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Discrete symmetry in graphene: the Dirac equation and beyond
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In this paper we review the discrete symmetries of the Dirac equation using elementary tools, but in a comparative order:3thHe usual
dimensional case and tBe-1 dimensional case. Motivated by new applications of the 2d Dirac equation in condensed engitgaphene),

we further analyze the discrete symmetries of a full tight-binding model in hexagonal lattices without conical approximations. We touch upon
an effective CPT symmetry breaking that occurs when deformations and second-neighbor corrections are considered.
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En este aftulo revisamos las siméas discretas de la ecuanide Dirac usando herramientas fundamentales, en un orden comparativo: el
caso comin 3 + 1 dimensional y el caso reducidb+ 1 dimensional. Motivados por nuevas aplicaciones de la egnate Dirac 2d en
materia condensada (v. gr. grafeno), taembanalizamos las siméis discretas de un modelo de amarre fuerte en redes hexago@aales m
alla de las aproximacione$gicas. Hacemos breve meagide un rompimiento de sim@rCPT efectiva que ocurre cuando se consideran
deformaciones de la red e interacciones a segundos vecinos.

Descriptores: Ecuacon de Dirac 2d; simetas discretas; grafeno; nitruro de boro.

PACS: 03.65.Pm; 11.30.Er; 81.05.ue

1. Introduction a point become discrete), an approximate Lorentz symmetry
for low energies can be attained. Other works address the
The rise of two-dimensional materials and a subsequerdymmetries in a more direct fashion, either with conventional
avalanche of studies [1-3] have led to significant theoretica[13] and nonconventional [14] considerations.
and experimental advances in condensed matter. With this, e present our discussion in the following order: In
the Dirac equation has found happy applications in electronigec. 2 we provide the concepts that explain the appearence
transport [4], photonic structures [5,6] and recently, ultracoldyf giscrete transformations as members of the Lorentz group.
matter in optical lattices [7]. We also review the origin of the Dirac equation and show
The crossover between crystalline structures and relanoy its spinorial dimensionality is related to space-time di-
tivistic quantum mechanics compells us to analyze these sy$nensjonality. In Sec. 3 we focus on parity, analyzing both
tems from different angles. In this paper we are interested I8 | 1 and2 + 1 dimensional cases. Sec. 4 is devoted to ef-
discrete symmetries, whose implications in elementary partitective Dirac theories; in this section we study the effects of
cle physics have been clearly established and —in the frontierl§arity on hexagonal lattices and suggest a symmetry breaking

of our knowledge — occasionally tested [8-11]. . of full tight-binding models. We conclude in Sec. 5.
Our tasks imply a revision of dimensionality and its con-

sequences. The + 1 dimensional Dirac equation shares
many features with the usudl+ 1 dimensional case, but
Ehere are also differences that manlfes_t themselves_ln d|scre§1_ The sheets of the Lorentz group
ransformations and the nature of chiral symmetries. In a
more general framework, we should point out that nearestit was Einstein’s discovery [15] that the invariance of
neighbor tight-binding models allow exact solutions, andMaxwell's equations found by Lorentz should be im-
that their formulation goes beyond the Dirac approximationposed also to field sources and particles, giving rise to
Therefore, this is an excellent opportunity to discuss discret@ structure of space-time sustained by a metric =
symmetries in a more general setting. As a bonus, we shadiiag{JrL —1,—1,—1}. This is the Minkowski space de-
see that a symmetry breaking analogous to CPT violatiomoted byM3, ;. Elementary textbooks on particle physics
may occur beyond effective Dirac theories. postulate the invariance of four-vector norms under Lorentz
It is important to mention that some studies have adtransformations in any physical theory, and we proceed in
dressed the subject of discrete symmetries in graphene witfie same manner. We denote a vector that transforms linearly
different purposes. For instance,@mergentLorentz invari-  under the Lorentz group a,, = 0,1,2,3 and its con-
ance in hexagonal sheets has been verified for theories withavariant vector a¥* = ¢#*V,, (summation over repeated
interacting electrons [12]. Although general theories of elecindices) such that
trons in crystals cannot be Lorentz invariant from first prin- ) ) ) )
ciples (boosts transformations are limited and rotations about ViV =V = Vi = V5 = V3 (1)

2. Preliminary concepts
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TABLE |. The disconnected components of @33) and Sd1, 2)

- Det= +1 Det= -1
Orthochornous SO P.SsSoO"
Non-orthochronous PTSO" T.SO"

In this paper we shall be interested in those transforma-
tions that take us (by composition of transformations) from
one sheet of the Lorentz group to the others. They are discon-
nected from the identity and have either negative determinant
or time inversion. We shall refer to them as the discrete sym-
metries of (1). We have the nomenclature

