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Tunneling of polymer particles
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04510 Ḿexico, D.F., Mexico

e-mail: alberto.martin@nucleares.unam.mx
bDivisión Acad́emica de Ciencias B́asicas, Universidad Júarez Aut́onoma de Tabasco,
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In this paper we study the tunneling using a background independent (polymer) quantization scheme. We show that at low energies, for the
tunneling through a single potential barrier, the polymer transmission coefficient and the polymer tunneling time converge to its quantum-
mechanical counterparts in a clear fashion. As the energy approaches the maximum these polymer quantities abruptly decrease to zero.
We use the transfer matrix method to study the tunneling through a series of identical potential barriers. We obtain that the transmission
coefficients (polymer and quantum-mechanical) behave qualitatively in a similar manner, as expected. Finally we show that the polymer
tunneling time exhibits anomalous peaks compared with the standard result. Numerical results are also presented.
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1. Introduction

One of the most important goals of modern theoretical
physics is to reconcile two of its cornerstones: General Rela-
tivity (GR) and Quantum Field Theory (QFT). Although both
theories have been successful in explaining and predicting the
observed phenomena with a high degree of accuracy, they
come with their own set of deficiencies: ultraviolet diver-
gences in QFT and singularities in GR. It is generally be-
lieved that a full Quantum Theory of Gravity (QTG) will
solve these outstanding problems.

Quantum gravitational effects are expected to become rel-
evant near the Planck scale, where spacetime itself is as-
sumed to be quantized. The most popular approach to quan-
tum gravity is String Theory (ST), where the fundamental
particles are assumed to be extended objects rather than being
point-like. A background independent quantization scheme
that arose in Loop Quantum Gravity (LQG), the so called
Polymer Quantization (PQ), has been used to explore math-
ematical and physical implications of theories such as quan-
tum gravity [1,2]. The huge discrepancy between the Planck
energy and the typical energy scales we are able to reach in
our experiments make it virtually impossible to test these the-
ories. However a possible route to test quantum gravitational
effects is through deviations from the standard theory.

Polymer quantization has attracted some attention in re-
cent years in the fields dealing with the quantum gravitational
effects in a physical system. In this framework, in Ref. 2
have been studied the quantum gravitational corrections to
the standard thermodynamical quantities. On the other hand,
in Ref. 3 the author studies the quantum gravitational cor-
rections to the temporal dynamics of a well-known quantum
transient phenomena, the Diffraction in Time. Of course,
such corrections depend on the polymer length scale. Based
on these approaches, the purpose of this paper is to consider

one of the simplest quantum-mechanical phenomena, the tun-
neling through a rectangular potential barrier, in order to ex-
plore if the polymer theory induces whether or not significant
deviations from the well former quantum theory that could be
detected in lab.

The remainder of the paper is organized as follows. In
Sec. 2, the tunneling through a single rectangular potential
barrier will be discussed. Section 3 is devoted to the tunnel-
ing through a series of rectangular potential barriers. Finally,
Sec. 4 summarizes the results of this work and draws conclu-
sions.

2. Tunneling through a single potential bar-
rier

Let us consider a polymer particle of massm with energyE
which incides upon a rectangular potential barrier of height
U0 > E and widthL.

To address this problem, we restrict the dynamics to an
equispaced latticeγ (λ) = {αλ|α ∈ Z}. The spectrum of
the position operator{xµ = µλ} consists of a countable se-
lection of points from the real line. Hereλ is regarded as a
fundamental length scale of the polymer theory. In Appendix
A we present a brief review of Polymer Quantum Mechanics.
In this framework the widthL is restricted to be multiple of
the fundamental length,i.e. L = nλ, with n ∈ Z+.

