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The canonical analysis of Proca’s theory in five dimensions with a compact dimension is performed. From the Proca five dimensional action,
we perform the compactification process on aS1/Z2 orbifold, then, we analyze the four dimensional effective action that emerges from
the compactification process. We report the extended action, the extended Hamiltonian and we carry out the counting of physical degrees
of freedom of the theory. We show that the theory with the compact dimension continues laking of first class constraints. In fact, the final
theory is not a gauge theory and describes the propagation of a massive vector field plus a tower of massiveKK-excitations and one massive
scalar field. Finally, we develop the analysis of a 5DBF -like theory with a Proca mass term, we perform the compactification process on a
S1/Z2 orbifold and we find all the constraints of the effective theory, we also carry out the counting of physical degrees of freedom; with
these results, we show that the theory is not topological but reducible in the first class constraints.
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1. Introduction

Nowadays, the introduction of extra dimensions in field theo-
ries have allowed a new way of looking at several problems in
theoretical physics. It is well-know that the first proposal in-
troducing extra dimensions beyond the fourth dimension was
considered around 1920’s, when Kaluza and Klein (KK) tried
to unify electromagnetism with Einstein’s gravity by propos-
ing a theory in 5D where the fifth dimension is compactified
on a circleS1 of radiusR, and the electromagnetic field is
contained as a component of the metric tensor [1]. The study
of models involving extra dimensions has an important ac-
tivity in order to explain and solve some fundamental issues
found in theoretical physics, such as, the problem of mass
hierarchy, the explanation of dark energy, dark matter and
inflation etc., [2]. Moreover, extra dimensions become also
important in theories of grand unification trying of incorpo-
rating gravity and gauge interactions in a theory of everyt-
ing. In this respect, it is well known that extra dimensions
have a fundamental role in the developing of string theory,
since all versions of the theory are formulated in a space-
time of more than four dimensions [3, 4]. For some time,
however, it was conventional to assume that in string theory
such extra dimensions were compactified to complex man-
ifolds of small sizes about the order of the Planck length,
`P ∼ 10−33 cm [4, 5], or they could be even of lower size
independently of the Plank Length [6–8]; in this respect, the

compactification process is a crucial step in the construction
of models with extra dimensions [9,10].

By taking into account the ideas explained above, in this
paper we perform the Hamiltonian analysis of Proca’s theory
in 5D with a compact dimension. It is well-known that four
dimensional Proca’s theory is not a gauge theory, the the-
ory describes a massive vector field and the physical degrees
of freedom are three, this is, the addition of a mass term to
Maxwell theory breaks the gauge invariance of the theory and
adds one physical degree of freedom to electromagnetic de-
grees of freedom [11, 12]. Hence, in the present work, we
study the effects of the compact extra dimension on a 5D
Proca’s theory. Our study is based on a pure Dirac’s analysis,
this means that we will develop all Dirac’s steps in order to
obtain a complete canonical analysis of the theory [13–16].
We shall find the full constraints of the theory; we need to re-
member that the correct identification of the constraints will
play a key role to make progress in the study of the quanti-
zation aspects. We also report the extended Hamiltonian and
we will determine the full Lagrange multipliers in order to
construct the extended action. It is important to comment,
that usually from consistency of the constraints it is not pos-
sible to determine the complete set of Lagrange multipliers,
so a pure Dirac’s analysis becomes useful for determining all
them. Finally, we study a 5DBF -like theory with a massive
term. We perform the compactification process on aS1/Z2

orbifold and we obtain a 4D effective action, then we study
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the action developing the Hamiltonian analysis, we report the
full constraints program and we show that the 4D effective
theory is a reducible system in the first class constraints. All
these ideas will be clarified along the paper.