+1

FIGURE 1. Disconnected sheets of the time-like hyperboloid -1
V,V# = constant inMa1. +1

is an invariant.V; is the component along the axis of time, +1
and the sign of (1) determines whether the invariant is time-
like (> 0), space-like € 0) or light-like (= 0). The Lorentz -1
transformations aré x 4 matricesA with the property PT — -1 ] ()

A/LaAuTgUT = Guv, ‘/,uvﬂ = VUVTAUHAT/L' (2) —1

The set of all such matr!ces forms a six-dimensional E.letra%ee Table I. It is important to note that all the elements in one
surface that has four disconnected components. It is tradi-

. s sheet of @1, 3) can be identified with one of the operators
tionally denoted b ,3) (orthogonal group with signature . ’ . o .
+ _y_ . Thg gost) ((:ommgn setgof trznsform%tions . in the set{14, P, T, PT}. This set is in fact an abelian group

. . ) . - _.isomorphic to the quotient @,3)/SO"(1,3) & Zy ® Zo,
this group is the one connected continuously to the identity; '%Nhich is also known as the Klein group.

contains matrices with positive determinant and is denoted by . . .

SQ(1, 3) (special). Using the continuity of the determinant . In 2+ 1 dimensions, we al_sc_) have fo_u_r ghsconnected re-

as a function of matrices, we conclude that the componentg'onS ofthe group @, 2) containing the disjoint transforma-

of the group SQ@1, 3) and 1, 3)\SO(1, 3) must be discon- tions

nected. Each of these two classes also contain two discon- +1 1

nected components, if we recognize that the invariant relation p _ 1

(1) represents separate sheets of a hyperboloid in space-time, +1 +1

see Fig. 1. From here it follows that Lorentz transforma-

tions cannot map events continuously from one sheet of the -1

hyperboloid (positive time) to the other (negative time). The PT = -1 . (5)

transformations that preserve the arrow of time are cailted +1

thochronousdenoted by SO(1, 3), which is a continuous

group by itself. SO (1,3) contains the identity matrix, to- Note that the parity operatd? must have negative determi-

gether with all the transformations of the form nant and in th@ + 1 dimensional case it reverses the sign of
one and only one space component.

A = exp (iJ,.,0"), €))
where J,,,, are the infinitesimal generators of rotations and2.2, On the dimensionality of Dirac equations
boosts. The generatog; = —J;; are true rotations in the
planex;-z; if 4,5 = 1,2, 3 while Jo; = —Ji0 # Jgi generate Relativistic electrons are described by the Dirac equa-

the boosts. The six parameters of a transformtation are givetion [19], which contains spin as well as positive and nega-
by the antisymmetric tensor of 'angle®™ . The reader may tive energy projections. There are two ways of looking at the
consult [16-18] for a discussion of the Lie bracket related toorigin of this equation. First consider the Lorentz invariant
this group and others. (Klein-Gordon) wave equation
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0= 3i—18—2 % (6) SQO(1,3) = SU(2) ® SU*(2 12
8xuamﬂ_c28t2_ ’ a1, )Iocal (2)® (2)- (12)

multiplet ((1/2),0) ® (0,(1/2)). We recall here that there
is a local isomorphism of our six-dimensional, semi-simple

} =0, group [16]

which merely expresses the energy momentum relatio
E? = ?p? +m?2c*. This equation is of second order in time,

and requires the specification of two initial conditions for de-
termining the evolution of waves. Dirac took the 'square root’
of (6) with the purpose of finding a proper relativistic hamil-

tonian, but such an operation only exists in the space of matri-
ces; they form a Clifford algebra. In simpler units= 4 = 1

we have the factorization

0 0
O+m? {7“8 +zm}{’yu6$—im} @)

Yhe lowest irreducible representation of the r.h.s. is a direct
product of two sets of Pauli matrices, corresponding t¢23U
and SU (2) (the star indicates complex conjugation of the
group parameters). Hence the usetot 4 v matrices. In
contrast, SQL, 2) is asimpleand three-dimensional group,
requmng only one set of Pauli matrices for the= 1/2 rep-
resentation.

if and only if the Clifford condition holds

{’7#7 'VV} = 2Ig,uz/a (8)
but then a spinorial wave equation should be satisfied:

0
Y — =0. 9
{imge =} ©

It is important to recognize here thay, is a four-vector of d
matrices, and that each matrix must be of dimendion4. N\
In fact, a popular representation in terms of Pauli matrices is ﬁ"}\

1 0 0 o
FIGURE 2. Schematic view of parity ir8 + 1 dimensions. The

In 2 + 1 dimensions the situation is different, since we needwavefunctions corresponding to electrons in opposite sides can be
only three anticommuting matrices. This time we need onlyrelated by a spinorial transformation and an inversion of momenta.
2 x 2 matrices and they can be represented again in terms dihe spin is invariant.

