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The random walk of an electrostatic field using
parallel infinite charged planes
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We show that it is possible to generate a random walk with an electrostatic field by means of several parallel infinite charged planes in which
the surface charge distribution could be either±σ. We formulate the problem of this stochastic process by using a rate equation for the most
probable value for the electrostatic field subject to the appropriate transition probabilities according to the electrostatic boundary conditions.
Our model gives rise to a stochastic law when the charge distribution is not deterministic. The probability distribution of the electrostatic
field intensity, the mean value of the electrostatic force and the energy density are obtained.
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1. Introduction

In a typical electrostatic problem you are given a volume
charge distributionρ(r) and you want to find the electric field
E it produces. The fundamental relation between the source
of the field, i.e. charge distribution, and the electric field is
given by Gauss’s law [1]

∇ ·E =
ρ

ε0
(1)

whereε0 is the electric permittivity of free space. For the
particular case of infinite charge sheets the electric field de-
pends on one variable only,i.e. E(z), and the field strength
it produces is constant for all distances from the plane. The
electric field caused by an infinite sheet of volume charge
densityρ(z) = σδ(z) is given by [2]

E =
σ

2ε0
sign(z) (2)

whereσ is the surface charge density and the function sign is
defined as [6]

sign(z) =
{

+1 if z > 0
−1 if z < 0,

(3)

and has been introduced to account for the vector nature of
the electric field. The total electric field due toN of these
infinite charge planes is then just the sum of the individual
contributions,i.e.

E =
N∑

n=1

σ(zn)
2ε0

sign(z − zn), (4)

whereσ(zn) represents the surface charge density of then-
th charge plane at positionzn. Note that it is crucial to know
the surface charge density on each infinite sheet to completely
determine the value of the electric field through Eq. (4), if the
source of the electric field is not known then we would need
to approach the problem in a different way. We can formulate
this same problem from a probabilistic point of view using
random walks. The connection between electrostatics and
Brownian motion or random walk was first shown in 1944
by Kakutani [7]. Since then many investigators have applied
the probabilistic potential-theory to solve differential and in-
tegral equations for calculating electrostatic field and capaci-
tance in integrated circuits [8, 9]. More recently, the connec-
tion between electrostatics and quantum mechanics was first
shown by one of the authors [10,11]. The purpose of this pa-
per is to give a description of the electrostatic field when the
source of the field is not known. If the volume charge density
is not known then we can not use Eq. (1) to solve for the
electric field, instead we need to use the boundary conditions
for the electric field. For the restricted case of electrostatic
charges an fields in vacuum, the appropriate boundary condi-
tions for the electric field across a surface charge distribution
is given by [1]

Eabove−Ebelow =
σ

ε0
n̂ (5)

wheren̂ is a unit vector perpendicular to the surface. For the
case of parallel infinite charged planes the boundary condi-
tion is given by

E(z)above− E(z)below = σ/ε0 (6)
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Equation (6) says that, for the special case in which the infi-
nite charged planes have a surface charge distribution given
by σ, the future electric field value depends only on the
present electric field value. This means that given precise
information of the present state of the electric field value, the
future electric field value does not depend on the past history
of the process. This point is at the very heart of the Markov
chain processes. This means that we can use a probabilistic
model which gives a complete description of the electric field
when the source of the field is not known.

The problem that we would like to address in this paper
is the one where you have several parallel infinite charged
planes placed along thez axis in which the surface charge
density could be either±σ. Then the field would evolve
along thez axis making random jumps each time it crosses an
infinite charge sheet. We are going to show that the behavior
of the electric field can be studied like a random walk. The
motivation of this paper is due to the fact that many phys-
ical systems display a non-deterministic disorder. A better
understanding and prediction of the nature of these systems
is achieved by considering the medium to be random. The
randomness models the effect of impurities on a physical sys-
tem or fluctuations. Randomness appears at two levels in our
problem. It comes in the description of the intensity of the
electric field and also comes in the description of the medium.

The article is organized as follows. In Sec. 2 we give a
brief review of Markov chains. Then in Sec. 3 we will apply
the Markov chain theory to the case where we have several
infinite charged planes placed along thez axis in which the
surface charge density can be either±σ. In Sec. 4 we present
the numerical results and use our model to calculate the mean
electrostatic force and energy density for our problem. In the
last section we summarize our conclusions.