[Hereafter we use the following dimensionless quantities
for position, momentum, energy and time

µ ≡ xµ

λ
, ρ ≡ pλ

~
, ε ≡ mλ2E

~2
, τ =

~t
mλ2

(1)

respectively.]
We can begin the analysis of this setup by using the

time-independent polymer Schrödinger equation in coordi-
nate representation
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ψµ+1 + ψµ−1 = 2 [1− (ε− υ)] ψµ , (2)

where
υ (µ) = υ0Θ(µ)Θ (n− µ) (3)

is the barrier potential with heightυ0 > ε. Θ(x) is the Heav-
iside step function.

Denoting byI, II andIII the regionsµ ≤ 0, µ ∈ [0, n]
andµ ≥ n, respectively, the wave functions for these regions
are

ψI
µ = eiρµ + Re−iρµ,

ψII
µ = Ae−κµ + Beκµ,

ψIII
µ = Teiρµ, (4)

whereR andT are the reflected and transmitted amplitudes,
respectively. Hereρ andκ satisfy the polymer dispersion re-
lations

ε = 1− cos ρ, (5)

ε− υ0 = 1− cosh κ,

align considering a fixed value ofε < υ0. Note that the free
energy spectrum is bounded from above (εmax = 2), and the
bound depends on the length scaleλ.

As usual, for finding the amplitudes we must apply the
appropriate boundary conditions on the lattice. The continu-
ity of the wave functions is needed as in the standard quan-
tum theory, but the continuity of spatial derivative must be
replaced by its discretized version. Then we have the condi-
tions

ψI
0 = ψII

0 ,

ψII
n = ψIII

n ,

ψI
0+1 − ψI

0−1 = ψII
0+1 − ψII

0−1,

ψII
n+1 − ψII

n−1 = ψIII
n+1 − ψIII

n−1, (6)

which produce a set of four simultaneous equations. The so-
lution for the transmission amplitude is

T =
e−iρn

cosh (κn) + i ξ2−σ2

2ξσ sinh (κn)
, (7)

whereσ = sin ρ andξ = sinh κ. The corresponding poly-
mer transmission coefficient is thenT = |T |2. For compar-
ison with the standard result, in Fig. 1 we plot the quantum-
mechanical and the polymer transmission coefficients for
an electron incident upon a rectangular barrier of height
U0 = 10 eV and thicknessL = 1.8 × 10−10 m. For the
polymer result we plot the casen = 4 (dashed line). This
rectangular barrier is an idealization of the barrier encoun-
tered by an electron that is scattering from a negatively ion-
ized gas atom in the “plasma” of a gas discharge tube. The
actual barrier is not rectangular, of course, but it is about the
height and thickness quoted [4].

FIGURE 1. Plots of the quantum-mechanical (continuous line) and
the polymer transmission (dashed line) coefficients forn = 4, as a
function of the ratioε = E/U0.

We observe that at low energies (n À 1), the polymer
and standard cases behave qualitatively in a similar manner,
as expected. Indeed at second order of approximation, the
polymer transmission coefficient becomes

T ∼ T QM − 2
3

α

n2

ε2 − (1− ε)2

ε (1− ε)
sinh2

(√
α (1− ε)

)
, (8)

where T QM is the standard quantum mechanical result,
α ≡ (2mL2U0/~2) andε ≡ (E/U0). For the casen = 100,
the polymer correction is of the order of10−4, which is ex-
tremely small to be detected in lab. Moreover takingλ in
the order of the Planck length (lp = 1.6 × 10−35 m), such
deviation is extremely small (T − T QM ≈ l2p).

On the other hand, at high energies (n small) the poly-
mer effects become important, as we can see in Fig. 1 (large
dashed line,n = 4). The most astonishing result is that
the polymer transmission coefficient decreases abruptly to
zero when the energy approaches the maximum,i.e. at
εmax (n) = (4n2/α), while the quantum-mechanical result
remains at one. Compared with the typical energies we are
able to reach in our experiments,εmax is too high to hope to
be able to test such effect.