Pauli'so

Yo =03, V1= ’L’(J'Q7 Yo = —iUl. (11) Clys y (:;[a_‘j-
J J

The implications of dimensionality here are profound,
since the spin of the particle iNM5; emerges naturally as
S = (1/2)o. However, inMs; the spin has only one pos-
sible direction,i.e. S3 = (1/2)os. In a similar guise, the - Oly Ol
4 x 4 structure of the Dirac equation M3, contains infor- -X ] . X
mation about positive and negative energies or big and small
components in the sense of Pauli [20], whereal/li5), ;, o,

ando» may play such a role without being related to the usual T
spin. We must warn the reader that effective theories of elec- .
trons in two dimensions work with affectivespin generated Mirror

by lattices, while the true spin of the electron remains as the
three-dimensiond. See Sec. 4.
Yet another way to understand the differences due to di- ’

mensionality comes from the representation theory of the-sre 3. (Color online) Parity ir2 41 dimensions. The dark blue
groups SQ1, 3) and S@1,2). The Dirac equation is a re- (dark gray) objects represent electrons that can be transformed into
lation that expresses the invariance of rest mass in the irresach other, whereas the light blue (light gray) object has the same
ducible representation of spin= (1/2) —to be precise, the energy spectrum, but obeys a transformed Dirac equation.
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3. Parity in low dimensional Dirac equations  that k,k* = k,x* = m and the normalized bi-spinors

u(k,,),u(x,). The wavefunctions read
We investigate the difference betweg# 1 and2 + 1 dimen-

sional Dirac equations in regard to discrete transformations. P(t,x) = u(ku)e—“@”%’
We shall see that the spinorial representations of such objects - ~ ik
have important differences due to dimensionality. Among Y(t,x) = uk,)e"" ™, (19)

discrete transformations, it is of particular interest to under- . . .
stand parity, as it has been the subject of many discussiorpsth in the light of (18), we must have the relations
in connection with the chiral properties of electrons in two- k= K Ko = ko (20)
dimensional materials such as graphene and boron nitride. In ’
our study, the energy-momentum relations must be invariangng
although the corresponding equations may vary under dis-
crete transformations. Two diagrams are shown in Figs. 2 i(ko, k) = nyou(kg, —k). (21)
and 3.

This result is in fact quite general, as it can be applied to any
3.1. Areview of parity in 3+1 dimensions superposition of plane waves fulfilling, k* = m, for which

the transformation properties afk,) still hold. In fact, it
In order to establish a point of comparison, let us reviewis customary to use plane wave superpositions with positive
the transformation properties of tBet- 1 dimensional Dirac  (k, > 0) and negativek, < 0) energy components of(t, x)
equation under parity. This is most easily discussed at ther their second quantized version [21]; for the moment we do
level of first quantization; let: = 0,1,2,3,% = 1,2,3, and  not need such an expansion.
let v, be the covariant Dirac matrices in the representation |t is fairly easy to show that other parity transforma-
(10). In natural units, we write the Dirac equation with mo- tions (negative determinant) produce similar transformations

mentump = id/0x* = (i0/0t, —iV)T as in spinors. For example, if; — —z; with the rest of the
components invariant, we obtain
{vup" —m}p(zs) =0 13)
Kp =k, p#1
or
R1 = _kla (22)
{vopo —v - p—m}i(t,x) = 0. (14)
and
Now we perform the transformatioo — —x, x¢ — xy and _
Consequenﬂp — —P, Po — Do- This results in u(k(), kla k27 k3) = 77’7273’70'“(]{07 —k1, ko, k3) (23)

(15) The spinor transformations (21) and (23) are mediated by
unitary matrices which anticommute with alls expect for

We would like to know if there exists a spinorial transforma- One, and such matrices are built his themselves or their

tion of v such that (15) can be transformed back to its orig-Products. Is it possible to find similar matrices for problems

inal form (14),i.e. whether the original wave function and Of different dimensionality? I2 + 1 dimensions, the answer

its transformation are described by the same physics. Notini§ nNegative. We shall see this in Sec. 3.2.

thatyoy:70 = —v; andy2 = 1, one has

{Yopo +7v-pP—m}Y(t,—x) = 0.