2. Markov chains

In this section we will give a brief explanation of the Markov
chain theory concepts that we need for the formulation of the
problem. To introduce these concepts lets imagine a random
experiment like throwing a normal dice. In this case we have
six possible outcomes which are1, 2, 3, 4, 5 or 6. We will
denote the set of the possible outcomes with the letterS and
name it as thestate space. These outcomes define a random
variableX which can take values fromS. Each outcome
can be associated with their respective probabilityp which
must take values only in the interval0 < p < 1. We can
write P (X = i) = pi which means that the probability of
the random variableX to take a valuei its equal topi with
i ∈ S [14].

Also if the same experiment is repeatedn times, and in
general each trial is dependent of the previous trials then
pi(n) represents the state of the random variableXn after
n trials. If the state at a trialn is i, the probability that the
next state is equal toj is defined by [3,15]

P (Xn+1 = j|Xn = in, Xn−1 = in−1, . . . , X0 = i0)

= P (Xn+1 = j|Xn = i) = pij (7)

Equation (7) is known as the Markov property and says
that the state of a random variable aftern + 1 transitions,
only depends on the state of the random variable aftern tran-
sitions. In other words, the future of the system will only
depend on the present state [3,16].

If we want to know the probabilities of a single state it
is useful to use the total probability theorem which is given
by [16]

P (B) =
∑

i

P (B|Ai)P (Ai) (8)

Where the indexi runs for all the states/Ai that B
depends on. IfB is the event ofXn+1 = j then
P (Xn+1 = j) = pj(n + 1). Ai is the event ofXn = i,
thusP (Xn = i) = pi(n), then the theorem transforms into
the following equation [4,17]

pj(n + 1) =
∑

i

pij(n)pi(n) (9)

This notation allows us to interpret equation (9) as a mul-
tiplication of a horizontal vector formed with the probabilities
of some certain state with a matrix formed by thepij . So if
there areN possible states,p(n) = [pi0(n), . . . , piN−1(n)]
andW is the matrix with elementspij , the relation between
states can be written as [15,17]

p(n + 1) = p(n)W(n) (10)

Given the initial conditionp(0) we can determine the so-
lution to Eq. (10) [5].

3. The Model

Suppose that we are given a collection ofN infinite charged
planes, half of them have a constant charge distributionσ and
the other half have a constant charge distribution−σ. We can
write this condition as

N−1∑
n=0

σ(zn) = 0 (11)

If we randomly place theN infinite charged planes par-
allel to each other along thez axis at positionzn = n ∈
{0, 1, . . . , N − 1}, there is no way to know the values of the
electric field in between the planes unless we measure the
charge on the planes. Instead of that we will use Markov
chain theory to analyze the problem.

We will first consider a system of four charged planes.
E(z) equals zero at the left and right side of the configura-
tion due to the neutrality of the system [1]. After crossing
the first charged plane,E(z) would increase or decrease in
an amount ofσ/ε0 depending if the first charged plane had
a positive or negative charge, and the same for the remaining
planes according to Eq. (6). In Fig. 1 there is an example of
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FIGURE 1. Values for E(z) inside a given configuration of charged
planes.

how the electric field behaves for a known charge density. In
Fig. 2 we show the possible values the electric field can take
when the charge density is not known.

For the sake of simplicity, we normalized the electric field
dividing byσ/ε0 so

Ē(z) =
ε0
σ

E(z) (12)

Due to this normalization̄E(z) takes only integer valuesi.
DefiningĒi(n) as our random variable, wheren is the region
betweenzn andzn+1, our state spaceS is defined by inte-
ger values between the interval[−N/2, N/2]. To calculate
the transition probabilitiespij we use the fact that the bound-
ary condition in Eq. (6) prevent us to have a value bigger
thani + 1 or smaller thani − 1 at a placez = n + 1 when
Ēi(n) = i. This results inpij = 0 for j > i + 1 and for
j < i + 1. After crossing a charged plane the field has to
have a different value, sopii = 0. The last values forpij are
determined by the probability of finding a negative or posi-
tive charged plane at the transition point. DefiningW±(n) as
the probability to find a positive or negative charged plane at
a placezn = n, we get the following results forpij

pij =





W+(n) if j = i + 1
W−(n) if j = i− 1
0 otherwise

(13)