As any deviation from the standard theory is, at least in
principle, experimentally testable, now we study the time-
delay caused by tunneling. The analysis of tunneling time is
complicated because time plays an unusual and subtle role in
quantum theory. Unlike the position (represented by a her-
mitian operator), time is represented by ac-number. Conse-
quently, although the time-energy uncertainty relation is sim-
ilar in appearance to the familiar position-momentum uncer-
tainty relation, its origin and interpretation is quite different.
In this work we consider the usual procedure introduced by
Salecker and Wigner [5] for calculating the tunneling time. In
Ref. 6, the author presents a complete review of the Salecker-
Wigner procedure. Other possible ways of defining the tun-
neling time are reviewed in Ref. 7 and 8.

Rev. Mex. Fis.61 (2015) 182–187
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The phase difference of the wave function between the regionI andIII is

δ (ε) = − arctan
[
ξ2 − σ2

2ξσ
tanh (κn)

]
, (9)

where we have used the transmission amplitude (7). The tunneling time is defined as(dδ (ε)/dε). By differentiating (9) we
find that the expectation value of the polymer tunneling time is

τ =
2nσ

(
ξ2 − σ2

)
+

(
ξ2 + σ2

) (
ξ
σ cos ρ + σ

ξ cosh κ
)

sinh (2κn)

(ξ2 + σ2)2 cosh2 (κn)− (ξ2 − σ2)2
(10)

FIGURE 2. Plots of the quantum-mechanical (continuous line) and
the polymer tunneling time (the dashed line forn = 4) as a func-
tion of the ratioε = E/U0.

Of course, at low energiesτ reduces to the quantum tun-
neling time. In Fig. 2 we plot both, the polymer and the
quantum-mechanical tunneling time for the system consid-
ered before. As expected, at low energies both cases behave
qualitatively in a similar manner. As we increase energy, the
polymer tunneling time starts to deviate from its quantum-
mechanical counterpart. Also we observe thatτ decreases
to zero when the energy approaches the maximum, while the
quantum-mechanical result remains in a finite value.

So far we have seen that the polymer effects become im-
portant at high energies, however it would be interesting if
the polymer effects could be amplified at low energies. To
this end, in the next section we will consider the tunneling
through a series of identical potential barriers.

3. Tunneling through a series of identical po-
tential barriers

Let us assume that there areN rectangular barriers each of
heightU0 and widthL = nλ, and the distance between the
two barriers isl = mλ, with n,m ∈ Z+. For solving the
problem we first find the transfer matrixT(1) for a single bar-
rier. The polymer wave function for the three regions are

ψI
µ = AIe

iρµ + BIe
−iρµ,

ψII
µ = AIIe

−κµ + BIIe
κµ,

ψIII
µ = AIIIe

iρµ + BIIIe
−iρµ, (11)

and the transfer matrixT(1) is defined by
[

AIII

BIII

]
= T(1) ×

[
AI

BI

]
. (12)

With the help of boundary conditions (7), we obtain the ele-
ments of the transfer matrix as

T
(1)
11 = T

(1)∗
22 =

[
cosh (κn) + i

σ2 − ξ2

2σξ
sinh (κn)

]
e−iρn,

T
(1)
12 = T

(1)∗
21 = −i

σ2 + ξ2

2σξ
sinh (κn) e−iρn, (13)

and also thatdet T(1) = 1.
Now, let us generalize the problem to multiple potential

barriers. The transfer matrixT(N) which relates the ampli-
tudes of the incoming and outgoing waves in theN barrier
system can be defined through

[
AN

BN

]
= T(N) ×

[
AI

BI

]
. (14)

The transfer matrix method discussed before can be extended
and applied to theN barrier system. We obtain that the trans-
fer matrix can be expressed asT(N) = (F∗)N GN , where

F =
[
eiρ(n+m−1) 0

0 e−iρ(n+m−1)

]
(15)

andG = T(1)F. With the help of Eq. (14) and the diagonal
form of F we find that the matrix elements are

T(N)
11 = T(N)∗

22 = FN
22 [G11 UN−1 − UN−2] ,

T(N)
12 = T(N)∗

21 = FN
22 G12 UN−1, (16)

whereG11 = T
(1)
11 F11, G12 = T

(1)
12 F22,

UN−1 (g) =
gN
+ − gN

−
g+ − g−

, (17)

g± = g ±
√

g2 − 1,

andg = Re [G11].
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FIGURE 3. Plots of the quantum-mechanical (continuous line) and
the polymer transmission coefficients (dashed line forn = 4)
for a series of three potential barriers as a function of the ratio
ε = E/U0.

