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Complete sets of circular, elliptic and bipolar harmonic vortices on a plane
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A class of harmonic solutions to the steady Euler equations for incompressible fluids is presented in two dimensions in circular, elliptic and
bipolar coordinates. Since the velocity field is solenoidal in this case, it can be written as the curl of a vector potential, which will then satisfy
Poisson’s equation with vorticity as a source term. In regions with zero vorticity, Poisson’s equation reduces to Laplace’s equation, and this
allows for the construction of harmonic potentials inside and outside circles and ellipses, depending on the coordinate system. The vector
potential is normal to the coordinate plane, and is proportional to the scalar harmonic functions on the plane, thereby guaranteeing that the
velocity field is also harmonic and is located on the coordinate plane. The components of the velocity field normal to either a circle or an
ellipse are continuous, but the tangential components are discontinuous, so that, in effect, a vortex sheet is introduced at these boundaries.
This discontinuity is a measure of the vorticity, normal to the plane and distributed harmonically along the perimeter of the respective
circles or ellipses. An analytic expression for the streamlines is obtained which makes visualisation of vortices of various geometries and
harmonicities possible. This approach also permits a reformulation of the notion of multipolarity of vortices in the traditional sense of a
multipolar expansion of the Green function for Poisson’s equation. As an example of the applicability of this formulation to known vortical
structures, Rankine vortices of different geometries are expressed in terms of harmonic functions.
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1. Introduction

Multipolar vortices are known to be an important dynamical
feature of a variety of two-dimensional and quasi-geostrophic
flows [1]. They occur regularly in large-scale geophysi-
cal, atmospheric and meteorological flows at high Reynolds
numbers. The term itself refers to a set of coherent vortex
structures where vorticity is distributed according to char-
acteristic geometrical arrangements. Monopoles, for exam-
ple, will have a single vorticity extremum, while a dipole
and tripole will have, respectively, two and three distinct vor-
ticity extrema. Unstable monopolar structures can relatively
easily condense into two isolated dipolar structures. How-
ever, it has been also observed that it is possible to non-
linearly destabilize an isolated monopolar vortical structure
in order to obtain a single tripolar structure with distributed
vorticity [2]. This formation of dipolar and tripolar struc-
tures has been observed in laboratory experiments [3]. It has
also been shown that higher-order multipolar structures may
result from strong perturbation of two-dimensional vortical
structures [4]. These structures, which we may collectively
term n-polar vortices, typically consist of a central core of
vorticity surrounded, or shielded, byn − 1 satellite vortices
with sign opposite to that of the central vortex, so that the to-
tal circulation of the structure is approximately zero, and the
whole structure rotates in steady fashion.

Morel and Carton [5] have studied the generation and
stability of a variety of multipolar solutions to the two-

dimensional Euler equations. For this purpose they simply
simulate numerically the generation of higher-order multi-
polar equilibria taking monopolar shielded vortices as their
starting point. Although much of the research concerned with
multipolar vortices is either of an experimental or a numeri-
cal nature, due to their complicated structure, Crowdy [6] has
provided a class of exact solutions, which consists of a fam-
ily of finite-area patches of nonzero vorticity, thus permitting
some insight into the shapes of these vortical equilibria which
is not possible when considering simple point-vortex models.
These solutions exhibit the same properties as experimen-
tally observed multipolar vortices, and, interestingly, only al-
low for interaction between vortices when these overlap. A
generalization, also by Crowdy [7], of this class of solutions
is characterized by an annular region of vorticity enclosing
a region of irrotational fluid . It is shown that a nonlinear
superposition property allows for the construction of multi-
polar equilibria having vortical regions with more elaborate
geometries and topological structure. Further, both classes
of solutions presented by Crowdy [6, 7] share the important
property of “invisibility” in the sense that they do not induce
any irrotational velocity field outside the regions where vor-
ticity is nonzero. Thus, the physical detection of these vor-
tices is not a trivial matter, as they cannot be detected through
remote measurements of the far-field velocity.

In this paper we consider an alternative family of exact
solutions to the two-dimensional Euler equations, which we
associate with the notion of multipolarity in the traditional
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sense of a series expansion of the Green function for Pois-
son’s equation on the plane. The solutions thus obtained do
not satisfy, in general, the criteria established by Crowdy [6]
and Saffman [8] for vortical equilibria. However, they do
constitute, by construction, a complete set of solutions, so
that the solutions representing multipolar equilibria as de-
scribed above may be represented in terms of this family
of solutions. They also satisfy the laws of vortex motion as
originally set out by Helmholtz [9]. These solutions consist
of a closed region of circular or elliptic shape where vor-
ticity sources are continuously distributed along the curve
at the border of the region, constituting, in effect, a vor-
tex sheet. As with Rankine vortices and Crowdy’s classes
of solutions, these solutions represent isolated finite-area re-
gions of nonzero vorticity surrounded by irrotational flow.
We stress that these multipolar harmonic expansions are valid
and unique both inside and outside the region within which
the sources of vorticity are distributed, and, crucially, that
sources of a given harmonicity produce velocity fields with
the same harmonicity. Ley-Koo and Góngora have exam-
ined similar multipole expansions inside and outside regions
in which sources of either the electrostatic or magnetostatic
fields have been distributed [10,11]. In fact, it is well-known
that the relationship between a vortex filament and the veloc-
ity field to which it is associated in an incompressible fluid is
formally equivalent to the relationship between a current in a
conducting wire and the magnetic field to which it gives rise.
This equivalence was already noted by Helmholtz [9], is dis-
cussed in detail by Moffatt [12], and it serves as motivation
for many of the ideas and methods explored in this paper.