The paper is organized as follows: In Sec. 1, we ana-
lyze a Proca’s theory in 5D, after performing the compacti-
fication process on aS1/Z2 orbifold we obtain a 4D effec-
tive Lagrangian. We perform the Hamiltonian analysis and
we obtain the complete constraints of the theory, the full La-
grange multipliers associated to the second class constraints
and we construct the extended action. In addition, we carry-
out the counting of physical degrees of freedom. Addition-
ally, in Sec. 2, we perform the Hamiltonian analysis for a
5D BF -like theory with a Proca mass term; we also perform
the compactification process on aS1/Z2 orbifold, we find
the complete set of constraints and then the effective action is
obtained. We show that for this theory there exist reducibility
conditions among the first class constraints associated with
the zero mode and the excited modes. Finally we carry out
the counting of physical degrees of freedom. In Sec. 3, we
present some remarks and prospects.

2. Hamiltonian Dynamics for Proca theory in
five dimensions with a compact dimension

In this section, we shall perform the canonical analysis for
Proca’s theory in five dimensions, then we will perform the
compactfication process on aS1/Z2 orbifold. For this aim,
the notation that we will use along the paper is the fol-
lowing: the capital latin indicesM,N run over0, 1, 2, 3, 5,
here as usual,5 label the compact dimension. TheM,N
indices can be raised and lowered by the five-dimensional
Minkowski metricηMN = (−1, 1, 1, 1, 1); y will represent
the coordinate in the compact dimension,xµ the coordinates
that label the points of the four-dimensional manifoldM4

andµ, ν = 0, 1, 2, 3 are spacetime indices; furthermore we
will suppose that the compact dimension is aS1/Z2 orbifold
whose radius isR.

The Proca Lagrangian in five dimensions without sources
is given by

L5p = −1
4
FMN (x, y)FMN (x, y)

+
m2

2
AM (x, y)AM (x, y), (1)

whereFMN (x, y) = ∂MAN (x, y)− ∂NAM (x, y).
Because of the compactification of the fifth dimension

will be carry out on aS1/Z2 orbifold of radiusR, such a
choose imposes parity and periodic conditions on the gauge
fields given by

AM (x, y) = AM (x, y + 2πR),

Aµ(x, y) = Aµ(x,−y),

A5(x, y) = −A5(x,−y), (2)

thus, the fields can be expanded in terms of Fourier series as
follows

Aµ(x, y) =
1√
2πR

A(0)
µ (x) +

∞∑
n=1

1√
πR

A(n)
µ (x) cos

(ny

R

)
,

A5(x, y) =
∞∑

n=1

1√
πR

A
(n)
5 (x) sin

(ny

R

)
. (3)

We shall suppose that the number of KK-modes isk, and we
will take the limitk →∞ at the end of the calculations, thus,
n = 1, 2, 3...k − 1. Moreover, by expanding the five dimen-
sional LagrangianL5p, takes the following form

L5p(x, y)=−1
4
Fµν(x, y)Fµν(x, y)+

m2

2
Aµ(x, y)Aµ(x, y)

− 1
2
Fµ5(x, y)Fµ5(x, y) +

m2

2
A5(x, y)A5(x, y). (4)

Now, by inserting (3) into (4), and after performing the in-
tegration on they coordinate, we obtain the following 4D
effective Lagrangian

Lp(x) =
∫ {

− 1
4
F (0)

µν (x)Fµν
(0)(x) +

m2

2
A(0)

µ (x)Aµ
(0)(x)

+
∞∑

n=1

[
− 1

4
F (n)

µν (x)Fµν
(n)(x) +

m2

2
A(n)

µ (x)Aµ
(n)(x)

+
m2

2
A

(n)
5 (x)A5

(n)(x)− 1
2

(
∂µA

(n)
5 (x) +

m

R
A(n)

µ (x)
)

×
(
∂µA

(n)
5 (x) +

m

R
Aµ(n)(x)

)]}
dx4. (5)

The terms given by

−
(

1
4

)
F (0)

µν (x)Fµν
(0)(x) +

(
m2

2

)
A(0)

µ (x)Aµ
(0)(x)

are called the zero mode of the Proca theory [11,12], and the
following terms are identified as a tower of KK-modes [17].