A simple way to calculate the factorsW±(n) its by divid-
ing the remaining positive or negative planes by the remain-
ing total planes. Letp± be the number of positive (negative)
planes between0 ≤ z ≤ n, thenp+ + p− = n. Also the
value of the electric fieldi at a pointn is completely defined
by the amount of positive and negative plates that have left
behind, thereforep+ − p− = i. Using these two relations we
can solve forp+:

p+ =
n + i

2
(14)

The remaining positive planes areN/2− p+ and the remain-
ing total planes areN − n, thenW+ is given by

W+(n) =
N
2 − i+n

2

N − n
=

1
2

(
1− i

N − n

)
(15)

andW−(n) = 1−W+(n).

We known that the system is neutral, so the electric field
must be zero atz = 0. In other words the probability for̄E to
be zero atz = 0 equals one, and the other cases have0 prob-
ability. Using our notation the last statement can be written
asp0(0) = 1 andpi(0) = 0 for i 6= j.

With all these information we can use Eq. (10) to obtain
the most probable value of the electrostatic field in between
the charged planes.

4. Results

In this section we present our results for a the system which
consists of100 charged planes (N = 100). Figure 3 shows a
3D plot for p(n). Note that the highest values for the prob-
ability are reached atn = 0 andn = N − 1 with i = 0,
which shows the fact that the electric field must be zero at
these points. In the direction of the increasingn the proba-
bilities spreads out on the possible states, so the electric field
becomes more uncertain at places near the middle of the con-
figuration. After that point, the probabilities change to finally
reach1 atn = N − 1.

Its important to note that these probability functions for
each transition are discontinuous functions. The plot in Fig. 4
represents a cross section forp(n) at the middle of the con-
figuration (n = 50). In this plot it is easy to see that there
are jumps between probability zero and nonzero probability
along the possible states. This is due to the boundary condi-
tion given in Eq. (5). Note that the field cannot remain the
same so there are forbidden states at a certain transitionn.

Now we can calculate the two physical quantities that we
are interested in which are the mean electrostatic force and
mean electrostatic energy density. It is well known that the
electrostatic force is given byF = qE and the energy density
by δE = ε0E

2(z)/2. In order to calculate these two quanti-
ties we need to calculate the first and second moments for
the electrostatic field,i.e. 〈Ē(n)〉 and〈Ē2(n)〉. To calculate
such moments we use thek-th moment formula [4,16]

FIGURE 2. Possible values for E(z) inside a four charged planes
system where the charge distribution is not known.
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FIGURE 3. State probabilities for every transition.

FIGURE 4. State probabilities after 50 transitions.

〈Ēk(n)〉 =
∑

i

ikpi(n) (16)

Where the indexi runs through allS. In order to calculate
these moments let us rewrite the form of Eq. (10) as follows.
Most of the probabilitiespij equals to zero, so the probability
pi(n + 1) can be calculated adding the 2 possible paths from
the last transition given by the possible values at the transi-
tion n. Each of the paths may me multiplied by the factors
W±(n) [13] as is depicted in Fig. 5.

So the new form of Eq. (10) is given by

pi(n + 1) = pi+1(n)W−(i + 1, n)

+ pi−1(n)W+(i− 1, n) (17)

Multiplying both sides of Eq. (17) byik and summing from
−N/2 to N/2 we may use the definition given in (16) to ob-
tain

FIGURE 5. Relation between transitionn andn + 1.

〈Ēk(n + 1)〉 =
N/2∑

i=−N/2

ikpi+1(n)W−(i + 1, n)

+
N/2∑

i=−N/2

ikpi−1(n)W+(i− 1, n) (18)

Its important to note thatpN/2+1(n) = p−N/2−1(n) = 0 be-
causeN/2 + 1 and−N/2 − 1 does not exist inS. Also
W±(±N/2, n) = 0 because the field cannot get a value
higher (lower) than±N/2. Using these facts and setting
k = 1 in (18) we obtain

〈Ē(n + 1)〉 =
N − n− 1

N − n
〈Ē(n)〉 (19)

Due to the neutrality of the system we can write〈Ē(0)〉 = 0.
Using this initial value and substituting it in (19) its obvious
that 〈Ē(n)〉 = 0 for all n inside the plane configuration as
expected [12]. Therefore the mean force is zero everywhere.