From a mathematical point of view, it is important and
convenient to recognize the superintegrability and exact solv-
ability of the Euler equations. In the specific case of vor-
tices in two dimensions on a plane, their solutions involve
the familiar circular functions in the angular coordinates, and
power functions and exponential or hyperbolic functions in
the radial coordinates for the successive geometries. On the
other hand, this article is intended for the fluid physics read-
ership, and we have thus chosen to formulate it using the fa-
miliar methods of differential equations. Correspondingly,
in Sec. 2 we include the differential equations relating the
solenoidal vector fields of velocity, vorticity, and velocity po-
tential, as well as the integral forms of the appropriate bound-
ary conditions which will permit us to distribute vorticity
along circular and elliptic boundaries. In Sec. 3 we write
the Laplace equations in polar, elliptic, and bipolar coordi-
nates, and their associated solutions. In Sec. 4 we use these
solutions to derive the exact, explicit form of the vorticity and
velocity fields associated with harmonic vortices both inside
and outside the given boundaries for all three sets of coor-
dinates. Graphical representation of these velocity fields is
given in Sec. 5 in the form of families of streamlines illus-
trating distinctive features of the vortical structures for each
coordinate system. Using the Green functions for Poisson’s
equation in all three coordinate systems, we express in Sec. 6
a well-known stable vortex solution of the Euler equations,

the Rankine vortex, in terms of our harmonic solutions, high-
lighting the usefulness of constructing a complete set of har-
monic solutions to these equations. Finally, we discuss, in
Sec. 7, connections with other types of two-dimensional vor-
tices on planes and spheres, as well as extensions to three
dimensions and other geometries.

2. Velocity, vorticity, and vector potential

Following Saffman [8], we describe the motion of an incom-
pressible fluid through the velocity field,~u = ~u(x, t), and we
define the vorticity~ω = ~ω(x, t) as follows:

~ω = ∇× ~u, (1)

so that, by construction, the vorticity is solenoidal. Notice
that, if we takeΓ to be the circulation of~u for the closed
curveC, we have

Γ =
∫

S

~ω · ~dS =
∮

C

~u · ~d`, (2)

whereS is the surface element delimited by the closed curve
C. Thus, we may interpret the vorticity as a circulation den-
sity per unit area. Further, in an incompressible fluid, the
velocity field is also solenoidal, that is,

∇ · ~u = 0. (3)

In this case, we may also define a vector potential~A such that

~u = ∇× ~A, (4)

allowing us to write

~ω = ∇×
(
∇× ~A

)
= ∇

(
∇ · ~A

)
−∇2 ~A. (5)

By fixing the gauge of~A so that∇ · ~A = 0, we observe that
Eq. (5) is, in effect, Poisson’s equation,

∇2 ~A = −~ω. (6)

Equations (3) and (1) can be written in the form of condi-
tions to be satisfied along a given boundary. Equation (3) can
be recast in the integral forms,

∮

S

~u · ~dS = ( ~u2 − ~u1) · n̂ ∆S = 0, (7)

where~u1 and ~u2 are the velocities on either side of the bound-
ary, enclosed by a Gauss pill-box with areas±n̂ ∆S. This
form of the equation clearly expresses the continuity of the
normal components of the velocity across the boundary.

Equations (1) and (2), on the other hand, can be used to
write: ∮

C

~u · ~d` = ( ~u2 − ~u1) · t̂ ∆` = ∆Γ, (8)

for a Stokes rectangular circuitC with tangential elements
±t̂ ∆`. Thus, the tangential components of the velocity are
discontinuous across the boundary, and this discontinuity
gives the measure of the circulation per unit length,∆Γ/∆`.
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3. Laplace’s equation in polar, elliptic, and
bipolar coordinates

Our objective now is to write the Laplacian operator in terms
of the three sets of coordinates described in the Appendix.
We shall denote, in general form, the two independent coor-
dinates on the plane asq1, andq2, with ê1 and ê2 the unit
vectors normal to lines of constant values of the respective
coordinates, anddq1 anddq2 their corresponding variations
in these directions. In our case,(ê1, ê2) = (r̂, ϕ̂) = (û, v̂) =
(σ̂, τ̂) for polar, elliptic, and bipolar coordinates, respec-
tively. Note that the unitary vectors that constitute each coor-
dinate pair are always orthogonal. The displacement vector
d~̀ can then be expressed in the following form:

d~̀ = ê1h1dq1 + ê2h2dq2, (9)

whereh1 andh2 are scale factors, and their values, for the
three coordinate systems under consideration, are given be-
low.

Polar coordinates: h1 = 1, h2 = r.

Elliptic coordinates: h1 = h2 = f
√

cosh2 u− cos2 v.

