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Tunneling of polymer particles

A. Martin-Ruiz*, E. Chan-lbpe?, A. Carbajal-Doringuez, and J. Berndl
%|nstituto de Ciencias Nucleares, Universidad Nacionalohaima de Mxico,
04510 Mexico, D.F., Mexico
e-mail: alberto.martin@nucleares.unam.mx
®Divisibn Acad@mica de Ciencias&icas, Universidad JArez Aubnoma de Tabasco,
86690 Cundua&n, Tabasco, Mexico.

Received 13 October 2014; accepted 16 February 2015

In this paper we study the tunneling using a background independent (polymer) quantization scheme. We show that at low energies, for the
tunneling through a single potential barrier, the polymer transmission coefficient and the polymer tunneling time converge to its quantum-
mechanical counterparts in a clear fashion. As the energy approaches the maximum these polymer quantities abruptly decrease to zero.
We use the transfer matrix method to study the tunneling through a series of identical potential barriers. We obtain that the transmission
coefficients (polymer and quantum-mechanical) behave qualitatively in a similar manner, as expected. Finally we show that the polymer
tunneling time exhibits anomalous peaks compared with the standard result. Numerical results are also presented.
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1. Introduction one of the simplest quantum-mechanical phenomena, the tun-
neling through a rectangular potential barrier, in order to ex-

One of the most important goals of modern theoreticalplore if the polymer theory induces whether or not significant

physics is to reconcile two of its cornerstones: General Reladeviations from the well former quantum theory that could be

tivity (GR) and Quantum Field Theory (QFT). Although both detected in lab.

theories have been successful in explaining and predicting the The remainder of the paper is organized as follows. In

observed phenomena with a high degree of accuracy, thegec. 2, the tunneling through a single rectangular potential

come with their own set of deficiencies: ultraviolet diver- parrier will be discussed. Section 3 is devoted to the tunnel-

gences in QFT and singularities in GR. It is generally be-ing through a series of rectangular potential barriers. Finally,

lieved that a full Quantum Theory of Gravity (QTG) will Sec. 4 summarizes the results of this work and draws conclu-

solve these outstanding problems. sions.

Quantum gravitational effects are expected to become rel-

evant near the Planck scale, where spacetime itself is as; . . .

sumed to be quantized. The most popullaar approach to qua?—' T_unnellng through a single potential bar-

tum gravity is String Theory (ST), where the fundamental rner

particles are assumed to be extended objects rather than beingt us consider a polymer particle of m ith energy®

point-like. A background mdependgnt quantization SChem%vhich incides upon a rectangular potential barrier of height
that arose in Loop Quantum Gravity (LQG), the so caIIedU .
o > F and widthL.

Polymer Quantization (PQ), has been used to explore math- To address this problem, we restrict the dynamics to an

ematical and physical implications of theories such as quanéquispaced lattice (\) = {aA|a € Z}. The spectrum of

tum gravity [1, 2]. T_he huge discrepancy between the PIanclfhe position operatofz, — u\} consists of a countable se-
energy and the typical energy scales we are able to reach [8ction of points from {he real line. Herkis regarded as a

our experiments make_itvirtually impossible to test the_:se_thef ndamental length scale of the polymer theory. In Appendix
ories. However a possible route to test quantum gravitation we present a brief review of Polymer Quantum Mechanics.

effects is through (_jewg tions from the standard ”‘eOTy- . In this framework the width is restricted to be multiple of
Polymer quantization has attracted some attention in rei
a

. ) ) ) " "Mhe fundamental lengthe. L = n)\, withn ¢ ZT.
centyer_:trs in the f_|elds dealing with t.he quantum grgwtanon [Hereafter we use the following dimensionless quantities
effects in a phy_S|caI system. In this framework, in R.ef. 2for position, momentum, energy and time
have been studied the quantum gravitational corrections to
the standard thermodynamical quantities. On the other hand, = Ty p= PA c mA\*E S ht 1)
in Ref. 3 the author studies the quantum gravitational cor- A h’ R mA?
rections to the temporal dynamics of a well-known quantunrespectively.]
transient phenomena, the Diffraction in Time. Of course, We can begin the analysis of this setup by using the
such corrections depend on the polymer length scale. Basdine-independent polymer Sditinger equation in coordi-
on these approaches, the purpose of this paper is to consideaite representation
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1/J;:,+1 + 1/},:,—1 =2 [1 - (5 - U)] d}u ) (2) 1+ P — '
where y ~_7 :
v (1) =000 (1) © (n — p) ©) / |
is the barrier potential with heighty > <. © (z) is the Heav- I’ :
iside step function. ; |
Denoting byI, IT andI1I the regiong: < 0, . € [0,n] y :
andy > n, respectively, the wave functions for these regions ,’ |
are J [
, , [
wi = ¢'PH 4+ Re~PH, |
[