In order to perform the Hamiltonian analysis, we observe
that the theory is singular. In fact, it is straightforward to
observe that the Hessian for the zero mode given by

W ρλ(0) =
∂2Lp

∂(∂0A
(0)
ρ )∂(∂0A

(0)
λ )

= −gµαgνβ

4

[
(δ0

µδλ
ν − δ0

νδλ
µ)

∂F
(0)
αβ

∂(∂0A
(0)
ρ )

+
(
δ0
αδλ

β − δ0
βδλ

α

) ∂F
(0)
µν

∂(∂0A
(0)
ρ )

]

= gρ0gλ0 − gρλg00 = gρ0gλ0 + gρλ,
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hasdetW (0) = 0, rank= 3 and one null vector. Furthermore,
the Hessian of theKK-modes has the following form

WHL(l) =
∂2Lp

∂(∂0A
(l)
H )∂(∂0A

(l)
L )

= gH0gL0 − gHLg00 − g00δL
5 δH

5

= gH0gL0 + gHL + δL
5 δH

5 ,

and hasdetW (l) = 0, rank= 4k − 4 andk − 1 null vec-
tors. Thus, a pure Dirac’s method calls the definition of the
canonical momenta(π(0), π

i
(n), π

5
(n)) to the dynamical vari-

ables(A(0)
µ , A

(n)
µ , A

(n)
5 ) given by

πi
(0) = −∂iA

(0)
0 + ∂0A

i(0), (6)

πi
(n) = −∂iA

(n)
0 + ∂0A

i(n), (7)

π5
(n) = ∂0A

(n)
5 +

n

R
A

(n)
0 . (8)

From the null vectors we identify the followingk primary
constraints

φ1
(0) = π0

(0) ≈ 0, (9)

φ1
(n) = π0

(n) ≈ 0. (10)

Hence, the canonical Hamiltonian is given by

Hc =
∫ [

−A
(0)
0 (x)∂iπ

i
(0)(x)

+
1
2
πi

(0)(x)π(0)
i (x) +

1
4
F

(0)
ij (x)F ij

(0)(x)

− m2

2
A(0)

µ (x)Aµ
(0)(x) +

∞∑
n=1

(
−A

(n)
0 (x)∂iπ

i
(n)(x)

+
1
2
πi

(n)(x)π(n)
i (x) +

1
2
π5

(n)(x)π5
(n)(x)

− n

R
π5

(n)(x)A(n)
0 (x) +

1
4
F

(n)
ij (x)F ij

(n)(x)

− m2

2
A(n)

µ (x)Aµ
(n)(x)− m2

2
A

(n)
5 (x)A5

(n)(x)

+
1
2

(
∂iA

(n)
5 (x) +

n

R
A

(n)
i (x)

)

×
(
∂iA

(n)
5 (x) +

n

R
Ai(n)(x)

))]
d3x, (11)

by using the primary constraints, we identify the primary
Hamiltonian

Hp ≡ Hc +
∫

λ
(0)
1 (x)φ1

(0)(x)d3x

+
∫ ∞∑

n=1

λ
(n)
1 (x)φ1

(n)(x)d3x, (12)

whereλ(0)
1 y λ

(n)
1 are Lagrange multipliers enforcing the con-

straints.

Therefore, from the consistency of the constraints we find
that

φ̇1
(0)(x) = {φ1

(0),H1}
= ∂iπ

i
(0)(x) + m2A0

(0)(x) ≈ 0,

and

φ̇1
(n)(x) =

{
φ1

(n), H1

}

= ∂iπ
i
(n)(x) + m2A0

(n)(x) +
n

R
π5

(n)(x) ≈ 0.