Bipolar coordinates: h1 = h2 = a/(cosh τ − cosσ).

The Laplacian operator can now be written in terms of curvi-
linear orthogonal coordinates as follows:

∇2 =
1

h1h2

[
∂

∂q1

h2

h1

∂

∂q1
+

∂

∂q2

h1

h2

∂

∂q2

]
, (10)

so that, for the corresponding coordinate systems, Laplace’s
equation takes the following forms:

[
1
r

∂

∂r
r

∂

∂r
+

1
r2

∂2

∂ϕ2

]
Φ(r, ϕ) = 0, (11)

1
f2

(
cosh2 u− cos2 v

)
[

∂2

∂u2
+

∂2

∂v2

]
Φ(u, v) = 0, (12)

(cosh τ − cos σ)2

a2

[
∂2

∂τ2
+

∂2

∂σ2

]
Φ(τ, σ) = 0. (13)

The solutions to these equations are given in terms of the cir-
cular, elliptic, and bipolar harmonics, respectively, as

Φm (r, ϕ) =
(
Amrm + Bmr−m

)(
sinmϕ
cos mϕ

)
, (14)

Φm (u, v) =
(
Amemu + Bme−mu

)(
sin mv
cosmv

)
, (15)

Φm (τ, σ) =
(
Amemτ + Bme−mτ

)(
sin mσ
cos mσ

)
, (16)

for m = 1, 2, 3, . . . Isotropic solutions, which occur when
m = 0, correspond to the choice of the cosine – which takes

on the value 1 – as the angular function, and the radial func-
tions

Φ0 (r) = A0 + B0 ln r, (17)

Φ0 (u) = (A0 + B0u) , (18)

Φ0 (τ) = (A0 + B0τ) , (19)

which is logarithmic in the circular case, and linear in the
elliptic and bipolar cases.

4. Harmonic vortices inside and outside coor-
dinate circles and ellipses

In this section we construct explicitly the velocity and vortic-
ity fields associated with harmonic vortices both inside and
outside coordinate circles and ellipses corresponding to the
use of circular and bipolar coordinates on the one hand, and
elliptic coordinates on the other.

For vortices on a plane, we consider the vector velocity
potential~A to point in the direction of̂k, perpendicular to the
x−y plane. These functions, as we have seen in Sec. 2, must
be harmonic and bounded both inside and outside the corre-
sponding boundaries, circles or ellipses. The velocity can be
obtained from this vector velocity potential in a straightfor-
ward manner, as follows:

~u (q1, q2) = ∇× ~A =
1

h1h2

∣∣∣∣∣∣

h1ê1 h2ê2 k̂
∂

∂q1

∂
∂q2

∂
∂z

0 0 Az

∣∣∣∣∣∣
. (20)

Notice that in this formulation the vector potential formally
incorporates the role normally assigned to the stream func-
tion. Finally, once we have the velocity, we can plot the
corresponding streamlines to visualize the flow around the
vortices. The equations for the streamlines are arrived at by
writing the velocity as

~u = ê1u1 + ê2u2;, (21)

and observing that the components of~u must be proportional
to the respective components ofd~̀, in the form of (9), at ev-
ery point. Thus, we obtain

h1dq1

u1
=

h2dq2

u2
. (22)

We will now proceed to write the vector velocity poten-
tial for each of the three coordinate systems, and to obtain the
velocity and the streamline equations, both inside and outside
the appropriate borders. Superindicesi ande are used to de-
note whether the velocity potential and velocity correspond
to the interior or exterior regions, respectively.

4.1. Vortices in polar coordinates

Whenm = 0 we set

~Ai
0 = k̂Ai

0, (23)

~Ae
0 = k̂Ae

0 ln r, (24)
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and whenm > 1 we set

~Ai
m = k̂Ai

mrm

(
cos mϕ
sin mϕ

)
, (25)

~Ae
m = k̂Ae

mr−m

(
cosmϕ
sin mϕ

)
. (26)

Since we require the vector potential to be continuous at the
boundary, using Eqs. (23)-(26) we impose the following con-
ditions atr = r0:

Ai
0 = Ae

0 ln r0 = A0 ln r0, (27)

Ai
mrm

0 = Ae
mr−m

0 = A0, (28)

whereA0 is a constant. Equations (23)-(26) may now be
written in a more compact form, as follows:

~Ai,e
0 = k̂A0 ln r>, (29)

~Ai,e
m = k̂A0

rm
<

rm
>

(
cosmϕ
sin mϕ

)
, (30)

wherer< = min{r, r0} andr> = max{r, r0}.
The corresponding velocity fields are then obtained by

means of Eq. (20) and are given, form = 0, by

~u i
0 = ~0, (31)

~u e
0 = −ϕ̂

A0

r
, (32)

and, form > 1, by

~u i
m = A0 m

rm−1

rm
0

( −r̂ sin mϕ− ϕ̂ cosmϕ
r̂ cosmϕ− ϕ̂ sin mϕ

)
, (33)

~u e
m = A0 m

rm
0

rm+1

( −r̂ sin mϕ + ϕ̂ cosmϕ
r̂ cosmϕ + ϕ̂ sin mϕ

)
. (34)

Note that while the radial components are continuous at the
circular boundary defined byr = r0, the tangential compo-
nents are discontinuous.