Y = Aem* 4 Bett, T ST

wﬁn = Te'", (4)  FiIGURE1. Plots of the quantum-mechanical (continuous line) and

the polymer transmission (dashed line) coefficientsifer 4, as a

whereR andT are the reflected and transmitted amplitudes, |\ .00 e v — E/Us.

respectively. Here andx satisfy the polymer dispersion re-

lations We observe that at low energies (> 1), the polymer
e=1-—cosp, (5) and standard cases behave qualitatively in a sim_ilar manner,
as expected. Indeed at second order of approximation, the
€ —vo =1—coshr, polymer transmission coefficient becomes

align considering a fixed value ef< vy. Note that the free ) )
energy spectrum is bounded from abosg.{, = 2), and the T o TOM _ 2 o€ - (1-¢) sinh? ( a(l- 6)) ®)
bound depends on the length scale 3n? e(l—¢) ’

As usual, for finding the amplitudes we must apply the
appropriate boundary conditions on the lattice. The continuwhere 7@ is the standard quantum mechanical result,
ity of the wave functions is needed as in the standard quanx = (2mL?Uy/h?) ande = (E/Uy). For the case = 100,
tum theory, but the continuity of spatial derivative must bethe polymer correction is of the order o=, which is ex-
replaced by its discretized version. Then we have the condiremely small to be detected in lab. Moreover takikgn
tions the order of the Planck lengtli,(= 1.6 x 1072> m), such

deviation is extremely smallf{ — 79M ~ 12).

I _ I1
Yo =0’ On the other hand, at high energiesgmall) the poly-
PIT = It mer effects become important, as we can see in Fig. 1 (large
s s . . dashed linepn = 4). The most astonishing result is that
Vo1 — Yo—1 = Vo1 — Vo1 the polymer transmission coefficient decreases abruptly to
1/’5111 = 1/’5?1 L (6) Z€ro when the energy approaches the maximum, at

€max (n) = (4n?/a), while the quantum-mechanical result
which produce a set of four simultaneous equations. The sdemains at one. Compared with the typical energies we are

lution for the transmission amplitude is able to reach in our experiments,., is too high to hope to
o—ipm be able to test such effect.
T= g7 - 5 () As any deviation from the standard theory is, at least in
cosh (kn) + i*5z— sinh (kn) . . .
o principle, experimentally testable, now we study the time-

whereo = sinp and¢ = sinh k. The corresponding poly- delay caused by tunneling. The analysis of tunneling time is
mer transmission coefficient is th&h = |T'|2. For compar- complicated because time plays an unusual and subtle role in
ison with the standard result, in Fig. 1 we plot the quantum-quantum theory. Unlike the position (represented by a her-
mechanical and the polymer transmission coefficients fomitian operator), time is represented by-aumber. Conse-

an electron incident upon a rectangular barrier of heighgjuently, although the time-energy uncertainty relation is sim-
Uy = 10 eV and thicknesd, = 1.8 x 1071 m. For the ilar in appearance to the familiar position-momentum uncer-
polymer result we plot the case = 4 (dashed line). This tainty relation, its origin and interpretation is quite different.
rectangular barrier is an idealization of the barrier encounin this work we consider the usual procedure introduced by
tered by an electron that is scattering from a negatively ionSalecker and Wigner [5] for calculating the tunneling time. In
ized gas atom in the “plasma” of a gas discharge tube. Th®ef. 6, the author presents a complete review of the Salecker-
actual barrier is not rectangular, of course, but it is about th&Vigner procedure. Other possible ways of defining the tun-
height and thickness quoted [4]. neling time are reviewed in Ref. 7 and 8.
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The phase difference of the wave function between the refamd /71 is

2 2

 (¢) = — arctan [6 tanh (mn)} , 9

o

where we have used the transmission amplitude (7). The tunneling time is defifiil(ayde). By differentiating (9) we
find that the expectation value of the polymer tunneling time is

2no (52 _ 02) + (52 + 02) (g cosp + % cosh n) sinh (2kn)

