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The random walk of an electrostatic field using
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We show that it is possible to generate a random walk with an electrostatic field by means of several parallel infinite charged planes in which
the surface charge distribution could be either. We formulate the problem of this stochastic process by using a rate equation for the most
probable value for the electrostatic field subject to the appropriate transition probabilities according to the electrostatic boundary conditions.
Our model gives rise to a stochastic law when the charge distribution is not deterministic. The probability distribution of the electrostatic
field intensity, the mean value of the electrostatic force and the energy density are obtained.
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1. Introduction whereo(z,,) represents the surface charge density ofithe

) ] . th charge plane at positiof,. Note that it is crucial to know
In a typical electrostatic problem you are given a volumene syrface charge density on each infinite sheet to completely
charge distributiop(r) and you want to find the electric field getermine the value of the electric field through Eq. (4), if the
E it produces. The fundamental relation between the sourcgyyrce of the electric field is not known then we would need

given by Gauss's law [1] this same problem from a probabilistic point of view using
v.E_ P 1 random walks. The connection between electrostatics and
T € @ Brownian motion or random walk was first shown in 1944

by Kakutani [7]. Since then many investigators have applied
the probabilistic potential-theory to solve differential and in-
. . ; et'egral equations for calculating electrostatic field and capaci-
pends on one variable oniye. E(z)' and the field strength tance in integrated circuits [8, 9]. More recently, the connec-
I proqluc_es Is constant for a!l o!ls,_tances from the plane. Th‘ﬁon between electrostatics and quantum mechanics was first
electrlc field caused_ by. an infinite sheet of volume charge,shown by one of the authors [10, 11]. The purpose of this pa-
densityp(z) = 04(2) is given by [2] per is to give a description of the electrostatic field when the
E— isign(z) @) source of the field is not known. If the volume charge density
2€q is not known then we can not use Eq. (1) to solve for the

wheree is the electric permittivity of free space. For the
particular case of infinite charge sheets the electric field d

electric field, instead we need to use the boundary conditions

whgrea Is the surface charge density and the function sign I%or the electric field. For the restricted case of electrostatic
defined as [6] ! : . .
charges an fields in vacuum, the appropriate boundary condi-
sign(z) — +1 if z2>0 3) tions for the electric field across a surface charge distribution

M) =1 -1 if 2<o, is given by [1]

and has been introduced to account for the vector nature of
the electric field. The total electric field due 1 of these

infinite charge planes is then just the sum of the individualyheren is a unit vector perpendicular to the surface. For the

contributionsj.e. case of parallel infinite charged planes the boundary condi-
tion is given by

g
Eabove— Ebelow = gn %)

B al o(zn) .
b= ,; 2€0 Slgn(z - Zn), (4) E(Z)above_ E(Z)below = 0'/60 (6)
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Equation (6) says that, for the special case in which the infi- P(X,,4+1 = j| X, = in, Xpnm1 = tn—1,-.., Xo = 40)
nite charged planes have a surface charge distribution given . _

by o, the future electric field value depends only on the =P&n1=jlXn=10=p; (@)
present electric field value. This means that given precise Equation (7) is known as the Markov property and says
information of the present state of the electric field value, thg 4t the state of a random variable after+ 1 transitions,
future electric field value does not depend on the past historgmy depends on the state of the random variable aftean-

of the process. This point is at the very heart of the Markovgjiions * 1n other words, the future of the system will only
chain processes. This means that we can use a probabilis%pend on the present state [3, 16].

model which gives a complete description of the electric field "¢ we want to know the probabilities of a single state it

when the source of the field is not known. is useful to use the total probability theorem which is given
The problem that we would like to address in this paperpy [16]

is the one where you have several parallel infinite charged P(B) = ZP(BlAi)P(Ai) (8)
planes placed along theaxis in which the surface charge p
density could be eithet-o. Then the field would evolve Where the indexi runs for all the statesi; that B

along thez axis making random jumps each time it crosses aYepends on. IfB is the event ofX,s1 = j then
infinite charge sheet. We are going to show that the behaViOP(Xn+1 = j) = pj(n+1). A is the event ofX,, = i,

of the electric field can be studied like a random walk. ThethusP(Xn —'i) = pi(n), then the theorem transforms into
motivation of this paper is due to the fact that many physy,e following equation [4,17]

ical systems display a non-deterministic disorder. A better

understanding and prediction of the nature of these systems pi(n+1)= Zpij (n)pi(n) 9)

is achieved by considering the medium to be random. The i

randomness ”?Ode's the effect of impurities on a physica_l SYs- This notation allows us to interpret equation (9) as a mul-
ﬁ?b?err:ﬁttufg;gss' iﬁa}cﬂgoorlgr;iﬁf)t?gr?i?rtistiavtvgnlsei\tlflzfl rt]hzttl{plication of a horizontal vector formed with the probabilities

electric field and also comes in the description of the mediumOf some certain state with a matrix formed by fhg. So if
o _ __ there areN possible statep(n) = [pi,(n), ..., Diy_, (1]
The article is organized as follows. In Sec. 2 we give

. ‘ - i ' 33ndW is the matrix with elements;;, the relation between
brief review of Markov chains. Then in Sec. 3 we will apply ¢;ates can be written as [15,17]

the Markov chain theory to the case where we have several

infinite charged planes placed along theaxis in which the p(n+1) = p(n)W(n) (10)
surface charge density can be either. In Sec. 4 we present

the numerical results and use our model to calculate the mean Given the initial conditiorp(0) we can determine the so-
electrostatic force and energy density for our problem. In thdution to Eq. (10) [5].

last section we summarize our conclusions.