In this manner, there are the following secondary constraints

φ2
(0)(x) = ∂iπ

i
(0)(x) + m2A0

(0)(x) ≈ 0, (13)

φ2
(n)(x) = ∂iπ

i
(n)(x) +

n

R
π5

(n)(x) + m2A0
(n)(x) ≈ 0. (14)

On the other hand, concistency of secondary constraints im-
plies that

φ̇2
(0)(x) = m2∂iA

i
(0)(x)−m2λ

(0)
1 (x) ≈ 0,

hence,

λ
(0)
1 (x) ≈ ∂iA

i
(0)(x), (15)

and

φ̇2
(n)(x)=m2∂iA

i
(n)(x)−2n

R
∂i

(
∂iA

(n)
5 (x) +

n

R
Ai(n)(x)

)

−m2λ
(n)
1 (x) +

m2n

R
A5

(n)(x) ≈ 0,

thus

λ
(n)
1 (x) ≈ ∂iA

i(n)(x)− 2n

m2R
∂i

(
∂iA

(n)
5 (x)

+
n

R
Ai(n)(x)

)
+

n

R
A5(n)(x). (16)

For this theory there are not third contraints.

By following with the method, we need to identify the
first class and second class constraints. For this step we cal-
culate the Poisson brackets among the primary and secondary
constraints for the zero mode, obtaining
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(
W

′αβ(0)
)

=

( {φ1
(0)(x), φ1

(0)(z)} {φ1
(0)(x), φ2

(0)(z)}
{φ2

(0)(x), φ1
(0)(z)} {φ2

(0)(x), φ2
(0)(z)}

)

=

(
0 {π0

(0)(x), ∂iπ
i
(0)(z) + m2A0

(0)(z)}
{∂iπ

i
(0)(x) + m2A0

(0)(x), π0
(0)(z)} 0

)

=

(
0 m2δ3(x− z)

−m2δ3(x− z) 0

)
= m2

(
0 1

−1 0

)
δ3(x− z).

The matrixWαβ′(0) has a rank= 2, therefore the con-
straints found for the zero mode are of second class. In the
same way, the Poisson brackets among the constraints related
for theKK-modes, we find
(
W

′αβ(n)
)

=

({φ1
(n)(x), φ1

(n)(z)} {φ1
(n)(x), φ2

(n)(z)}
{φ2

(n)(x), φ1
(n)(z)} {φ2

(n)(x), φ2
(n)(z)}

)

=

(
0 {π0

(n)(x),m2A0
(n)(z)}

{m2A0
(n)(x), π0

(n)(z)} 0

)

=

(
0 m2δ3(x− z)

−m2δ3(x− z) 0

)

= m2

(
0 1

−1 0

)
δ3(x− z),

the matrixW
′αβ(n) has a rank=2(k−1), thus, the constraints

associated to theKK-modes are of second class as well. In
this manner, the counting of physical degrees of freedom is
given in the following way: there are10k − 2 dynamical
variables, and2k − 2 + 2 = 2k second class constraints,
there are not first class constraints. Therefore, the number
of physical degrees of freedom is4k − 1. It is important to
note that fork = 1 we obtain the three degrees of freedom
of a four dimensional Proca’s theory identified with the zero
mode [11,12].

Furthermore, we found2k second class constraints,
which implies that2k Lagrange multipliers must be fixed;
however, we have found onlyk given in the expressions (15)
and (16). Hence, let us to find the full Lagrange multipliers;
it is important to comment that usually the Lagrange multi-
pliers can be determined by means consistency conditions,
however, for the theory under study this is not possible be-
cause some of them did not emerge from the consistency of
the constraints. In order to construct the extended action and
the extended Hamiltonian, we need identify all the Lagrange
multipliers, hence, for this important step, we can find the
Lagrange multipliers by means of

φ̇α(x) = {φα,Hc}+ λβ

{
φα, φβ

} ≈ 0, (17)

whereφβ are all the constrains found. In fact, by calling
Cαβ =

{
φα, φβ

}
andhα = {φα,Hc}, we rewrite (17) as

hα + Cαβλβ ≈ 0. (18)

Therefore the Lagrange multipliers are given by [16]

λβ = −C−1
βρ hρ. (19)

In this manner, for the zero mode we obtain

(
Cαβ(0)