T= (20)
(€2 + 02)* cosh® (k) — (€2 — 02)?
-
'y |
| 171 i i
! Vv, = Apre™ + Brrre” ", (11)
)
A and the transfer matrix ") is defined by
Y Arrr | 1 Ap
\\ { Brir } =TV x B | (12)
i \a With the help of boundary conditions (7), we obtain the ele-
e e TN i ments of the transfer matrix as
o o2 — 2 4
S, Tl(ll) = T2(21)* = [cosh (kn) + 1 sinh (KJ’I’L):| e,
* 1 2 3 4 5 6 Emm® & w T 20
FIGURE 2. Plots of the quantum-mechanical (continuous line) and (1) (1)« _ 0?4+ &% —ipn
the polymer tunneling time (the dashed line foe= 4) as a func- Ty =T, =i 20¢ sinh (1) e ’ (13)

tion of the ratioe = E/Uy.
and also thatlet T = 1.
Of course, at low energiesreduces to the quantum tun-  Now, let us generalize the problem to multiple potential
neling time. In Fig. 2 we plot both, the polymer and the parriers. The transfer matrik’’) which relates the ampli-

quantum-mechanical tunneling time for the system considtydes of the incoming and outgoing waves in tkiebarrier
ered before. As expected, at low energies both cases behaggstem can be defined through

gualitatively in a similar manner. As we increase energy, the
polymer tunneling time starts to deviate from its quantum- AN TV o Ap (14)
mechanical counterpart. Also we observe thalecreases Bn By

to zero when the energy approaches the maximum, while th?he transfer matrix method discussed before can be extended

guantum-mechanical result remains in a finite value. ; : :
So far we have seen that the polymer effects become i and app_lled to théV barrier syster)n. We*okj)\}alr]lvthat the trans
r.T}er matrix can be expressed®5Y) = (F*)" G, where

portant at high energies, however it would be interesting i
the polymer effects could be amplified at low energies. To gip(ntm—1) 0
this end, in the next section we will consider the tunneling F= { 0 e—ip(n—&-m—l):| (15)
through a series of identical potential barriers.

andG = TWF. With the help of Eq. (14) and the diagonal
3. Tunneling through a series of identical po- form of F we find that the matrix elements are

tential barriers T
11

TS5 = FY [Gi1 Un—1 — Un—2],
Let us assume that there akérectangular barriers each of
heightU, and width. = n\, and the distance between the
two barriers isl = mM\, with n,m € Z*. For solving the
problem we first find the transfer matri%*) for a single bar-

T =70 = BN Gis Un_1, (16)

WhereGu = Tl(ll) Fi1,Gio = T1(21) Foo,

rier. The polymer wave function for the three regions are gf —gN
; 2- y Un-1(g) = *——, (17)
M:Ajep'u'+B16 p,u7 9+ — 9-
/ILI = Ajre” "M + Byre™, g+ =9+ Vg* - 1,
andg = Re [Gll}-
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FIGURE 3. Plots of the quantum-mechanical (continuous line) and

the polymer transmission coefficients (dashed line for= 4)

for a series of three potential barriers as a function of the ratio

e=E/U,.

Depending on whethey| < 1 or |g| > 1, we can rewrite
g+ andg_ in the following ways: if|g| < 1 then

g+ =9 ' =¢€" cosh=g, (18)
andUy_1 (cos 8) is the Chebyshev polynomial of the second

kind [9]. If |g| > 1, then

g+ =g-" =¢¥, coshp =g, (19)

but LN
Upn—1 (cosh ) = M (20)

sinh ¢

The transmission amplitudEy acrossN barriers can be ob-
tained asAy /A1, but also imposing not reflected polymer
particles beyond the right end of the multibarrier system (
By = 0). Using this fact together with Eq. 14, the transmis-
sion coefficientZy can be obtained as

1
1+ TS 2UN 2

1
N g N P
"2

(21)

185

o

; C am®
FIGURE 4. Plots of the quantum-mechanical (continuous line) and
the polymer tunneling time (dashed line for= 4) for a series of

three potential barriers as a function of the ratie E/Us.

which reduces to (9) in the appropriate limit. In Fig. 4 we su-
perimpose the quantum-mechanical and the polymer tunnel-
ing time for an electron incident upon a series of three rect-
angular barriers. We observe that the polymer tunneling time
is smaller than its quantum-mechanical counterpart, even at
low energies. As before, it is clear that the polymer result de-
creases to zero as the energy approaches the maximum. An
interesting finding is that (21) exhibits anomalous peaks ab-
sent in the standard result. So far we have found that, for
the system we have considered, the only significant differ-
ence between both theories is not through the transmission
probability density, but through the tunneling time.

