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The most general method to regularize Feynman’s integrals in quantum field theory is Dimensional Regularization, in which the most
common way to evaluate the associated integral involves Beta functions. We present a new method to evaluate the integral through the
residue theorem. We apply our method to a toy model on universal extra dimensions and show that radiative corrections changes the shift-
mass between zero and Kaluza-Klein excited modes.
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Regularizacíon Dimensional suele ser el método mas utilizado para regularizar integrales de Feynman, comúnmente en dicho ḿetodo, las
integrales asociadas implican funciones Beta. Presentamos un método para evaluar tales integrales mediante el Teorema del Residuo. El
método se aplica sobre un modelo de juguete con dimensiones extras universales, observando como las correcciones radiativas envuelven un
corrimiento de masa entre el modo cero y los modos de Kaluza-Klein.

Descriptores: Teoŕıa cuantica de campos; renormalización; correcciones radiativas.
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1. Introduction

It is well known that Quantum Field Theory (QFT) is plagued
with divergences, that appear through the integrals associated
to the Feynman diagrams of beyond tree level corrections.
Dealing with those divergences, in order to obtain physical
(meaningful) results out of perturbation theory is the main
goal of renormalization theory [1,2], in which, regularizing
the divergent integrals becomes the first crucial step.

In four dimensions, for instance, it is common that the
integrals associated to two and four-point correlations func-
tions diverge. However, throughregularization procedures
they can be made finite. To achieve this a regularization pa-
rameter is introduced, in away that the divergences of the in-
tegrals would now appear as singularities that depend on this
parameter.

For example, in Dimensional regularization (DR), which
was introduced by ’t Hooft and Veltman [3-5], the measure
of momentum integration is changed by allowing the dimen-
sion D in the integrals to be an arbitrary complex number.
There are several attractive features on DR. First, it preserves
all symmetries for a non-supersymmetric theory (under this
scheme the gauge fields and the momentum integrals are pro-
moted to D dimensions, and the mismatch between the num-
ber of degrees of freedom of gauge fields(D) and gauginos(4)
breaks supersymmetry [6]). Second, it allows an easy identi-
fication of the divergences. Third, it suggests in a natural way
a minimal subtraction scheme(MS scheme) [7], that greatly
simplifies renormalization calculation and it is capable of reg-
ularizing IR-divergences in massless theories.

In order to see how DR operates, consider for example
the simplest Feynman integral

I (D) =
∫

dDp

(2π)D

1
p2 + m2

, (1)

which typically arises at on loop order corrections in scalar
field theories. There are many ways to evaluate such an inte-
gral. One of them is through the use ofproper time represen-
tation of Feynman integrals. Other option is the introduction
of polar coordinates where one rewrites the integral as

I (D) =
SD

(2π)D

∞∫

0

dp
pD−1

p2 + m2
, (2)

where the overall coefficient

SD =
2πD/2

Γ (D/2)
, (3)

is the surface of a unit sphere inD dimensions. Then, the re-
sulting one-dimensional integral can be casted into the form
of an integral for the Beta function which can be expressed in
terms of the Gamma functions, and thus, the value for (1) is
given by

I (D) =

(
m2

)D/2−1

(4π)D/2
Γ (1−D/2) . (4)

One of the disadvantages of these methods arises when
two or more propagators are considered, because in the case
of the proper time representation it is necessary to consider
two or more integrations, whereas, in the case of Beta func-
tion it is required the use of Feynman’s parametric integral
formulas.
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In this work we present a new method that make use
of Residue theorem which allows to evaluate the one-
dimensional integral without considering Beta functions. In-
stead, it is only necessary the use of one specific contour for
the integration. As we will discuss, this provide an easier way
for the evaluation of the integrals with two or more propaga-
tors (similar techniques are shown in Ref. 8).