)
=




{
φ1

(0)(x), φ1
(0)(z)

} {
φ1

(0)(x), φ2
(0)(z)

}
{

φ2
(0)(x), φ1

(0)(z)
} {

φ2
(0)(x), φ2

(0)(z)
}




= m2

(
0 1
−1 0

)
δ3(x− z),

and its inverse is given by

C
(0)−1
αβ =

1
m2

(
0 −1
1 0

)
δ3(x− z),

so, for the constraints associated with the zero modes,h(0) is
obtained from

h(0) =




{
φ1

(0)(x),Hc

}
{

φ2
(0)(x),Hc

}



=

(
∂iπ

i
(0)(x) + m2A0

(0)(x)
m2∂iA

i
(0)(x)

)
,

therefore, by using (19) we can determine the Lagrange mul-
tipliers associated with the zero modes,

(
λ

(0)
1 (x)

λ
(0)
2 (x)

)
≈ − 1

m2

(
0 −1
1 0

)

×
(

∂iπ
i
(0)(x) + m2A0

(0)(x)
m2∂iA

i
(0)(x)

)
δ3(x− z),

thus

λ
(0)
1 (x) ≈ ∂iA

i(0)(x), (20)

λ
(0)
2 (x) ≈ − 1

m2
∂iπ

i(0)(x)−A0(0)(x). (21)
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In the same way, for theKK-modes we observe that

(
Cαβ(n)

)
=




{
φ1

(n)(x), φ1
(n)(z)

} {
φ1

(n)(x), φ2
(n)(z)

}
{

φ2
(n)(x), φ1

(n)(z)
} {

φ2
(n)(x), φ2

(n)(z)
}


 = m2

(
0 1
−1 0

)
δ3(x− z),

where the inverse is

C
(n)−1
αβ =

1
m2

(
0 −1
1 0

)
δ3(x− z),

so, for the constraints associated with the excited modes,h(n) are given by

h(n) =




{
φ1

(n)(x),Hc

}
{

φ2
(n)(x),Hc

}

 =

(
∂iπ

i
(n)(x) + m2A0

(0)(x) + n
Rπ5

(n)(x)

m2∂iA
i(n)(x)− 2n

R ∂i

(
∂iA

(n)
5 (x) + n

RAi(n)(x)
)

+ nm2

R A5(n)(x)

)
,

additionally by using (19) we obtain
(

λ
(n)
1 (x)

λ
(n)
2 (x)

)
= −

(
0 −1
1 0

) (
∂iπ

i
(n)(x) + m2A0(0)(x) + n

Rπ5
(n)(x)

m2∂iA
i(n)(x)− 2n

R ∂i

(
∂iA

(n)
5 (x) + n

RAi(n)(x)
)

+ nm2

R A5(n)(x)

)
δ3(x− z)

m2
,

thus, the2k Lagrange multipliers associated for the second
class constraints of theKK-modes read

λ
(n)
1 (x) = ∂iA

i(n)(x)− 2n

m2R
∂i

×
(
∂iA5(n)(x) +

n

R
Ai(n)(x)

)
+

n

R
A5(n)(x), (22)

λ
(n)
2 (x) = − 1

m2
∂iπ

i
(n)(x)

+ A
(n)
0 (x)− n

m2R
π5

(n)(x). (23)

Therefore, we have seen that by using a pure Dirac’s method
we were able to identify all Lagrange multipliers of the the-
ory. We have commented above that Lagrange multipliers are
essential in order to construct the extended action and then
identify from it the extended Hamiltonian. In fact, the im-
portance for finding the extended action is that it is defined
on the full phase space, therefore, if there are first class con-
straints, then the extended action is full gauge invariant. On
the other hand, from the extended Hamiltonian, we are able to
obtain the equations of motion which are mathematical dif-
ferent from Euler-Lagrange equations, but the difference is
unphysical. It is interesting to point out that in [11, 12] the
complete Lagrange multipliers were not reported, thus, our
approach extend the results reported in those works.