4. Discussion

The implementation of a minimal length scale in quantum
theory constitutes a fundamental bound below which position
can not be defined. It has been suggested that the position-
momentum uncertainty relation should be modified to take
into account the effects of spatial grainy structure. The im-
plementation of such ideas in polymer quantum mechanics
is a difficult task because the momentum operator is not di-

In Fig. 3 we present numerical results for the transmisectly realized as in Scbdinger quantum mechanics. Some
sion coefficient for an electron incident upon a series of?henomenological aspects of effective QTG candidates have

three rectangular barriers of heigtit = 10 eV, thickness
L = 1.8 x 10719 m and the distance between barrikes L.

been introduced in quantum mechanics through deformation
of the algebraic structure of ordinary quantum mechanics.

As in the previous section, it is clear that at low energies”Or instance the GUP and non-commutative geometry are
the quantum-mechanical and the polymer transmission coeft® most well known deformations that impose the ultravi-

ficients behave qualitatively in a similar manner. Also we ob-0l€t and infrared cutoffs for the physical systems [10].

serve that the polymer result decreases abruptly to zero near ASsuming that the position-momentum Heisenberg un-

the maximum energy.

certainty relation remains unchanged, the lower bound to

The tunneling time can be analysed as in the previouth® resolution of distanceAz),.;, ~ A introduces an
section. The phase difference between the incident wavdPPer bound to the resolution of momentytyp),,,,, ~

function aty = 0 and the transmited wave function at
u=N(n+m-—1)is
) , (22

hn[Chl]
Un_2

0(¢) = —arctan | ——m8M————
() t (Re[Gll]—

Un_-1

hA~!, which in turn induces a minimal temporal window
in the time-energy uncertainty relation given f¢) .
(mA?/h). The small uncertainty in time implies a large un-
certainty in energfAE) .~ (h?/mA?). The implemen-
tation of both, the position-momentum and the time-energy
modified uncertainty relations, could play an important role
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in other branches of physics. In theories where there is néection of points from the real lin®, which is analogous to
cutoff built-in, all states are expected to contribute to ampli-the graph covering—manifolds in LQG.
tudes with equal strength and consequently lead to UV infini-  The central feature here is that the momentum opefator
ties. A theory which naturally provides the adequate cutoffds not realized directly as in Sdabdinger quantum mechanics
built-in could shed light on the route for curing such UV di- because of built-in notion of discreteness, but arise indirectly
vergences. through translation operatdfy, = ¢!/ [1]. Hence, for

In summary, in this paper we have considered one othe representation of the Heisenberg-Weyl algebra we choose
the simplest quantum-mechanical phenomena, the tunnelinhe position operatof and the translation operatd% in-
through a potential barrier. The aim of this work is to ex- stead of the momentum operator. The action of the transla-
plore quantum gravitational corrections to the transmissionion operator on position eigenstates is
coefficient and the tunneling time. In Sec. 2 we find that at R
low energies, the polymer and the quantum-mechanical re- Urlzy) =z, — A); (A.4)
sults are similar, but in the high energy regime the polymer
effects take place. The most important result in this case ithat is,U, converts a position eigenstate with eigenvaiye
that the polymer quantities abruptly decreases to zero as theto an eigenstate with eigenvalug — \. These operators
energy approaches the maximum. Of course, measuring thigefinitions give the basic commutatiar, I?A] = —\U,, and
effect is now not yet feasible. In Sec. 3 we consider a serieg/, defines a one-parameter family of unitary operators on
of IV identical potential barriers. Regarding the transmissiorH,,, where its adjoint is given by]i = U_,. Mathemat-
coefficient, we observe basically the same behaviour in botfcally, polymer and Sclidinger quantizations are inequiva-
cases, except as the energy approaches the maximum. The kent becausé/,, is discontinues with respect togiven that
markable finding is that the polymer tunneling time is smaller|z,,) and |z, — \) are always orthogonal, no matter how
than its quantum-mechanical counterpart, and also it exhibitsmall is\ [13].

anomalous peaks absent in the standard result. However, inspired by the techniques used in Lattice
Gauge Theories and LQG, by introducing a fixed length scale

Appendix A it is possible to define an effective momentum operator as
follows

A. Polymer Quantum Mechanics Py = % (ﬁA - (71) 7 (A.5)

In the Schodinger representation of quantum mechanics theyhich corresponds to the approximatioh < A.

