Gaussian superlattice
have broad intervals of energy or passbands where there is al-
most total transmission, separated by stopbands where there
is no propagation of electrons. For a regular superlattice there

Rev. Mex. Fis.61 (2015) 132–136
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are also transmission bands separated by stopbands, but the
transmission bands present only narrow resonance peaks. For
a Gaussian superlattice the escape energies have very wide
linewidths and are situated inside or near the passbands, but
they do not necessarily coincide with the passbands. The reg-
ular superlattice has escape energies with narrow linewidths,
and the values of the escape energies are much nearer to the
transmission resonances but in general different from them.
In Ref. 25 the spectra of Gaussian and regular structures
are studied theoretically and experimentally, and reported its
most important features, particularly the shift and resonance
broadening; their results agree qualitatively well with those
found by us. We associate the large width of the escape ener-

gies to the formation of transparency bands. It is important to
stress that the mechanism leading to flat transmission is still
unknown. Our results are only an approximation of this sub-
ject as we perform a comparison of two boundary problems
(transmission and escape) on the same potential and mass
profiles. It is known that the results of transmittance can be
related to the conductance and the results of experiments with
two or four probes [26]. Work is in progress on this subject.
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fı́sica i anaĺıtica, (Universitat Jaume, 2007).
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