Using Eq. (22) we obtain the analytical form of the
streamlines inside the circular boundary. Whenm = 0, we
see from Eq. (31) that inside the circle there are no stream-
lines, and from Eq. (32) that outside the circle the streamlines

are circles with radiusr > r0. Whenm > 1, the stream-
lines are obtained from Eqs. (33) and (34), according to the
orientation of the velocity field, and are given either by

rm cosmϕ = rm
0 cosmϕ0 for r < r0, (35)

r−m cosmϕ = r−m
0 cos mϕ0 for r > r0, (36)

or by

rm sinmϕ = rm
0 sin mϕ0 for r < r0, (37)

r−m sinmϕ = r−m
0 sinmϕ0 for r > r0, (38)

whereϕ0 is an arbitrary angle. As we can see from the equa-
tions above, the dependence of the angular part of the ve-
locities~u i,e

m on eithercosmϕ or sin mϕ determines the har-
monicity of each family of streamlines, which is inherited
directly from the harmonicity of the vorticity.

4.2. Vortices in elliptic coordinates

The same criteria applied in the preceding section are used
here to arrive at the expressions for the vector velocity poten-
tial both inside and outside the boundaries, which in this case
are ellipses with major axes aligned along thex axis. Us-
ing the same notation as before, withu< = min{u, u0} and
u> = max{u, u0} for a givenu0, these potentials are given
by

~Ai,e
0 = k̂A0 u>, (39)

~Ai,e
m = k̂A0 e−mu>

(
cosh mu< cos mv
sinhmu< sin mv

)
. (40)

The corresponding velocity fields are obtained as before,
and they are given, form = 0, by

~u i
0 = ~0, (41)

~u e
0 = − v̂ A0

f
√

cosh2 u− cos2 v
, (42)

and, form > 1, by

~u i
m = A0m

( −û coshmu sin mv − v̂ sinhmu cosmv
û sinhmu cos mv − v̂ cosh mu sin mv

)
e−mu0

hu
, (43)

~u e
m = A0m

(
cosh mu0 (−û sin mv + v̂ cosmv)
sinhmu0 (û cos mv + v̂ sinmv

)
e−mu

hu
, (44)

wherehu = f
√

cosh2 u− cos2 v. Note again that the nor-
mal components are continuous at the boundary while the
tangential components are not.

Once again, whenm = 0 there are no streamlines inside
the elliptic boundary, and the streamlines outside the bound-
ary, which corresponds tou = u0, are confocal coordinate

ellipses. Whenm > 1, we obtain from (43) and (44) the
analytic expression for the streamlines, given either by

cosh mu cosmv = cosh mu0 cos mv0 for u < u0, (45)

e−mu cosmv = e−mu0 cos mv0 for u > u0, (46)
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or by

sinhmu sinmv = sinh mu0 sin mv0 for u < u0, (47)

e−mu sinmv = e−mu0 sin mv0 for u > u0, (48)

wherev0 is a constant. Again, the distribution of the stream-
lines depends on whether the tangential part of the velocity is
of the formcosmv or sin mv.

4.3. Vortices in bipolar coordinates

While the boundaries for both polar and elliptic coordinates
consisted solely of one closed curve, in bipolar coordinates
the boundary consists of two circles, which correspond to
τ = ±τ0, whereτ0 is a positive constant. Note that when
τ = 0, the boundary coincides with they axis. The two cir-
cles are located symmetrically one on each side of they axis,
and the regions interior and exterior to the circles are given
by |τ | > |τ0| and |τ | < |τ0|, respectively. Taking this into
account, if|τ | > |τ0| we defineτ< = τ0 andτ> = τ , and,
conversely, if|τ | < |τ0| we defineτ< = τ andτ> = τ0. It is
now possible to write the vector velocity potentials as

~Ai,e
0 = k̂A0 τ<, (49)

~Ai,e
m = k̂A0 sinhmτ< e−sgn(τ>)mτ>

(
cosmσ
sin mσ

)
. (50)

The corresponding velocity fields are, form = 0,

~u i
0 = ~0, (51)

~u e
0 = −σ̂

A0

a
(cosh τ − cosσ) , (52)

and, form > 1,

~u e
m = A0m sinhmτ0

×
(
−τ̂ sin mσ+σ̂sgn(τ) cos mσ

τ̂ cosmσ+σ̂sgn(τ) sin mσ

)
e−sgn(τ) mτ

hτ
, (53)

~u i
m = A0m

e−sgn(τ0) mτ0

hτ

×
(
−τ̂ sinhmτ sin mσ − σ̂ cosh mτ cos mσ

τ̂ sinhmτ cos mσ − σ̂ cosh mτ sin mσ

)
, (54)

where hτ = a/(cosh τ − cos σ). As expected, the nor-
mal components of the velocities are continuous across the
boundary,τ = τ0, while the tangential components are dis-
continuous.