Hilbert space isH = L? (R, dz) with Lebesgue measure In L2 (R, dz), the A — 0 limit would give the usual

dx. The central difference between the standard and polym&homentum and momentum-squared operateisd, and
quantization is the choice of Hilbert space [11,12]. In loop or _j252 [1]. In Hpory = L2 (Ry, dpig) this limit does not ex-
polymer representation, the kinematical Hilbert speiggy st because\ is regarded as a fundamental length scale [3].
is the Cauchy completion of the set of linear combination ofrpjs is analogous to the quantum-classical transition through

some basis statesz,,) }, with inner product h — 0 limit, where is a non-zero fundamental constant of
T guantum theory [14,15].
. 1 —i2 (2 —a In order to study the dynamics of a physical system, we
V)= lim — [ dpe i h@e—m) =5 - (Al : . oo
(wulz) e 2T / e a A1) may proceed as in the standard case, with the dynamics deter-
-7 mined by the Sclidinger equation,e. ihd, V) = Hy |¥),
whered,,,, is the Kronecker delta, instead of Dirac delta aswhose stationary solutiof) = e~*(¥//")|y) are con-

in Schiddinger representation, then we say that the orthonorstructed from the energy eigenstates of the Hamiltonian op-
mal basis is discrete. Plane waves are normalizable in thigrator [16]:

inner product. The kinematical Hilbert space can be written )

~

asHpoly = L? (Rq, dpuq), With dpg corresponding Haar mea- Hy= =
sure, andR, the real line endowed with the discrete topol- 2mA?

ogy [2]. where the potential term is arbitrary but assumed to be
The state of a polymer system can be expressed as  rgqyjar so tha/ can be defined pointwise multiplication,
) = 3 ). a2 (o]V]0) =V @) o).

o The dynamics generated by (A.6) decomposes the poly-
mer Hilbert spacé,ey, into an infinite superselected finite-
dimensional subspaces, each with support on a regular lattice

o) =2, l2,) (A3) V=7 (A, o) with the same space between poihtnghere
v (A, xz0) = {nA+ zo|n € Z}, andzy € [0, ). This way
and the (z,,) are expansion coefficients. Note that the spec-of choosingx fixes the superselected sector, restricting the
trum of the position operatdrz, } consists of a countable se- dynamics to a lattice (), ) and work on separable Hilbert

(2-0-0L)+V@, (A8

Here,|x,,) are eigenstates of the position operator
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spaceH g, consisting of wave functions which are non-zero defined in the usual way. For time-independent Hamiltonian
only on the lattice. thisis

Hence, the Scliadinger equation and the associated
eigenvalue problem becomes a difference equation for the
wave function in coordinate representation

CHy (t—tg)
B (0, 652, t0) = (| e

|2v) , (A.10)

where we have choser, = 0, so thatr, = pA. Hence,

given an initial physical state at= ¢, , i.e. |z,, to), the state

of the system for latter times in coordinate representation is
In contrast, in the momentum representation, it is generigiven by

cally a differential equation fap (p) :

h? A
2 [1—cos (ph>} ¢ (p)
) From its definition, it follows that the polymer propagator
=BV (=ihdy)l¢ (p). satisfy the standard consistency requirements to implement
Working onvy (X, z,) restricts momentum wave functions well-defined quantum evolution.
v (p) to periodic functions of perio@=7/\) with the inner We conclude this brief review by pointing out that the
product formula (A.1) reducing to: polymer dynamics is equivalent to the conventional discrete
o approximation to the Schdinger equation when working on
A 5 an superselected sector, but the conceptual difference is that
(Tplzy) = (2] <2h / dp|p><p|> |z,) =, (A9)  in the polymer theory the lattice spacing is a fundamental
T _mn constant of the theory.

mA?

vert v =2{1- S BV @ 0 A7)

VY (zp,t) = Zk,\ (@t 20, t0) Y (@0, to) - (A.11)

(A.8)

A
andp € (—(whi/A), (wh/))). Note that the identity opera-
tor (readed from (A.9) on such subspace serves to define th&acknowledgements
inner product orH g, in the momentum representation.
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