Depending on whether|g| < 1 or |g| > 1, we can rewrite
g+ andg− in the following ways: if|g| < 1 then

g+ = g−1
− = eiθ , cos θ = g, (18)

andUN−1 (cos θ) is the Chebyshev polynomial of the second
kind [9]. If |g| > 1, then

g+ = g−1
− = eϕ , cosh ϕ = g, (19)

but

UN−1 (cosh ϕ) =
sinh (Nϕ)

sinhϕ
. (20)

The transmission amplitudeTN acrossN barriers can be ob-
tained asAN/A1, but also imposing not reflected polymer
particles beyond the right end of the multibarrier system (i.e.
BN = 0). Using this fact together with Eq. 14, the transmis-
sion coefficientTN can be obtained as

TN =
1

|T (N)
11 |2

=
1

1 + |T(1)
12 |2|UN−1|2

. (21)

In Fig. 3 we present numerical results for the transmis-
sion coefficient for an electron incident upon a series of
three rectangular barriers of heightU0 = 10 eV, thickness
L = 1.8× 10−10 m and the distance between barriersl = L.
As in the previous section, it is clear that at low energies
the quantum-mechanical and the polymer transmission coef-
ficients behave qualitatively in a similar manner. Also we ob-
serve that the polymer result decreases abruptly to zero near
the maximum energy.

The tunneling time can be analysed as in the previous
section. The phase difference between the incident wave
function at µ = 0 and the transmited wave function at
µ = N (n + m− 1) is

δ (ε) = − arctan

(
Im [G11]

Re [G11]− UN−2
UN−1

)
, (22)

FIGURE 4. Plots of the quantum-mechanical (continuous line) and
the polymer tunneling time (dashed line forn = 4) for a series of
three potential barriers as a function of the ratioε = E/U0.

which reduces to (9) in the appropriate limit. In Fig. 4 we su-
perimpose the quantum-mechanical and the polymer tunnel-
ing time for an electron incident upon a series of three rect-
angular barriers. We observe that the polymer tunneling time
is smaller than its quantum-mechanical counterpart, even at
low energies. As before, it is clear that the polymer result de-
creases to zero as the energy approaches the maximum. An
interesting finding is that (21) exhibits anomalous peaks ab-
sent in the standard result. So far we have found that, for
the system we have considered, the only significant differ-
ence between both theories is not through the transmission
probability density, but through the tunneling time.

4. Discussion

The implementation of a minimal length scale in quantum
theory constitutes a fundamental bound below which position
can not be defined. It has been suggested that the position-
momentum uncertainty relation should be modified to take
into account the effects of spatial grainy structure. The im-
plementation of such ideas in polymer quantum mechanics
is a difficult task because the momentum operator is not di-
rectly realized as in Schrödinger quantum mechanics. Some
phenomenological aspects of effective QTG candidates have
been introduced in quantum mechanics through deformation
of the algebraic structure of ordinary quantum mechanics.
For instance the GUP and non-commutative geometry are
the most well known deformations that impose the ultravi-
olet and infrared cutoffs for the physical systems [10].

Assuming that the position-momentum Heisenberg un-
certainty relation remains unchanged, the lower bound to
the resolution of distances(∆x)min ∼ λ introduces an
upper bound to the resolution of momentum(∆p)max ∼
~λ−1, which in turn induces a minimal temporal window
in the time-energy uncertainty relation given by(∆t)min ∼
(mλ2/~). The small uncertainty in time implies a large un-
certainty in energy(∆E)max ∼ (~2/mλ2). The implemen-
tation of both, the position-momentum and the time-energy
modified uncertainty relations, could play an important role
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in other branches of physics. In theories where there is no
cutoff built-in, all states are expected to contribute to ampli-
tudes with equal strength and consequently lead to UV infini-
ties. A theory which naturally provides the adequate cutoffs
built-in could shed light on the route for curing such UV di-
vergences.