As before, whenm = 0, there are no streamlines in-
side the boundary, which in this case corresponds to the re-
gions inside the two circles. On the outside of the circles,
the streamlines are nested coordinate circles correspondingto

different values ofτ < τ0. Whenm > 1, the families of
streamlines are given either by

e−sgn(τ)mτ cosmσ = e−sgn(τ0)mτ0 cosmσ0

for |τ | > |τ0|, (55)

sinhmτ cosmσ = sinh mτ0 cosmσ0

for |τ | < |τ0|, (56)

or by

e−sgn(τ)mτ sinmσ = e−sgn(τ0)mτ0 sin mσ0

for |τ | > |τ0|, (57)

sinhmτ sinmσ = sinh mτ0 sinmσ0

for |τ | < |τ0|, (58)

whereσ0 is an arbitrary angle. These equations represent,
once more, families of streamlines with different harmonici-
ties depending on the form taken by the tangential part of the
velocities.

4.4. Harmonicity and distribution of vorticity

An important property derived from the analysis above is
that, regardless of the choice of coordinate system, the har-
monicity of the initial vector potential is inherited by the ve-
locity field, and is in turn reflected in the form taken by the
equations describing the streamlines. The sets of solutions
for the velocity field, both inside and outside the boundaries,
constitute complete harmonic bases which allow for the rep-
resentation of any number of vortical structures in the form
of multipolar expansions.

In the previous sections, the tangential components of
the velocity are shown to be discontinuous at the boundaries,
which are either circles or ellipses. Thus, the surfaces formed
by the totality of the vortex filaments that pass through these
boundaries are, in fact, vortex sheets. These discontinuities
represent, according to Eq. (8), a measure of the distribution
along the boundaries of circulation per unit length, and thus,
of vorticity itself. Indeed, we may write the distributed vor-
ticity for all of the above coordinate systems as

~ω(q1, q2) = k̂
δ(q1 − q10) Γ(q10, q2)

h1 h2
, (59)

whereq1 is the coordinate that varies in the direction nor-
mal to the boundary,q10 is the value of this coordinate on
the boundary, andΓ(q10, q2) is the intensity of the vortex
filament which passes through the point on the boundary at
which q1 = q10. It should be stressed that the boundaries do
not coincide with streamlines of the flow, as is often the case,
but, rather, they represent regions of non-zero vorticity. In-
deed, the vorticity is distributed solely along the boundaries,
and as a result the velocity field is nonsingular in the whole
of both the interior and the exterior regions.
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FIGURE 1. Typical streamlines corresponding to multipolar vor-
tices around a circle, withm = 5. The harmonicity of the associ-
ated velocity field is given bycos mϕ.

5. Graphical representation of the solutions

In this section we plot families of streamlines illustrating dif-
ferent features of the vortical structures for each coordinate
system. In all cases we plot the boundaries, which are ei-
ther ellipses or circles, and a number of streamlines both
inside and outside said boundaries. It may be observed, in
general, that streamlines arriving at the boundary at very
oblique angles experience a marked change in direction as
they go across the boundary, whereas streamlines arriving at
the boundary at almost the normal direction to the boundary
experience very small changes of direction as they go across
the boundary. This is completely in accordance with the re-
sults obtained in the previous section regarding the continu-
ity of the normal components of the velocities at the bound-
ary, and the discontinuity of the tangential components of the
same velocities at the boundary. The boundary circles and
ellipses essentially constitute continuous sources of vorticity.

Figure 1 shows the distribution of streamlines inside and
outside a circle of radiusr0 = 5, with m = 5, and with har-
monicity cos mϕ. The resulting street of 10 vortices equally
spaced around the perimeter of the circle may be compared
with Fig. 8 in Crowdy’s paper [13]. Figure 2 shows a similar
configuration of vortices, still form = 5, but now distributed
along the perimeter of an ellipse, and with harmonicity differ-
ent from the previous plot,sinmϕ. An immediately observ-
able difference between this Figure and Fig. 1 is that now
the shape of the streamlines associated with vortices nearer
the origin is different from that of the streamlines associated
with vortices farther from the origin, a behavior caused by
the particular scaling factors associated with elliptic coordi-

FIGURE 2. Typical streamlines corresponding to multipolar vor-
tices around an ellipse, withm = 5. The harmonicity of the asso-
ciated velocity field is given bysin mv.

nates. Changing the angular dependence between a cosine
function and a sine function simply results, in these cases, in
aπ/2m-shift of the angular variable. Note, for example, that
in Fig. 1 there is a separatrix along they axis, while in Fig. 2,
the separatrix coincides with thex axis. From the previous
figures we may observe that as the eccentricity of an ellipse
increases, the vortices on opposing sides of the major axis
grow closer together. Eventually, as may be seen in Fig. 3,
which shows streamlines inside and outside an ellipse, with
m = 2, two streamlines may join, giving rise to distinctive
cat’s-eye patterns, similar to those typically associated with
Stuart vortices [14]. In the plot on the left, the two stream-
lines are not yet joined, while on the plot on the right, around

FIGURA 3. Typical streamlines corresponding to multipolar vor-
tices around two ellipses, withm = 2, but different eccentricity
e. The harmonicity of the associated velocity fields is given by
cos mv.
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FIGURA 4. Typical streamlines corresponding to multipolar vor-
tices around bipolar circles, withm = 1. The harmonicity of the
associated velocity field is given bycos mσ.