3.1.1. Remarks on PT th-+ 1 dimensions

+y-p— t,—x) =0, 16 . . . .
Yo {y0po +7 P = m}y070¢ (¢ —x) (16) Full space-time inversions iM3,; are represented by the

or negative identity matrix. Using the procedures described
above, it is easy to show that the PT transformed Dirac equa-
{vopo —~ - P — m} u(t, —x) = 0. (17)  tion can be brought back to its original form, and that the
wave functions must be related by
This equation is identical to (14), and its solutioif(s, x) are -
such that V(@) = nysY(—2a), (24)

D(t,x) = nov(t, —x), (18) where~vs = iv717273. It is also worthwhile to recall
that the presence of interactions, to the best of our knowl-

where1) is a global phase factor. This is in fact a trans-€dge, respects the CPT symmetry, which includes inversion

formation law for wavefunctions, and it can be further ex-of charge. In a simplified manner, we may establish this in a

plored to the level of space-time independent bi-spinors. Tdirac equation with minimal coupling to a gauge fielg:

this end, let us consider plane waves and spinors in the so-

lution of (14) and (17). We introduce wave vectors such {up” + e AF —m}ip(xn) = 0. (25)
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If A* is a vector, the PT transformation magg — —A* Returning to first quantization and the Dirac equation, we
and the full Eq. (25) is invariant upon the applicatiomgf  point out that a happy accident occurs in the absence of mass.
On the other hand, ifi* is a pseudovector, the#t — + A* The Dirac operator becomegp*; although this operator is
and the theory is invariant after the applicatiomgfand the  not invariant under:; — —x1, it turns out that this trans-
reversal ofe — —e. It is also important to remember that formation can be continuously related with a full space-time
charge inversion can be achieved by the successive applicaversion: the relation
tion of complex conjugation and multiplication byy~;v3
(the matrixy; is complex in the representation we have cho- {Yopo + 11p1 — Yap2} ¥(t, —x1,22) =0 (31)
sen).

can be transformed by applyirgy; from the left
3.2. Parity in 2+1 dimensions

. o Yopo — M1P1 — V2p2} N1 (t, —x1,22) =0 (32)
Letpy = 0,1,2 andx = (z1,22). The Dirac equation in { } ( )

2 + 1 dimensions is given now by ax 2 I|_nea.r differential  \yhich is the sought result. This shows that the massless Dirac
operator acting on a two-dimensional spinor: equationis invariantunderz; — —z; and the solutions are

{o3po — ioap1 + io1ps — m}(t,x) = 0. (26) related by

Here, the Dirac matrices are represented by Y(t,z1,22) = n1ep(t, —21, 22) (33)

M =102, 72 =—i01, 7o = 03. (27)  wherey is again a phase factor, including signs. We note
that the transformation is now mediated y, whereas in

Now we apply a discrete transformation to (26); the spac%heg + 1 dimensional case the matrix was.

inversionx — —x has unit determinant and is irrelevant

to our discussion. Let us consider instead+— —z; and
o — 9. OUr equation (26) transforms into 3.2.1. Hamiltonian formulation i + 1 dimensions

{ospo +ioap1 +io1ps —m}a(t, —x1,22) =0, (28)  The previous results are not too different when we bring the
Dirac equation to a hamiltonian form. Here of course, time

but this equatlon_cannot be b_rought to its original form (26)reversal transformations without energy sign reversal require
by the mere application of unitary operators! Hypothetically, o yiijinear operators. It also happens that parity-transformed

a unitary operatoil made O,WS that restores the signs in hamiltonians may have the same spectrum, and indeed
(28) must have the propertigH, o] = [ILy] = Oand 5" /5773 is invariant under parity. With the tra-

{II,71} = 0. These requirements are impossible to meetiiona| notationa; — o1, s = o9, 3 — o3 we have the
in the algebra spanned by afs and their products, since we Schibdinger equation ’ ’

have
| | | | Du(t,x)
Yov172 = =ik, Yom1 = 2, Yem1 = Y0, Y270 = im1- (29) {a-pmByolt,x) =i—5—. 49
The first operator commutes with everything, while the other Althouah th t
operators in (29) applied to (28) would produce two sign flips ough the operator
(positive determinant). A similar situation occurs when we H*' —a-p+mp (35)

try to introduce complex conjugation as a possible transfor-

mation; we have . . . L . .
is not a parity invariant, the spectrum is invariant. This im-

(vopo)* = —yop0, (11p1)* = —71p1, plies that the eigenfunctions are divided at least in two classes
. (as we saw previously), producing degeneracy when both the
(72p2)™ = +72p2, (30)  original and the transformed hamiltonian belong to the same

and two sign flips would occur again in (28). With theory. . . . )
this, we conclude that the wavefunctionét, —a1, z2) and We examine again the parity transformations at the level

¥(t, 1, 22) cannot be transformed into each other, al-Of (34) and its stationary version. Taket,x) = _zEt‘b_(X)
though they may satisfy the same energy-momentum relationd Perform the transformation — —z1, z — > to find
kuk* = m when expanded in plane waves.