Furtheremore, by using the matrixC(0)−1
αβ andC

(n)−1
αβ it

is straightforward to calculate the Dirac brackets of the the-
ory, thus, with the results of this paper we have a complete
hamiltonian description of the system. By using all our re-
sults, we will identify the extended action, for this aim, we
write the second class constraints as

χ1
(0)(x) ≡ π0

(0)(x) ≈ 0,

χ2
(0)(x) ≡ ∂iπ

i
(0)(x) + m2A0

(0)(x) ≈ 0,

χ1
(n)(x) ≡ π0

(n)(x) ≈ 0,

χ2
(n)(x) ≡ ∂iπ

i
(n)(x) + m2A0

(0)(x) +
n

R
π5

(n)(x) ≈ 0,

now, by using the second class constraints and the Lagrange
multipliers found for the zero mode and the excited modes,
the extended action has the following expression

SE [A, π, v̄] =
∫ {

Ȧ(0)
µ πµ

(0) + A
(0)
0 (x)∂iπ

i
(0)(x)

− 1
2
πi

(0)(x)π(0)
i (x)− 1

4
F

(0)
ij (x)F ij

(0)(x)

+
m2

2
A(0)

µ (x)Aµ
(0)(x)− v̄

(0)
j χj

(0)

+
∞∑

n=1

[
Ȧ(n)

µ πµ
(n) + Ȧ

(n)
5 π5

n + A
(n)
0 (x)∂iπ

i
(n)(x)

− 1
2
πi

(n)(x)π(n)
i (x)− 1

2
π5

(n)(x)π5
(n)(x)

+
n

R
π5

(n)(x)A(n)
0 (x)− 1

4
F

(n)
ij (x)F ij

(n)(x)

+
m2

2
A(n)

µ (x)Aµ
(n)(x) +

m2

2
A

(n)
5 (x)A5

(n)(x)

− 1
2

(
∂iA

(n)
5 (x) +

n

R
A

(n)
i (x)

)

(
∂iA

(n)
5 (x) +

n

R
Ai(n)(x)

)
− v̄

(n)
j χj

(n)

]}
d4x, (24)

wherev̄
(0)
j and v̄

(n)
j are Lagrange multipliers enforcing the

second class constraints. From the extended action, we are
able to identify the extended Hamiltonian given by
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HE =
∫ {

A
(0)
0 (x)∂iπ

i
(0)(x)− 1

2
πi

(0)(x)π(0)
i (x)

− 1
4
F

(0)
ij (x)F ij

(0)(x) +
m2

2
A(0)

µ (x)Aµ
(0)(x)

+
∞∑

n=1

[
A

(n)
0 (x)∂iπ

i
(n)(x)− 1

2
πi

(n)(x)π(n)
i (x)

− 1
2
π5

(n)(x)π5
(n)(x) +

n

R
π5

(n)(x)A(n)
0 (x)

− 1
4
F

(n)
ij (x)F ij

(n)(x) +
m2

2
A(n)

µ (x)Aµ
(n)(x)

+
m2

2
A

(n)
5 (x)A5

(n)(x)

− 1
2

(
∂iA

(n)
5 (x) +

n

R
A

(n)
i (x)

)

×
(
∂iA

(n)
5 (x) +

n

R
Ai(n)(x)

) ]}
d3x. (25)

It is worth to comment that there are not first class con-
straints, therefore there is not gauge symmetry; the system
under study is not a gauge theory and we can observe from (5)
that the fieldA(n)

µ is a massive vector field with a mass term
given by(m2 + (n2/R2)) andA5

(n) is a massive scalar field
with a mass term given bym2.