FIGURA 5. Typical streamlines corresponding to multipolar vor-
tices around bipolar circles, withm = 4. The harmonicity of the
associated velocity field is given bysin mσ.

an ellipse with greater eccentricity, the two streamlines have
coalesced. All of the above ellipses have been plotted in such
a way that the length of the major axes is equal to 10, and the
eccentricitye is then varied by giving different values to the
focal distancef .

Figures 4 and 5 show typical streamline distributions cor-
responding to bipolar coordinates withm = 1 andm = 4,
respectively. In both cases we have setr0 = 5 anda = 5,
so thatτ0 = a csch(r0/a) = 4.2546, as we see from the
Appendix. Form = 1 we observe two dipoles, distributed

symmetrically on opposite sides of they axis, and form = 4
we observe two octupoles, which are also distributed sym-
metrically on opposite sides of they axis, as before, but with
thex axis now acting as a separatrix as well, due to the dif-
ferent harmonicity of the angular dependence. A distinctive
feature of the vortical structures which form around bipolar
circles, again due to the presence of scaling factors, is that the
area covered by the streamlines associated with these struc-
tures is smaller close to the origin than far from it.

6. Line vortices and patch vortices

Point vortices and uniform vortex patches are the most widely
studied vortex structures, and they are closely related. The
radius of a Rankine vortex, which is a classical example of
a vortex patch, can be made to tend to zero while its vortic-
ity tends to infinity in such a way that its circulation is con-
stant. The structure arrived at in this manner is a point vortex.
Conversely, a point-vortex solution may be desingularized by
smearing out the vorticity to a uniform patch of nonzero area,
as is done, for example, by Dritschel [15]. Both types of vor-
tices have been used to model multipolar vortex equilibria.
Crowdy and Marshall [16] use a finite distribution of point
vortices superimposed on a uniform vortex patch to model
multipolar vortices, while Aref and Vainchtein [17] construct
complicated point-vortex equilibria by considering a frame of
reference corotating with one such equilibrium, and “grow-
ing” point vortices at well-chosen corotating points.

The discussion in this section deals with connections of
the three complete and orthogonal sets of harmonic vortices
introduced in this article with these other types of vortices on
a plane, but considering line vortices instead of point vortices,
as required by our formulation. We use the Green function for
Poisson’s equation in standard fashion to obtain representa-
tions of both patch vortices and line vortices in terms of the
sets of harmonic vortices given in Sec. 4, and we then con-
struct Rankine vortices for different geometries using these
representations.

6.1. The Green function for Poisson’s equation

The Green functionG for Poisson’s equation, correspond-
ing to unit line vortex sources, has the following forms and
expansions in polar, elliptic and bipolar harmonics, respec-
tively:

G(r, ϕ; r′, ϕ′) = − 1
2π

ln |~r − ~r′| = − 1
2π

ln r> +
1
π

∞∑
m=1

rm
<

rm
>

cos m(ϕ− ϕ′)
m

, (60)

G(u, v;u′, v′) = − 1
2π

u> +
1
π

∞∑
m=1

1
m

(
coshmu< e−mu> cos mv cosmv′ + sinh mu< e−mu> sin mv sin mv′

)
, (61)

G(τ, σ; τ ′, σ′) =
1
2π

(
ln |~r + ~r′| − ln |~r − ~r′|

)
=

1
2π

(τ< − τ>) +
1
π

∞∑
m=1

1
m

emτ< sinhmτ>
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×(
cos mσ cosmσ′ + sin mσ sinmσ′

)
+

1
π

∞∑
m=1

1
m

e−mτ> sinhmτ< (cos mσ cos mσ′+sin mσ sin mσ′) , (62)

where~r and ~r′ are position vectors of the field and source
points. Their respective harmonic compositions are easily
appreciated in the above expressions, and, further, a literal
reading of each term suggests the distinction between the har-
monic functions to be used inside and outside the coordinate
boundary circles or ellipses along which the vorticity is dis-
tributed.

For any vorticity field~ω(~r) = k̂ω(~r) distributed on the
plane, the corresponding vector potential is given by the fol-
lowing integral, with the corresponding Green function as a
kernel:

~A(~r) = k̂A(~r) = k̂

∫
h1(q′1, q

′
2)h2(q′1, q

′
2)

×G(q1, q2; q′1, q
′
2) ω(q′1, q

′
2) dq′1 dq′2. (63)

As an illustration, in the following section we use this equa-
tion to construct the familiar Rankine vortex.