3. The Model

Suppose that we are given a collectionfinfinite charged
planes, half of them have a constant charge distributiand

. . I . . the other half have a constant charge distribution We can
In this section we will give a brief explanation of the Markov _ - ; o
write this condition as

chain theory concepts that we need for the formulation of the

2. Markov chains

problem. To introduce these concepts lets imagine a random N-1

experiment like throwing a normal dice. In this case we have > o(zm) =0 (11)
six possible outcomes which ate2,3,4,5 or 6. We will n=0

denote the set of the pOSSible outcomes with the |éttand If we random]y p|ace theV infinite Charged p|anes par-
name it as thetate spaceThese outcomes define a random g|le| to each other along the axis at positionz, = n €
variable X' which can take values fron§. Each outcome {0 1,... N — 1}, there is no way to know the values of the

can be associated with their respective probabjlitwhich  electric field in between the planes unless we measure the
must take values only in the intervel < p < 1. We can  charge on the planes. Instead of that we will use Markov
write P(X = 7,) = p; which means that the probablllty of chain theory to ana]yze the prob|em_
the random variabléX to take a value its equal top; with We will first consider a system of four charged planes.
i€ S[14]. E(z) equals zero at the left and right side of the configura-
Also if the same experiment is repeatedimes, and in  tion due to the neutrality of the system [1]. After crossing
general each trial is dependent of the previous trials thetthe first charged plan€y(z) would increase or decrease in
pi(n) represents the state of the random variakile after ~ an amount ot /¢y depending if the first charged plane had
n trials. If the state at a triab is ¢, the probability that the a positive or negative charge, and the same for the remaining
next state is equal tpis defined by [3, 15] planes according to Eq. (6). In Fig. 1 there is an example of
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FIGURE 1. Values for E(z) inside a given configuration of charged
planes.
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We known that the system is neutral, so the electric field
must be zero at = 0. In other words the probability faf to
be zero at = 0 equals one, and the other cases hapeob-
ability. Using our notation the last statement can be written
aspo(0) = 1 andp;(0) = 0 fori # j.

With all these information we can use Eq. (10) to obtain
the most probable value of the electrostatic field in between
the charged planes.

4. Results

In this section we present our results for a the system which

how the electric field behaves for a known charge density. Ixgnsists ofl 00 charged planes\ = 100). Figure 3 shows a
Fig. 2 we show the possible values the electric field can takgp plot for p(n). Note that the highest values for the prob-

when the charge density is not known.

ability are reached at = 0 andn = N — 1 with ¢ = 0,

For the sake of simplicity, we normalized the electric field which shows the fact that the electric field must be zero at

dividing by o /¢( so

E(z) = %OE(Z)

(12)

Due to this normalizatiorZ(z) takes only integer values
Defining E;(n) as our random variable, wherss the region
betweenz,, and z,, 1, our state spac# is defined by inte-
ger values between the intenfat N/2, N/2]. To calculate
the transition probabilitieg;; we use the fact that the bound-

these points. In the direction of the increasinghe proba-
bilities spreads out on the possible states, so the electric field
becomes more uncertain at places near the middle of the con-
figuration. After that point, the probabilities change to finally
reachl atn = N — 1.

Its important to note that these probability functions for
each transition are discontinuous functions. The plotin Fig. 4
represents a cross section fofn) at the middle of the con-
figuration @ = 50). In this plot it is easy to see that there

ary condition in Eq. (6) prevent us to have a value biggerare jumps between probability zero and nonzero probability

thani + 1 or smaller than — 1 at a placez = n + 1 when
E;(n) = i. This results inp;; = 0 for j > i + 1 and for

along the possible states. This is due to the boundary condi-
tion given in Eq. (5). Note that the field cannot remain the

Jj < i+ 1. After crossing a charged plane the field has tosame so there are forbidden states at a certain transition

have a different value, s@; = 0. The last values fop;; are

Now we can calculate the two physical quantities that we

determined by the probability of finding a negative or posi-are interested in which are the mean electrostatic force and

tive charged plane at the transition point. Definlifig (n) as

mean electrostatic energy density. It is well known that the

the probability to find a positive or negative charged plane agjectrostatic force is given b = ¢ E and the energy density

a placez, = n, we get the following results fqr;;

pij = W_ (n) If ] = i — 1 (13)
0 otherwise

A simple way to calculate the factovg. (n) its by divid-

ing the remaining positive or negative planes by the remain- 5

ing total planes. Lep. be the number of positive (negative)
planes betweefi < z < n, thenp, + p_ = n. Also the
value of the electric field at a pointn is completely defined

by the amount of positive and negative plates that have left

behind, therefore, — p_ = 4. Using these two relations we

can solve fop,:
n 41

2

The remaining positive planes al&/2 — p and the remain-
ing total planes ar& — n, thenW__ is given by

P+ = (14)

W+(n):M:2<1_Nn> (1)

by §g = eoE?(z)/2. In order to calculate these two quanti-
ties we need to calculate the first and second moments for
the electrostatic field,e. (E(n)) and(E?(n)). To calculate
such moments we use theh moment formula [4, 16]

? ?7 7

?