3. Hamiltonian Dynamics for a Bf-like theory
plus a Proca term in five dimensions with a
compact dimension

The study of topological field theories is a topic of great inter-
est in physics. The importance to study these theories arises
because they have a close relation- ship with field theories as
Yang-Mills and General Relativity [13–15, 18]. In fact, for
the former we can cite to Martellini’s model; this model con-
sists in expressing Yang Mills theory as aBF -like theory, and
theBF first-order formulation is equivalent (on shell) to the
usual (second-order) formulation. In fact, both formulations
of the theory possess the same perturbative quantum proper-
ties [22]. On the other hand, with respect General Relativity
we can cite the Mcdowell-Mansouri formulation; this formu-
lation consist in breaking down the group symmetry of aBF
theory fromSO(5) to SO(4), hence, it is obtained the Pala-
tini action plus the sum of the second Chern and Euler topo-
logical invariants [23], and since these topological classes
have trivial local variations that do not contribute classically
to the dynamics, one obtains essentially General Relativity.
In this manner, the study ofBF formulations becomes rele-
vant, and we will study in the context of extra dimensions to
an abelianBF -like theory with a Proca mass term. In this
manner, we shall analyze the following action

S[A,B] =
∫

M

(
BMNFMN − m2

4
AMAM

)
dx5, (26)

hereBMN = −BNM is an antisymmetric field, andAM

is the connexion. The Hamiltonian analysis of theBF -
like term without a compact dimension has been developed
in [18], the theory is devoid of physical degrees of freedom,
the first class constraints present reducibility conditions and
the extended Hamiltonian is a linear combination of first class
constrains. Hence, it is an interesting exercise to perform the
analysis of the action (26) in the context of extra dimensions.
We expect that the massive term gives physical degrees of
freedom to the full action.

We shall resume the complete Hamiltonian analysis
of (26); for this aim, we perform the4 + 1 decomposition,
and then we will carry out the compactification process on
a S1/Z2 orbifold in order to obtain the following effective
Lagrangian,

L = Bµν
(0)F

(0)
µν − m2

4
A(0)

µ Aµ
(0) +

∞∑
n=1

[
Bµν

(n)F
(n)
µν

− m2

4
A(n)

µ Aµ
(n) + 2Bµ5

(
∂µA

(n)
5 +

n

R
An

µ

) ]
. (27)

By performing the Hamiltonian analysis of the action (27) we
obtain the following results: there are 6 first class constraints
for the zero mode

γ
(0)
ij = F

(0)
ij − 1

2

[
∂iΠ

(0)
0j − ∂jΠ

(0)
0i

]
≈ 0, (28)

γ′ij(0) = Π(0)
ij ≈ 0, (29)

here,
(
Π(n)

MN ,ΠM
(n)

)
are canonically conjugate to(

BMN
(n) , A

(n)
M

)
respectively. Furthermore, these constraints

are not independent because there exist the reducibility con-
ditions given by∂iε

ijkγ
(0)
jk = 0; thus, there are[6 − 1] = 5

independent first class constraints for the zero mode. More-
over, there are 8 second class constraints

χ(0) = ∂iΠi
(0) −

m2

2
A0(0) ≈ 0, (30)

χi
(0) = Πi

(0) − 2B0i
(0) ≈ 0, (31)

χ0
(0) = Π0

(0) ≈ 0, (32)

χ0i
(0) = Π0i

(0) ≈ 0, (33)

thus, with that information we carry out the counting the
physical degrees of freedom for the zero mode, we find that
there is one physical degree of freedom. In fact, the mas-
sive term adds that degree of freedom to the theory, just like
Proca’s term to Maxwell theory.

On the other hand, for the exited modes there are12k−12
first class constraints given by
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γ
(n)
i =∂iA

(n)
5 +

n

R
A

(n)
i −

[
∂iΠ

(n)
05 +

n

2R
Π(n)

0i

]
≈ 0, (34)

γ
(n)
ij = F

(n)
ij − 1

2

[
∂iΠ

(n)
0j − ∂jΠ

(n)
0i

]
≈ 0, (35)

γ′ij(n) = Π(n)
ij ≈ 0, (36)

γi5
(n) = Π(n)

i5 ≈ 0, (37)

however, also these constraints are not independent because
there exist the following reducibility conditions; there are
k − 1 conditions given byεijk∂iγ