The outline of our paper is as follows: Sec. 2 presents
the contour and their use to evaluate the one-dimensional in-
tegral. Sec. 3 shows a detailed example where the method is
used to evaluate the radiative corrections for the scalar field
mass due to a Yukawa interaction. Here as we will show ex-
plicitly, the use of extra integrations becomes unnecessary.
Next, in Sec. 4 we apply the method to another example of
physical interest. There, we consider a toy model on an extra-
dimensional space-time [9] to compute the radiative correc-
tions for the zero mode scalar mass reduced by their interac-
tions with the excited modes. Sec. 5 lists the conclusions.

2. Evaluation of Integral

Definite integrals appear repeatedly in problems of mathe-
matical physics. Three moderately techniques are used in
evaluating definite integrals: (1) Numerical quadrature which
is not commonly used on QFT; (2) conversion to Gamma or
Beta functions which, as we mentioned in the introduction, is
rather very used on the literature, and (c) contour integration
which is rarely used in the problem at hand. Demonstrating
the advantages of the use of the last technique to evaluate the
usual integral

A =

∞∫

0

tD−1

t2 + m2
dt, (5)

is the purpose of this section.
To proceed, we choose the contour shown in Fig. 1 to

avoid the pole in the origin (because in it arises a branch) and
the possible poles over the real positive axis. Then, a given
integral on such a contour is generally expressed as

∮
f (z) dz = eiα

R∫

ε

f
(
eiαt

)
dt

+ iR

2π−α∫

0

f
(
Reiθ

)
eiθdθ

+ ei(2π−α)

ε∫

R

f
(
ei(2π−α)t

)
dt

+ iε

0∫

2π−α

f
(
εeiθ

)
eiθdθ

= 2πi
∑

residues (within the contour), (6)

where we will, of course, takef(z) = zD−1/(z2 + m2).

FIGURE 1. Contour used to evaluate the integral (5).

Next, by Jordan’s lemma whenR →∞, we have
∫

Γ0

zD−1

z2 + m2
dz = 0; z = Reiθ, (7)

whereas, whenε → 0
∫

Γ1

zD−1

z2 + m2
dz = 0; z = εeiθ. (8)

It is important to remark the necessity to use analytic contin-
uation to solve the integral (5), because the Eqs. (7) and (8)
are valid only for valuesD < 2.

From this the integral is reduced to

∮
f (z) dz = eiDα

∞∫

0

tD−1

t2ei2α + m2

− eiD(2π−α)

∞∫

0

tD−1

t2ei2(2π−α) + m2
,

and thus, in the limitα → 0, we get

∞∫

0

tD−1

t2 + m2
dt = − πimD−2

(1− ei2πD)

(
iD + (−i)D

)
. (9)

Therefore,

I (D) = −
(

2πimD−2

1− ei2πD

)
iD + (−i)D

2Dπ
D
2 Γ

(
D
2

) . (10)

This Feynman integral is UV-divergent in even dimen-
sions, which is reflected by the poles in

(
1− ei2πD

)−1
. The
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poles can be subtracted in various ways, parametrized by an
arbitrary mass parameterµ. Let us take the limitD = 4 − ε
to write

µεI (D) = − 2πim2

1− e−i2πε

×
[
Γ

(
2− ε

2

)]−1

8π2

(
−4πµ2

m2

) ε
2

. (11)

The arbitrary mass parameterµ appears in a dimension-
less ratio with the mass. It is this kind of terms which contains
IR-divergences in the limitm2 → 0. They are expanded in
powers ofε:

(
−4πµ2

m2

) ε
2

= 1 +
ε

2
ln

4πµ2

m2
+ O

(
ε2

)
. (12)

Theε-expansion over the Gamma function in (11) reads

1
Γ

(
2− ε

2

) = 1 + (1− γE)
ε

2
+ O

(
ε2

)
(13)

whereγE is the Euler-Mascheroni constant.
Next step is to consider theε-series expansion of the func-

tion associated with the exponential, for which we take its
Laurent expansion (see Appendix A)

1
1− e−i2πε

= − i

2πε
+

1
2

+
iπε

6
+ O

(
ε3

)
. (14)

Inserting Eqs. (12-14) into (11) we find the Laurent expan-
sion inε:

µεI (D) = − m2

16π2

×
(

2
ε

+ 1− γE + ln
4πµ2

m2
+ O (ε)

)
. (15)

Notice that the residue of the pole is proportional tom2 and
independent ofµ.