In a theory of many fermions (for example, the second {=o1p1+oapetmos} d(—x1,x2)=Ed(—x1,22). (36)
guantization of the theory above) it seems necessary to intro- ] ) ]
duce at least two flavors that account for all possible solutions Hereé complex conjugation pays off (but not in the full
of the energy-momentum relation but whose equations are ifime-dependent solution!), as it leads to
equivalent. We shall see in Sec. 4 that this is exactly the case
for some two-dimensional systems in condensed matter. {o1p1+0o2pat+mos} ¢* (—x1,x2)=E¢" (—x1,22). (37)
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For this reasom* (—x1, x2) andg(x1, 22) have the same 4. Graphene and Boron Nitride: effective the-
energy, but it is left to see whether these solutions are inde-  gries in flat sheets
pendent or not with respect to their spinorial part. Once again

we use a single plane wave to see that if
It has been noted in the literature of condensed matter physics

¢(x) = u(k)e™ (38)  [2,3], that electrons in hexagonal lattices (see Fig. 4) can be
then described by effectiv + 1 dimensional Dirac equations.
It turns out that there are inequivalent conical points at the
{o -k +mos}u(k) = Eu(k), (39) edges of the first Brillouin zone (in this case an hexagon)
of the honeycomb lattice, where the dispersion relations of
with its complex conjugate given by propagating waves resemble a relativistic energy-momentum
{0’1 k1 — ooko + m0'3} u* (k) = Bu* (k) (40) relation [22]

Now we must have that and«* are independent, for
the proportionalityu oc »* leads to the contradictory relation
kooou = 0 by the combination of (39) and (40). %ds nec-
ess.quly complex, and th? spmnors correspondlng'to OppOSItvevherek is the Bloch momentum of a wave in the crystal,
parities and equal energies are independent£ 0 is pos-
sible, but reduces effectively the problem to one dimension

and is not of interest). nearest-neighbor coupling in the corresponding tight-binding

In. conclusion, !n2 * 1 dimensions only thetationary model (in condensed matter physiads related to the Fermi
solutions of opposite parity can be related by a transforma-

tion, which turns out to be a complex conjugation, involv- velocity), eg is the center of the lowest energy band amds
. N Fhe difference between binding energies of atoms at each tri-
ing thus antiunitary operators. The complex character o

the wavefunction and s spinorial part makes,+z) and 0 L ETIeE TR TR o to s
¢*(—x1,22) independent. : m = grap _

appealing dispersion relation, one also has an effective spin
given by the probability of being in sites of type A or B (see
Fig. 4). Incidentally, this spin is represented doymatrices,

Full space-time inversion produces three sign flips in (26) andn full correspondence with our previous considerations of
is therefore continuously connected to the— —z; trans-  Dirac equations i2 + 1 dimensions.

formation. For this reason, the functiop$—zx,,) and«(z,,)
cannot be transformed into each other. How about the func-
tionsvy(—t, —x1, x2) andy(t, x1,x2)? This PT transforma-
tion can be reproduced by the application of the maggixor

by complex conjugation. With this we can show that the func-
tions ¢ (t, x1,x2), V*(—t, —x1,x2) and yp(—t, —x1, x2)

E:€—60%:‘:\/A2(kikD)2+m27 (44)

kp is the point of maximal approach of positive and nega-
tive surfaces (the famous Dirac points [5,23,24)),is the

3.2.2. Remarks on PT ih+ 1 dimensions

can be transformed into each other, fulfilling the glorified
CPT invariance. At the hamiltonian level we can easily
show that the transformation involves energy inversion; the
reversed parity equation

{—=0o1p1 + 02p2 + mo3} d(—x1,22) = E¢(—x1,22) (41)
is transformed now to
{o1p1 + o2p2 + mos}o1d(—21, 72)
= —FEo16(—z1,22)]

after multiplying by—o, from the left. This can be resumed
as follows: a functiong of positive energyE’ can be ex-
pressed in terms of negative energy solutions in the form

(42)

¢p(x1,22) = No1¢_p(—21,22) (43)

®0®

wherer, is again a global phase factor. With this we show FIGURE 4. (Color online) An hexagonal lattice formed by two in-
that the symmetric spectrum of this theory (about the pointerpenetrating triangular sublattices in blue and red.
E = 0) is related to transformations under P alone.
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( —n(p ) —m 0 )

0 Yupt —m
UH(t, —z1,22) \
. ( Y~ (t, —x1, 72) > =0 @47

FIGURE 5. (Color online) Fundamental cell of the hexagonal lat-
tices and primitive vectors. Blue and red sites (dark and light gray)
may represent different types of atoms.