6.2. Rankine vortices

The Rankine vortex, as defined by Saffman [8] and
Crowdy [6, 7], is a uniform, rectilinear, circular vortex fila-
ment, with constant vorticityω0 distributed inside a circle of
radiusr = r0. Specifically, it is given by

uϕ =





ω0 r

2
r < r0

ω0 r2
0

2r
r > r0

, (64)

whereuϕ is the angular component of the velocity~u. We
now use Eq. (63) to calculate the appropriate vector poten-
tial inside the circle. Observe that in this case, calculation of
the integral in (63) in polar coordinates involves the surface
elementr dr dϕ, so that only them = 0 term in Eq. (60)
contributes, as the higher harmonic angular contributions all
vanish. If we now write the vorticity simply asω = k̂ω0, the
vector potential inside the source circle, with radiusr = r0,
is

~Ai = −k̂
ω0

4
[
r2 + r2

0(2 ln r0 − 1)
]
. (65)

This potential leads to the same velocity field inside the cir-
cle given in (64). The Rankine vortex is completed by using
the same form of the vector potential given in Eq. (29) out-
side the source circle, withA0 = −(ω0 r2

0)/2. The respective
streamlines are represented by concentric circular lines.

Taking into account the above representation of the cir-
cular Rankine vortex in terms of circular harmonics, we may
propose an extension of the Rankine vortex in both elliptic
and bipolar geometries. The elliptic and bipolar vorticity dis-

tributions for the respective Rankine-like vortices inside the
respective boundaries are chosen as follows:

~ω(u, v) = k̂
Γ

hu hv
, (66)

~ω(τ, σ) = ∓k̂
Γ

hτ hσ
for τ ≶ 0, (67)

whereΓ is the strength of the vortex filaments. The scale
factors in Eq. (63) and the above expressions for the vortic-
ities allow for the direct integration of the vector potentials
inside the boundaries, and the calculation of the correspond-
ing velocity fields thereof. For the elliptic Rankine vortex we
obtain

~ui = v̂
Γ u

hu
, (68)

and for the bipolar Rankine vortex we obtain

~ui = σ̂
Γ τ

hτ
. (69)

The vorticities given in (66) and (67) may then be recovered
from the corresponding velocity fields above, as expected.
Outside the ellipse and the circles, the velocity varies in the
same manner as in (42) and (52), respectively, so that the vor-
ticity outside the boundaries is zero in both cases. The ellip-
tic Rankine vortex is represented by confocal elliptic stream-
lines, and the bipolar Rankine vortex is represented by pairs
of nested circular streamlines.

The shielded Rankine vortices proposed by Crowdy [16]
are constructed as the superposition of a Rankine vortex and a
line vortex at its center with a circulation of the same magni-
tude but directed in the opposite sense, thus ensuring that the
velocity field vanishes forr > r0, and also that the combined
structure has zero total circulation. The angular component
of the velocity is now written as

uϕ =





ω0 r

2
− ω0 r2

0

2r
r < r0

0 r > r0

. (70)

In our formulation, the line vortex at the origin of circular
coordinates can be seen as the limiting situation in which
r0 → 0: the velocity field inside does not appear, and the
velocity field outside is given by Eq. (32). This line vortex
can then be superposed on the circular Rankine vortex ob-
tained previously to produce a shielded Rankine vortex. This
is essentially the same treatment as that proposed by Morel
and Carton [5], who express the shielded Rankine vortex as
a limit of the two-contour Rankine vortex. Alternatively, we
may arrive at the shielded Rankine vortex by superposing the
vector potential (29) outside the source circle onto the ex-
isting Rankine vortex, withA0 as before, but with opposite
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sign. In this manner, the shielded Rankine vortex is obtained
without placing a line vortex within the existing patch vortex,
and as a result the velocity field inside the circular boundary
is everywhere non-singular.

As natural geometric extensions of the circular shielded
Rankine vortex, we consider shielded Rankine-like vortices
in elliptic and bipolar coordinates. For the first case, as
u0 → 0, the ellipse, withe → 1, takes on the form of two
straight line segments, one just above thex axis, the other just
below, going around the two foci. The velocity field outside
this degenerate ellipse is given by Eq. (42), and the corre-
sponding streamlines will be confocal coordinate ellipses. In
bipolar coordinates, asτ → ±∞ we obtain two line vortices
of opposite polarities, centered at(x, y) = (±a, 0). In this
case, the velocity field outside would be given by Eq. (52),
corresponding to the bipolar vortex withm = 0, and with
streamlines in the form of nested coordinate circles which
cover the entire plane. The shielded form of the correspond-
ing vortices may be arrived at in the same manner as that
described above for the case of circular vortices.

7. Discussion and connections with other types
of vortices

Vortices with bipolar and elliptic geometries have been the
subject of previous studies, and their physical feasibility has
been well established, albeit for the case of rotating vortices.
Kirchhoff [18] generalized the idea of a Rankine vortex by
proving that isolated two-dimensional vortex patch ellipses
are exact solutions of the nonlinear Euler equations. The
associated flow is nonsteady, with the elliptic patch rotating
steadily about its center. The stability of these patch vortices
has been shown by Mitchell and Rossi [19] to depend pre-
cisely on the eccentricity of the ellipse - we have shown in
Sec. 5 that the eccentricity of the boundary ellipse does in-
deed affect the behavior of the associated streamlines. Moore
and Saffman [20] have, in turn, generalized the Kirchhoff el-
liptic vortex to an elliptic vortex patch in a uniform straining
field.