In summary, in this paper we have considered one of
the simplest quantum-mechanical phenomena, the tunneling
through a potential barrier. The aim of this work is to ex-
plore quantum gravitational corrections to the transmission
coefficient and the tunneling time. In Sec. 2 we find that at
low energies, the polymer and the quantum-mechanical re-
sults are similar, but in the high energy regime the polymer
effects take place. The most important result in this case is
that the polymer quantities abruptly decreases to zero as the
energy approaches the maximum. Of course, measuring this
effect is now not yet feasible. In Sec. 3 we consider a series
of N identical potential barriers. Regarding the transmission
coefficient, we observe basically the same behaviour in both
cases, except as the energy approaches the maximum. The re-
markable finding is that the polymer tunneling time is smaller
than its quantum-mechanical counterpart, and also it exhibits
anomalous peaks absent in the standard result.

Appendix

A. Polymer Quantum Mechanics

In the Schr̈odinger representation of quantum mechanics the
Hilbert space isH = L2 (R, dx) with Lebesgue measure
dx. The central difference between the standard and polymer
quantization is the choice of Hilbert space [11,12]. In loop or
polymer representation, the kinematical Hilbert spaceHpoly

is the Cauchy completion of the set of linear combination of
some basis states{|xµ〉}, with inner product

〈xµ|xν〉 = lim
T→∞

1
2T

T∫

−T

dpe−i p
~ (xµ−xν) = δµν , (A.1)

whereδµν is the Kronecker delta, instead of Dirac delta as
in Schr̈odinger representation, then we say that the orthonor-
mal basis is discrete. Plane waves are normalizable in this
inner product. The kinematical Hilbert space can be written
asHpoly = L2 (Rd, dµd), with dµd corresponding Haar mea-
sure, andRd the real line endowed with the discrete topol-
ogy [2].

The state of a polymer system can be expressed as

|Ψ〉 =
∑

µ

Ψ (xµ) |xµ〉 . (A.2)

Here,|xµ〉 are eigenstates of the position operator

x̂ |xµ〉 = xµ |xµ〉 , (A.3)

and theΨ(xµ) are expansion coefficients. Note that the spec-
trum of the position operator{xµ} consists of a countable se-

lection of points from the real lineR, which is analogous to
the graph covering3−manifolds in LQG.

The central feature here is that the momentum operatorp̂
is not realized directly as in Schrödinger quantum mechanics
because of built-in notion of discreteness, but arise indirectly
through translation operator̂Uλ ≡ ei(p̂λ/~) [1]. Hence, for
the representation of the Heisenberg-Weyl algebra we choose
the position operator̂x and the translation operator̂Uλ in-
stead of the momentum operator. The action of the transla-
tion operator on position eigenstates is

Ûλ |xµ〉 = |xµ − λ〉 ; (A.4)

that is,Ûλ converts a position eigenstate with eigenvaluexµ

into an eigenstate with eigenvaluexµ − λ. These operators
definitions give the basic commutator[x̂, Ûλ] = −λÛλ, and
Ûλ defines a one-parameter family of unitary operators on
Hpoly, where its adjoint is given bŷU†

λ = Û−λ. Mathemat-
ically, polymer and Schr̈odinger quantizations are inequiva-
lent becausêUλ is discontinues with respect toλ given that
|xµ〉 and |xµ − λ〉 are always orthogonal, no matter how
small isλ [13].