The aformentioned analogy takes place in reciprocal as
well as ordinary lattices: a computation of propagators in
space and time shows the appearence of caustics around er-
fective light-cones [25,26] making contact with well-known Ficure 6. Dispersion relation in the reciprocal honeycomb lat-
mathematical results in the context of the Dirac equation [27]tice. Six conical points can be distiguished. Opposite points are

inequivalent.

4.1. Parity in effective theories with two fermions

In such effective theories we have two types of Dirac equa-
tions fulfilling the dispersion relation (44):

{v0po — Y1p1 — Yop2 —m}ypT =0,
{70po + 11p1 — Yep2 —m} Y~ =0, (45)

wherep is now the momentum around the poihk p, with
eigenvalues\(k F kp). There are no translations in the re-
ciprocal triangular sublattice that could take us fram to
—kp, and we have seen previously that the wavefunctions
cannot be transformed into each other. The full theory, how-
ever, is invariant under the interchange<— —. Schemati-
cally, we may describe both relations in (45) by a single bi-
spinorial equation:

( ’Yupu —m 0 )
0 (V") —m

x ( Zﬁfgi; ) =0 (46)

We can perform now a parity Operation to f_inally understandrgure 7. Dispersion relation for the massive case: the gap be-
why these electrons obey a chiral theoryxif — —z; and  tween the blue (upper) and red (lower) bands is originated by a
p1 — —p1, the roles oft- will be interchangedi,e. difference of on-site energies between A and B.
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The complete theory is invariant if we apply thex 4 4.2, Parity in a complete tight-binding model with one
swapping operator fermion

I = < IO 102 > (48) 4.2.1. The general model with Dirac matrices
2
The full tight-binding model can be constructed starting from
very simple considerations [29]. For the sake of clarity we
T (t, —x1, 22) discuss it here along the lines indicated in Ref. 28. The
W (t, —my, 22) ) (49) honeycomb lattice is defined by two interpenetrating trian-
) S gular sublattices with primitive vectors, = (a/2)(—i —
and_to the augmented Dirac operator (as a similarity transfori/gj)@2 = (a/2)(i — v/3j). Each point has three nearest
mation) neighbors; the origin is connected to such sites by the vectors
 pi-m 0 by = (a/V3)j,bs = (a/2)(=i—(1/v/3)j),bs = —b1 by,
D(po,p1,p2)= ( 0 —v1 (V)1 —m > - (80)  see Figs. 4 and 5. We can label the atomic states [30] by site
g vectorsA andB corresponding to each sublattides. |A)
We explain the invariance as follows. By virtue of the and|B). They are linear combinations af, a, with integer
relationsI™* = 1, T D(po, —p1,p2)T = D(po,p1,p2), We  coefficients and the terrh, is added in the case @. The

to the bi-spinor

U(t, —21,22) = (

have that if most common way to write a nearest-neighbor tight-binding
D(po, pr, p2) U (L, 21, 22) = 0, (51) model in first quantization is the following:
H=A A)(A +Db;|+ h.c
then Al;23| J{A +bi|+ h.c
D(po, —p1,p2)¥(t, =71, 22) = 0 (52) +EAZ\A><A\+EBZ|B><B\7 (57)
and A B

whereFE 4, andEp are the binding energies of atoms in lattice
D(po, p1,p2)L'U(t, —z1,22) = 0. (53) A and B respectively. A more convenient way to write this
hamiltonian can be achieved by introducing translation oper-
ators and some definitions. The goal is to express (57) in a
way similar to a Dirac hamiltonian. We need Dirac matrices
H(p) = ( oa-p+mp 0 ) (54) a = o, and we may define them in terms of localized states

= 0 oz~ p)oz +mf3 o1=> [[A)(A+by|+|A+bi)(A]l,

The exchange ot does the trick. At the level of Hamil-
tonians the theory is also invariant: defining

with stationary functions A
U(t,x) = e Fto(x), (55) o3 =—i Y [|A){A+bi|—|A+Dbi)(A]],
A

we obtainl'H (—p1,p2)T = H (p1, p2) and oy — Z 1AYA| A + D) (A £ byl (58)
H (pl,pg)FfI)(—xl,xg) =F [F@(—l’l,(L'Q)] (56) A

as expected. There is nothing artificial about this procedureWhiCh satisfy the S2) algebra(o;, o;] = 2ie;;.0x and the

if we regard the theory as made of two types of fermions withclifford condition {oi, 0} = 2L50;;. Similarly, we define

equal probability of existence. However, this interpretationOper"’ltzrS analogous to momenta in the form

leads invariably to more than one particle in the hexagonal, ‘ ‘

sheet (in fact, many of them). This makes sense only in a}g1 ) DA +Di)(A+bi|+|A+bi—bi)(A] +hc,

second-gquantized scheme of solid state physics.
It is thus natural to ask whether a single-particle formu-P2 _ A Z |A +b;)(A + by

lation may have a similar chiral symmetry. The answer is 2i

positive, if we take into account theompletespectrum of

the theory, without the conical approximations (44) related +|A +b; —bi)(A|+h.c. (59)

to effective Dirac equations. Furthermore, it also holds thaj; is important to note thaP, and P, are made of transla-

even without the conical approximation of the dipersion re+;, operatord; = exp (ia; - p) connecting sites of the same
lations, the theory still has a spinorial formulation (spin UPsubtriangular lattice, i.e.