Settingk = 2 in (18) and doing a little bit of algebra,
Eq. (18) turns into

〈Ē2(n + 1)〉 =
N − n− 2

N − n
〈Ē2(n)〉+ 1 (20)

Let A(n) be the factor that multiplies〈Ē2(n)〉 in Eq. (19),
and knowing that〈Ē2(0)〉 = 0 and using recursively the dif-
ference equation in (20) [12], the states for the second mo-
ment are given by

〈Ē2(1)〉 = 1
〈Ē2(2)〉 = A(1) + 1
〈Ē2(3)〉 = A(2)A(1) + A(2) + 1
. . .

〈Ē2(n)〉 = 1 +
n−1∑

i=1

i∏

j=1

A(n− j)

(21)

SubstitutingA(n) in equation (21), the second moment is
given by
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FIGURE 6. Evolution of the second moment along thez axis.

〈Ē2(n)〉 = 1 +
n−1∑

i=1

(N − n)(N − n− 1)
(N − n + i)(N − n + i− 1)

(22)

To see how the energy evolves along thez axis we used
the same example withN = 100 as before and numeri-
cally calculated the energy using (22).The result is depicted
in Fig. 6. The the mean energy may be calculated using the
definition of our random variable given in (12) as

〈δE〉 =
ε0
2
〈E2(n)〉 =

σ2

2ε0
〈Ē2(n)〉 (23)

We can use standard probability theory to validate our calcu-
lations for the example given above. For the case ofN = 100
there is a probability of50!50!/100! that the electrostatic field
reaches the maximum (minimum) value±50 after50 transi-
tions. Using our approach this means that the probability to
get a value of50 is obtained by

p50(50) =
50∏

j=1

W+(50− j, 50− j) (24)

Equation (24) means that we need50 positive charged planes
in order to reach the maximum value of the electrostatic field.
Using the fact thatW+(i, n) = (1 − i/(N − n))/2 we get
W+(50−j, 50−j) = j/(50+j), inserting this into Eq. (24)
we get

p50(50) =
50∏

j=1

j

50 + j

=
(1)(2)(3) · · · (49)(50)

(51)(52)(53) · · · (99)(100)
=

50!50!
(100)!

(25)

Equation (25) shows that our result is consistent with the
standard probability theory.

5. Conclusions

We have shown that it is possible to perform a random walk
with and electrostatic field by means of several parallel in-
finite charged planes in which the surface charge distribu-
tion is not explicitly known. We have worked out the special
case where the charged planes have a constant surface charge
distribution±σ and the overall electrostatic system is neu-
tral, i.e. there is the same number of positive and negative
charged planes. We use Markov chain theory in order to give
the most probable value for the electrostatic field in between
the charged planes and use these results to obtain the mean
electrostatic force and energy density. Our model gives rise
to a stochastic law when the charge distribution is not deter-
ministic.
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CYT”.

1. D.J. Griffiths, Introduction to Electrodynamics(Prentice-Hall,
Upper Saddle River, 1999)

2. M. Sadiku,Elements of Electromagnetics(CECSA, 2002)

3. D.T. Gillespie,Markov Processes: An Introduction for Physical
Scientists(Gulf Professional Publishing, 1992)

4. S. Karlin, Howard M. Taylor,A First Course in Stochastic Pro-
cesses(Academic Press, 1975)

5. J.G. Kemeny, J. Laurie Snell,Finite Markov Chains(Springer,
1976)

6. H.J. Weberet al, Mathematical Methods for Physicists, Seventh
Edition: A Comprehensive Guide(ELSEVIER, 2012)

7. S. Kakutani,Proc. Imp. Acad.20 (1944) 706-714.

8. W. Yu, K. Zhai, H. Zhuang and J. Chen,Simulation Modellinbg
Practice and Theory34 (2013) 20-26.

9. W. Yu, H. Zhuang, C. Zhang, G. Hu and Z. Liu,IEEE Trans-
actions on Computer-Aided Design of Int. Circ. and Syst.32
(2013) 353-366.
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