FIGURE 2. Possible values for E(z) inside a four charged planes
system where the charge distribution is not known.
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FIGURE 3. State probabilities for every transition. FIGURE 5. Relation between transitionandn + 1.
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0.12F & N/2
019 [ st s sulimdsorsaBalet sl ds - + Z zkpl_l(n)W]_(zfl,n) (18)

i=—N/2

Its important to note thaiy /211 (n) = p_n/2-1(n) = 0 be-

N causeN/2 + 1 and —N/2 — 1 does not exist inS. Also

Wi (£N/2,n) = 0 because the field cannot get a value

higher (lower) thantN/2. Using these facts and setting

: . k =1in (18) we obtain

Pedos _ N-n-1
(Bn+1)) = ——

Probability density
o
o
®

Q

o

2}
T

0.04(--

0020

0t R ¢ Tj
-15

pe7)

(E(n)) (19)
Possible states

Due to the neutrality of the system we can wiife(0)) = 0.

FIGURE 4. State probabilities after 50 transitions. Using this initial value and substituting it in (19) its obvious
that (E£(n)) = 0 for all n inside the plane configuration as
expected [12]. Therefore the mean force is zero everywhere.

(E*(n)) = Zikpi(n) (16) Settingk = 2 in (18) and doing a little bit of algebra,
p Eqg. (18) turns into

Where the indexruns through alb. In order to calculate (E*(n+1)) = w(ﬁ(n» +1 (20)
these moments let us rewrite the form of Eq. (10) as follows. N-n
Most of the probabilitiep;; equals to zero, so the probability Let A(n) be the factor that multiplie$£?(n)) in Eq. (19),
pi(n + 1) can be calculated adding the 2 possible paths fromand knowing that £2(0)) = 0 and using recursively the dif-
the last transition given by the possible values at the transiference equation in (20) [12], the states for the second mo-
tion n. Each of the paths may me multiplied by the factorsment are given by
Wi (n) [13] as is depicted in Fig. 5.

So the new form of Eq. (10) is given by éggggi z 114(1) +1
pi(n+1) = pipa(M)W_(i + 1,n) <E O ARAD AR (21)
. n—1 1
tramWel-La) @) (B2 ) =1+ 3 [ A=)

Multiplying both sides of Eq. (17) by* and summing from
—N/2to N/2 we may use the definition given in (16) to ob- SubstitutingA(n) in equation (21), the second moment is

tain given by
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FIGURE 6. Evolution of the second moment along thaxis.

_ B (N—n)(N—-n—1)
<E2(”)>*1+;(N—n—i—z')(N—n—i—i—l)

To see how the energy evolves along thaxis we used
the same example witlv' =

(22)

R. ALDANA, J. VIDAL ALCAL A AND G. GONZALEZ

Equation (24) means that we negllpositive charged planes
in order to reach the maximum value of the electrostatic field.
Using the fact thai?v, (i,n) = (1 — /(N —n))/2 we get
W4 (50—4,50—j) = j/(50+3), inserting this into Eq. (24)
we get

O

P50(50)

50150!
(100)!

)(2)(3)---(49)(50)  _
)(52)(53) - - - (99)(100)

6

Equation (25) shows that our result is consistent with the
standard probability theory.

1( (25)

5. Conclusions

We have shown that it is possible to perform a random walk
with and electrostatic field by means of several parallel in-
finite charged planes in which the surface charge distribu-
tion is not explicitly known. We have worked out the special

100 as before and numeri- case where the charged planes have a constant surface charge

cally calculated the energy using (22).The result is depictedlistribution +¢0 and the overall electrostatic system is neu-
in Fig. 6. The the mean energy may be calculated using theal, i.e. there is the same number of positive and negative

definition of our random variable given in (12) as

(05) = 2UE>(n)) = <E2< ))

5 (23)

We can use standard probability theory to validate our calcu:

lations for the example given above. For the cas¥ 6f 100

there is a probability 050!50! /100! that the electrostatic field

reaches the maximum (minimum) vald&0 after 50 transi-

charged planes. We use Markov chain theory in order to give
the most probable value for the electrostatic field in between
the charged planes and use these results to obtain the mean
electrostatic force and energy density. Our model gives rise
to a stochastic law when the charge distribution is not deter-
ministic.

tions. Using our approach this means that the probability to

get a value o060 is obtained by
50

=[] W+ (50 — 4,50 — )
Jj=1

P50(50) (24)
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