We should underline that the result of Eq. (15) is the same
value obtained through the use of Beta functions, as it could
be expected.

3. Two propagators

Next, we demonstrate the method for the integration over two
propagators, which is known to be convergent forD < 4. So,
we consider the integral

I ′ (D) =
∫

dDp

(2π)D

1
p2 + m2

1
(p− k)2 + m2

, (16)

where the external momentumk is the incoming momentum.
It is easy to see that one can rewrite it as

I ′ (D) =
SD

(2π)D

∞∫

0

pD−1

(p− k)2 + m2

dp

p2 + m2
. (17)

The poles of the integral on the Eq. (17) are located at

±im and k ± im. (18)

Thus, using the residue theorem, we straightforwardly find
that

I ′ (D) =
2πi

1− ei2πD

1

2D−1π
D
2 Γ

(
D
2

)

×
(

i
A (B∗)D−1 −A∗BD−1

2km |A|2

−mD−2 AiD + A∗ (−i)D

2k |A|2
)

, (19)

whereA = k + 2im andB = k + im.

Therefore, the divergence forD = 4 is contained in the
denominator, since the overall coefficient possesses poles at
D = 4, 6, . . .. The remaining parameter integral is finite for
any D as long asm2 6= 0. In terms ofε andµ parameters in-
troduced above, the expresion for the integral (16) reads (see
Appendix B)

µεI ′ (D) = − m2

16π2 (k2 + 4m2)

×
(

2
ε

+ ln
4πµ2

m2
+ 1− γE + O (ε)

)

− k4 + 3k2m2 − 2m4

16π2km (k2 + 4m2)
arctan

2km

k2 −m2

+
k2 + 5m2

16π2 (k2 + 4m2)

×
(

2
ε

+ ln
4πµ2

k2 + m2
+ 1− γE + O (ε)

)
. (20)

This analysis exemplifies very well the advantage of the
method, because we were not compelled to use the Feyn-
man’s parametric integral formula to evaluate the integral
(16), but rather proceed through a direct evaluation.

It is straightforward to extend the method to compute in-
tegrals which involve more than two propagators, in that case
it is necessary to consider an integral with the form

J (D) =
SD

(2π)D

∞∫

0

pD−1dp

n∏

l=1

1
(p− kl)

2 + m2
(21)

where n is the number of propagators andkl ± im are the
poles. As it is showed above, with the new method, the Feyn-
man parametrizations are changed by algebra with complex
numbers.
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4. λφ4 on Extra Dimension

An interesting application of the proposed method, is found
when dealing with multiple field theories, where such mul-
tiplicity amounts to more complicated integrals. Such is the
case of models with extra dimensions, whose effective4D
theory contains infinite towers of excited states, numbered
by a Kaluza-Klein (KK) index [10].

To see how the method works on such cases, we next con-
sider a scalar field toy model on an extra space-time dimen-
sions, whose Lagrangian is given by

L = ∂Mφ†∂Mφ− λ

4
|φ|4 . (22)

To be specific we assume the compactification is realized
over a circle of radiusR, and thus, the KK wave functions go
asφn ∝ einy/R. We are interested in computing the radiative
corrections for the mass of the zero mode, which essentially
are given by the effective interactions

Lint = −λ′

4
|φ0|2

∑
n=0

|φn|2 , (23)

whereλ′ = λ/2πR, is the effective4D coupling constant.
The corrections we shall consider are given by two inte-

grals

δm2
0 ∝ 4

∫
dDp

(2π)D

1
p2

+
∑
n=1

∫
dDp

(2π)D

1

p2 +
(

n
R

)2 . (24)

First integral does not contribute, because its pole is not
present within the contour. This is actually expected as a re-
sult of Veltman’s theorem[11].