(n)
jk = 0, and3(k − 1) con-

ditions given by∂iγ
(n)
j − ∂jγ

(n)
i − n

Rγ
(n)
ij = 0. Hence, there

are[(12k− 12)− (4k− 4)] = 8k− 8 independent first class
constraints. Furthermore, there are10k − 10 second class
constraints

χi
(n) = πi

(n) − 2B0i
(n) ≈ 0, (38)

χ0
(n) = π0

(n) ≈ 0 (39)

χ
(n)
0i = Π(n)

0i ≈ 0, (40)

χ
(n)
05 = Π(n)

05 ≈ 0, (41)

χ5
(n) = Π5

(n) −B05
(0) ≈ 0, (42)

χ(n) = ∂iπ
i
(n) +

n

R
π5

(n) +
m2

2
A0

(n) ≈ 0. (43)

In this manner, by performing the counting of physical de-
grees of freedom we find that there are2k − 2 physical de-
grees of freedom for the excited modes. So, for the full the-
ory, zero modes plusKK-modes, there are2k − 1 physical
degrees of freedom. Therefore, the theory present reducibil-
ity conditions among the first class constraints of the zero
mode and there are reducibility in the first class constraints of
theKK-modes. We observe from the first class constraints
that the fieldA

(n)
µ has a mass term given bym2 and is not

a gauge field. On the other hand,B
(n)
ij is a massless gauge

field.

4. Conclusions and Prospects

In this paper, the Hamiltonian analysis for a 5D Proca’s the-
ory in the context of extra dimensions has been developed. In
oder to obtain a 4D effective theory, we performed the com-
pactification process on aS1/Z2 orbifold. From the analysis
of the effective action, we obtained the complete set of con-
straints, the full Lagrange multipliers and the extended action
was found. From our results we conclude that the theory is
not a gauge theory, namely, there are only second class con-
straints. Thus, 5D Proca’s theory with a compact dimension,

describes the propagation of a massive vector field associated
with the zero mode plus a tower of excited massive vector
fields and a massive scalar field. Furthermore, we carry out
the counting of physical degrees of freedom, in particular, our
results reproduce those ones known for Proca’s theory with-
out a compact dimension. Finally, in order to construct the
extended action, we have identified the complete set of La-
grange multipliers; we observed that usually Lagrange multi-
pliers emerge from consistency conditions of the constraints.
However, if the Lagrange multipliers are mixed, then it is dif-
ficult identify them. In those cases, it is necessary to perform
a pure Dirac’s analysis as was developed in this paper, thus,
all Lagrange multipliers can be determined.

On the other hand, we developed the Hamiltonian analy-
sis of a 5DBF -like theory with a massive Proca term. From
our analysis, we conclude that the theory is not topological
anymore. In fact, the massive term breakdown the topolog-
ical structure of theBF -like term. The theory is reducible,
it present first and second class constraints and we used this
fact in order to carry out the counting of physical degrees of
freedom. The physical effect of the massive term, is that it
adds degrees of freedom to the topologicalBF -like term just
like Proca’s term adds degrees of freedom to Maxwell theory,
in addition, the massive term did not allowed the presence of
pseudo-Goldstone bosons just like is present in Maxwell or
Stueckelberg theory [24]. Hence, we have in this work all the
necessary tools for studying the quantization aspects of the
theories annalized along this paper. It is worth to comment
that our results can be extended to models that generalize the
dynamics of Yang-Mills theory, as for instance the following
Lagrangian [19]

L =
1
4
εµνρσBaµνF a

ρσ

− e2

4
BaµνBaµν +

N

4
εµνρσFaµνF a

ρσ. (44)

here,a are indices ofSU(N) group. Such generalization pro-
vide a generalized QCD theory. In fact, it is claimed in [19]
that the analysis of this kind of Lagrangians is mandatory for
studying the dynamics of the gluons with further interactions,
in addition, that QCD generalization could be amenable to
experimental test. In this respect, our work can be useful for
studying that model within the extra dimensions context.
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