and down are A and B) where the effective matrices can be

A

A

defined solely by the geometry of the lattice [28]. We shall P = A [21 YT AT AT TJ] :
play with this formulation in what follows, with the aim of 2
. . . . . A
extracting once more the ;plnprlal representations of discrete p== [T1 B T1T LT — Tﬂ . (60)
transformations, but this time in the context of crystals. 21
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With these identifications, we finally arrive at the hamil-
tonian

H=a-P+mf+e¢ (61)

wherem = (E4 — Eg)/2andey = (E4+ Ep)/2. Here, we
are only one step away from an effective Dirac theory, since
the expansions of the exponentidlsin P, and P, around
Akp, yield linear expressions i andp; respectively (CON- £ 5yre 8. Parity symmetry breaking by sheet deformation. The

ical ppints). However, the full theory with hamiltonian (61) ponds represented by vectarsanda. have different lengths and
has eigenvalues different couplings.

€= ¢€g + \/A2|1 + gk-ay + eik~a2|2 + m2’ (62)

3.0
which can be computed using Bloch waves, €% 4 (x|A) '
in each spinor component. Such spinors diagonalize the fol- r2.5
lowing 2 x 2 blocks in the hamiltonian
-2.0
A1 ik-aq ik-as
( A1ty AHETAE ]) . (63)
4.2.2. The newW as a pseudovector -
Now we are ready to discuss the parity transformatipn—
—T1,X2 — Ia. We haV@l — —p1, P2 — D2, but in view 0.5
of the propertya; - p — a, - p and vice versa, the translation
operators are now mapped into each other 0
T1 = TQ, T2 = Tl, (64)
leading to a pseudovectoriB!: FIGURE 9. Upper view of the dispersion relation surface, showing
a symmetric hexagom = 1.
P1'—>P1 P2|—>P2. (65)
With these relations, the invariance of the full hamiltonian rT2s
(61) is ensured. |
Incidentally, the Dirac point dtp, = (47/3a)iis mapped [20
to —(47/3a)i, which is the inequivalent Dirac point at the
opposite vertex. However, both vertices are contained in our
single particle theory and its invariance is again confirmed. -L5
As to the wavefunctions, the spatiotemporal part is given by B
Bloch waves and only a change — —k; is needed. The i
spinorial part remains invariant. '
4.3. Discrete symmetry breaking 0.5
There are several ways to introduce interactions which violate
discrete symmetries. In particle physics we may quote fa- 9

mous examples [31,32] in which a partial discrete symmetry
is violated, such as parity (weak interactions) or time reversal
and charge conjugation (CP violation). There are even more;gyre 10. Upper view of an asymmetric dispersion relation in-
exotic proposals [33] that suggest CPT violation as an effecjuced by sheet deformation; = 1, A, = 1/2.

that emerges due to novel theories. In this paper we restrict

ourselves to the importance of dimensionality and its impli-type to the other (interpreted as tunneling) due to quantum
cations in effective theories on the lattice. A most fascinatingcorrections. In connection with explicit symmetry breaking,
consequence of reduced dimensionality is the so-called chirale. at the level of the hamiltonian, it is easy to see that lat-
anomaly [34,35], which indeed is represented by two types ofice deformations do the job in two different forms: 1) by
electrons in hexagonal lattices that suffer transitions from onéreaking A-B invariance, leading to the appearance of an
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effective mass as we saw previously and 2) by introducingnequivalent Dirac points. A comparison of energy surfaces

bond asymmetries (see Fig. 8)g by applying a shear. is given in Figs. 9 and 10.
_ Another interesting possibility comes in the form of mut-
4.3.1. Two fermions liple neighbor couplings. It turns out that their presence can

o break the symmetry between upper and lower bands around
In Sec. 4.1 we saw that the hamiltonian of the theory COUIdconicaI points, indicating that the effective CPT symmetry
be expressed by an augmented operafor The exchange ¢ yhe theory (the one that relates particles with antiparticles
%r electrons with holes) can be broken. The explicit way to

a non-diagonal operator in the space of spingfs An ex- achieve this is by adding terms 16 as follows

ample of such an interaction which does not commute With

can be proposed to be proportional to H —eg+mos+a - P+A(T, + Ty + T1T2T+h.c.). (69)