However, inspired by the techniques used in Lattice
Gauge Theories and LQG, by introducing a fixed length scale
λ it is possible to define an effective momentum operator as
follows

p̂λ =
~

2iλ

(
Ûλ − Û†

λ

)
, (A.5)

which corresponds to the approximationpλ ¿ ~.
In L2 (R, dx), the λ → 0 limit would give the usual

momentum and momentum-squared operators−i~∂x and
−~2∂2

x [1]. In Hpoly = L2 (Rd, dµd) this limit does not ex-
ist becauseλ is regarded as a fundamental length scale [3].
This is analogous to the quantum-classical transition through
~ → 0 limit, where~ is a non-zero fundamental constant of
quantum theory [14,15].

In order to study the dynamics of a physical system, we
may proceed as in the standard case, with the dynamics deter-
mined by the Schr̈odinger equation,i.e. i~∂t |Ψ〉 = Ĥλ |Ψ〉,
whose stationary solution|Ψ〉 = e−i(Et/~) |ψ〉 are con-
structed from the energy eigenstates of the Hamiltonian op-
erator [16]:

Ĥλ =
~2

2mλ2

(
2− Û2λ − Û†

2λ

)
+ V̂ (x̂) , (A.6)

where the potential term is arbitrary but assumed to be
regular so that̂V can be defined pointwise multiplication,〈
xµ

∣∣∣V̂
∣∣∣ ψ

〉
= V (xµ) 〈xµ|ψ〉.

The dynamics generated by (A.6) decomposes the poly-
mer Hilbert spaceHpoly, into an infinite superselected finite-
dimensional subspaces, each with support on a regular lattice
γ = γ (λ, x0) with the same space between pointsλ, where
γ (λ, x0) = {nλ + x0|n ∈ Z}, andx0 ∈ [0, λ). This way
of choosingx0 fixes the superselected sector, restricting the
dynamics to a latticeγ (λ, x0) and work on separable Hilbert
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spaceHx0
poly consisting of wave functions which are non-zero

only on the lattice.
Hence, the Schrödinger equation and the associated

eigenvalue problem becomes a difference equation for the
wave function in coordinate representation

ψµ+1 + ψµ−1 = 2
{

1− mλ2

~2
[E − V (x)]

}
ψµ. (A.7)

In contrast, in the momentum representation, it is generi-
cally a differential equation forϕ (p) :

~2

mλ2

[
1− cos

(
pλ

~

)]
ϕ (p)

= [E−V (−i~∂p)] ϕ (p) . (A.8)

Working onγ (λ, x0) restricts momentum wave functions
ϕ (p) to periodic functions of period(2π~/λ) with the inner
product formula (A.1) reducing to:

〈xµ|xν〉 = 〈xµ|
(

λ

2π~

π~
λ∫

−π~
λ

dp|p 〉〈 p|
)
|xν〉 = δµν , (A.9)

andp ∈ (−(π~/λ), (π~/λ)). Note that the identity opera-
tor (readed from (A.9) on such subspace serves to define the
inner product onHx0

poly in the momentum representation.
The dynamical quantum evolution of physical states can

be described by the polymer propagator [17], which can be

defined in the usual way. For time-independent Hamiltonian
this is

kλ (xµ, t; xν , t0) = 〈xµ| e−i
Ĥλ(t−t0)

~ |xν〉 , (A.10)

where we have chosenx0 = 0, so thatxµ = µλ. Hence,
given an initial physical state att = t0 , i.e. |xν , t0〉, the state
of the system for latter times in coordinate representation is
given by

ψ (xµ, t) =
∑

ν

kλ (xµ, t;xν , t0) ψ (xν , t0) . (A.11)

From its definition, it follows that the polymer propagator
satisfy the standard consistency requirements to implement
well-defined quantum evolution.

We conclude this brief review by pointing out that the
polymer dynamics is equivalent to the conventional discrete
approximation to the Schrödinger equation when working on
an superselected sector, but the conceptual difference is that
in the polymer theory the lattice spacing is a fundamental
constant of the theory.
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2. G. Chaćon-Acosta, E. Manrique, L. Dagdug and H.A. Morales-
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