Next we make the use of the new variablex = pR and
the sum

∑
n=1

1
x2 + n2

=
∞∑

n=0

1
x2 + n2

− 1
x2

=
π

2x
coth (πx)− 1

2x2
, (25)

which allows to write the second integral on Eq. (24) as

1
2RD−2

∫
dDx

(2π)D

[
π

x
coth (πx)− 3

x2

]
. (26)

After performing the integration with the use of the
method, we get

δm2
0 ∝ − 2πi

1− e2πD

π−
D
2 R2

(2R)D

∞∑
n=1

(in)D + (−in)D

Γ
(

D
2

)
n2

, (27)

and in order to regularize it we take the limitD → 4−ε, such
that, above expression becomes

δm2
0 ∝ − 1

(4πR)2

∞∑
n=1

n2

×
(

2
ε

+ 1− γE + ln
4πµ2R2

n2
+ O (ε)

)
. (28)

Now we make use of the definition of Riemann’s zeta
function [12]

∞∑
n=1

n2 =
∞∑

n=1

(
1
n

)−2

= ζ (−2) = 0, (29)

which implies that the zero mode mass correction is given by

δm2
0 =

λ′

8 (πR)2

∞∑
n=1

n2 ln n. (30)

We should notice that this result is still divergent, due to
infinite number of KK modes from the tower. For each level,
however, poles have been removed (by renormalization pro-
cedures). To attain a finite value we need to explicitly intro-
duce a cut-off on the KK levels. An example that introduce
the cut-off is given in Ref. 13 in which the authors present
other mechanism to regularize extra-dimensional models.

4.1. Splitting mass between zero mode and the KK
modes

As we saw in the last section, there is a change for the zero
mode mass due to radiative corrections. That would be also
the case for the excited KK modes. However for them, the
first integral on the right hand of Eq. (24) is changed into

4
∫

dDp

(2π)D

1

p2 +
(

n
R

)2 . (31)

Therefore after regularizing, the change on the KK excited
masses is given by

δm2
n = − λ′n2

(4πR)2

(
2
ε

+ 1− γE + ln
4πµ2R2

n2
+ O (ε)

)

+
λ′

8 (πR)2

∞∑
m=1

m2 ln m. (32)

That allows to compute the total shift mass between zero
and excited KK modes taking into account the radiative cor-
rections under MS scheme

m2
n −m2

0 =
n2

R2

(
1− λ′

16π2
ln

4πµ2R2

n2

)
. (33)

5. Conclusions

Loop corrections on Quantum Field theories can play an im-
portant role in the phenomenology, often these corrections
lead to non physical divergences over parameters of the the-
ories, one way to remove these divergences is through renor-
malization. Any procedure to achieving this requires the use
of a regularization method that isolates the divergences from
finite physical contributions.

In this paper we present a method to perform Dimen-
sional Regularization without the use of Beta functions nor
Feynman’s Integral parametrization. We believe this method
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has the advantage of a direct evaluation of the loop integrals,
by using an appropriate integration contour in complex space.
To exemplify this we have applied our method to usual loop
integrals with one and two propagators. We have also pre-
sented the use of this method to regularize models on extra
space-time dimensions, as an illustrative example.

Appendix

A. Laurent Series

When it is not possible to express a function in a Taylor se-
rie, we can expand that function by its complex extension and
express it by its Laurent serie.

Whenx is zero, the function1/(1 − ex) is not defined,
however we can express it by a Laurent serie, such that

1
1− ex

=

(
−

∑
n=1

xn

n!

)−1

= − 1
x (1 + u)

u =
∑
n=1

xn

(n + 1)!
= − 1

x

(
1− u + u2 − . . .

)

= − 1
x

+
1
2
− x

12
+ O(x2). (A.1)

Note the existence of the term which includes a negative de-
gree.

B. Complex Logarithm

For the propose of present discussion it is important to re-
mind the reader the properties of the Logarithm over complex
numbers, for which

ln (x + iy) = ln (r) + iθ, (B.1)

where

r =
√

x2 + y2; θ = arctan
y

x
, (B.2)

and we need to properly choice the branch not to overvalue
the angle. This has been used on Sec. 3, where have make
use of the algebra

ln
µ

p− im
= ln

µ (p + im)
p2 + m2

= ln
µ
√

p2 + m2

p2 + m2
+ i arctan

m

p
.
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