= ( 0 —ily ) (66) . . . .
ily, 0 : In this expression, the last term does not contain Dirac ma-
trices, and it couples the six second neighbors of each site by
Evidently, this leads to transitions between the twoconnecting them through the vectata,, +a,, £(a; — as).
species. Diagonal terms which do not commute Witanbe  The constanf\ modulates the interaction. The resulting dis-
conceived as well, but they do not correspond to a couplingersion relation and a comparison between energy cones is
between the two inequivalent Dirac points. given in Figs. 11, 12 and 13. Here we should note that a par-

4.3.2. Full band theory with one fermion

A very general way to break the invarianceféfunder parity

is by the introduction of vectorial interactions. When such
potentials are external,e. not dynamical variables of the
world, their transformation properties are determined solely
by the coordinates. For example, if

{vopo —NPi —v2Po—m+Vin}y =0 (67)

thenViy = v, V# would do the job, as long ds* transforms

as a vector under parity (remember tRais a pseudovector).
Another way to break parity symmetry is by introducing

complex couplings), such as those used to simulate gauge

fields [7], in particular external magnetic fields. The asym-

metry in the lattice bonds can be introduced generally as

FIGURE 11. Asymmetric bands produced by the introduction of

1 next-to-nearest neighbor interactions. The upper and lower sur-
P = By [2A0 + A1T1 + AxTy] + h.c, faces are different.

1
Py, = 272 [AlTl + AQTQ] + h.c. (68)

where A; are complex. IfA; # A,, then the exchange
a; < ay is no longer a symmetry of the hamiltonian. Gener-
ically, there is no way in which the application of opera-
tors depending o matrices may restore the symmetry, and
the theory is not invariant. There are two cases to be dis-
tinguished: When only the phases Af, A, are different,

we recognize that they can be redefined by the application of
unitary transformations forming a gauge groupll This T ——
represents indeed a magnetic field. When the moduli are dif-
ferent,i.e. |A1| # |A2| then the bonds mediated by the vec-
torsb, andbg are different, a type of asymmetry that can be
introduced by a constant deformation that modifies the fun-
damental cell, but not the periodicity of the medium. The
overall effect in such theories amounts to a modification offgure 12. Asymmetric bands induced by second neighbors, vi-
the dispersion relation. This effect has been extensively insualized around conical points. Although the complete system must
vestigated [36] with the purpose of translating and mergingoe CPT symmetric, the effective theory of the electron is not.
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FIGURE 13. Usual cones with up-down symmetry. Compare with

Fig. 12.

ity transformation leaves such terms invariant (this is agai

the exchange; < a,), but the application ofPT" at the
level of the Dirac equation

{’Yopo — P —m— Ayo(Ty + T+ TiTJ + h-C-)}

X (t,x1,29) =0 (70)
reveals that
Yo {=v0p0 + 11 P1 — 72 P2 — m}h(—t, —x1,72)
— Ayoryo(Ty + To + T1 T +h.c)
X (—t, —x1,22) =0 (71)

or

X’ygw(ft, —Iy, .Z‘Q) =0.

put another way
{70p0 — P —m+ Ay(Ty +To + ThT] + h-C-)}

(72)

E. SADURN, E. RIVERA-MOCINOS AND A. ROSADO

but the stage is fixed, such a coupling inversion is not allowed
and the dispersion relation must have an up-down asymme-
try. Obviously, when the stage is also reversed, we recover
CPT invariance of our complete world.

5. Discussion

The role of discrete symmetries in both particle physics and
condensed matter systems should not be underestimated. In
this paper we have reviewed the subject at the level of the
Dirac equation in first quantization. Itis important to mention
that a frequent approach to symmetries in quantum field the-
ory comes from the invariance of the action that generates the
Euler-Lagrange equations, including the Dirac equation. In-
variance of the action leads indeed to invariance of the theory,
but the converse is not necessarily true; the subtleties of this

rﬁnd other properties arising in a second-quantized scheme

ave been left aside for the sake of a simple treatment. We
encourage our readers with particle physics inclinations to
consult references [11] with respect to state-of-the-art CPT
invariance tests.

As to the honeycomb lattice, there is a clear message aris-
ing from our results: lattice deformations and long range in-
teractions constitute a source of asymmetry that can be used
to our favor as a testbed for new effects. However, we must
warn the reader that the validity of conical approximations in
graphene has been experimentally established for energies in
the vicinity of the band center. Thus, the effects arising due
to a full-band theory may be visible in other honeycomb re-
alizations. The so-called artificial graphene [37] is worthy of
attention.
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