With regard to dipolar vortices, the best-known exam-
ple is the Lamb–Chaplygin dipole, with Chaplygin indepen-
dently deriving the same dipole solution as that outlined by
Lamb in his famous book [21]. Chaplygin’s work on two-
dimensional coherent vortex structures in an inviscid fluid
was originally published over a hundred years ago [22] and
was recently translated and commented by Meleshko and Van
Heijst [23, 24]. The Lamb–Chaplygin dipole consists of a
dipolar vortex structure with continuous vorticity distributed
inside a circle. Our own comments on the original description
of the dipole inside a circle have to do with recognizing the
possibility of extending this description to higher harmonic
vortices. We observe that the equation for the vector poten-
tial is simply Poisson’s equation with a source term chosen to
be proportional to the vector potential itself. When the latter
is chosen specifically as the product between a radial func-

tion and an angular function of the formsinϕ, the differential
equation for the radial function turns out to be Bessel’s equa-
tion for m = 1. By replacingsin ϕ by sin mϕ or cos mϕ,
with m = 2, 3, 4, . . ., we obtain higher harmonicity vortic-
ity sources, accompanied by the corresponding radial Bessel
functions of orderm.

Extensions of vortices on a plane for higher harmonics
and for other geometries have been the subject of investiga-
tions by Crowdy, who studies Stuart vortices on a plane [25]
and a sphere [13], and by Bogomolov [26] and Kimura and
Okamoto [27] on a sphere, amongst others. These papers
suggest that stereographic projections from the plane onto
spherical surfaces can be performed on the complete sets of
vortices on a plane presented in this paper, allowing for com-
parisons with the corresponding harmonic vortices on such
surfaces.

On the other hand, we point out that our approach may
also be used to identify complete sets of spherical, sphero-
conal, and prolate and oblate spheroidal harmonic vortices in
three dimensions, inside and outside spherical or spheroidal
boundary coordinate surfaces, where the vorticity fields are
distributed.

The solutions examined in this paper represent coher-
ent vortical structures characterized by a continuous distribu-
tion of nonvanishing vorticity on circular and elliptic bound-
aries. The associated streamlines differ from those normally
obtained in the context of multipolar vortex structures (see
Crowdy [6]) in that they are not confined to a bounded region
of the plane, but rather, they cover the whole plane, inside
and outside the corresponding boundaries. We do observe
separatrix streamlines, and their number and geometrical dis-
tribution depend critically on the harmonicity of the vorticity
sources. Although these solutions are not, in general, con-
sistent with observed multipolar vortical structures, they do
share several properties in common with such structures, and
it must be stressed that the completeness of our set of so-
lutions allows for the expression of well-known solutions to
the two-dimensional steady Euler equations in terms of se-
ries expansions of harmonic functions. As an example, we
have written both the circular Rankine vortex and the cir-
cular shielded Rankine vortex in terms of the harmonic so-
lutions obtained above, and we have extended the idea of
Rankine vortices to elliptic and bipolar geometries. These
structures may be further extended to higher harmonicities,
thus, in principle, allowing for the description of multipolar
equilibria of the various forms discussed in Section 1.. These
extensions to other types of vortices, both on the plane and
on the surface of a sphere, will be presented in future works.
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Appendix

A. Polar, elliptic, and bipolar coordinates

1. Polar coordinates

The relationship between the polar coordinates(r, ϕ)
and Cartesian coordinates(x, y) is expressed as fol-
lows:

x = r cosϕ,

y = r sinϕ,

where0 6 r < ∞ and0 6 ϕ 6 2π. Conversely,
polar coordinates are expressed in terms of Cartesian
coordinates through

r2 = x2 + y2,

which represents a family of circles with radiusr cen-
tered on the origin, and

ϕ = tan−1 (y/x) ,

a family of straight lines which pass through the origin
with slopetan ϕ.

2. Elliptic coordinates

Elliptic coordinates(u, v) are related to Cartesian co-
ordinates(x, y) by means of the following transforma-
tion:

x = f coshu cos v,

y = f sinhu sin v,

where0 6 u < ∞ and0 6 v 6 2π. In this case, the
inversion is given by

x2

f2 cosh2 u
+

y2

f2 sinh2 u
= 1,

which represent ellipses centered at the origin, foci at
(x = ±f, y = 0), major semiaxesf cosh u, minor
semiaxesf sinhu, and eccentricitye = 1/ coshu, and

x2

f2 cos2 v
− y2

f2 sin2 v
= 1,

which are hyperbolas which share foci with the above
family of ellipses, with real semiaxesf cos v, imagi-
nary semiaxesf sin v, and eccentricitye = 1/ cos v.

3. Bipolar coordinates

Bipolar coordinates(σ, τ) are defined in terms of
Cartesian coordinates(x, y) as follows:

x =
a sinh τ

cosh τ − cosσ
,

y =
a sin σ

cosh τ − cosσ
,

where(−∞ < τ < ∞, 0 6 σ 6 2π). The inverse
transformation is given by

(x− a coth τ)2 + y2 = a2csch2τ,

and

x2 + (y − a cot σ)2 = a2 csc2 σ.

The first of these expressions describes a family of
nested circles with radiia cschτ centered at(x =
a coth τ, y = 0). For each fixed value of|τ |, we
obtain a couple of nonintersecting circles placed sym-
metrically on either side of they axis. The second ex-
pression represents a family of circles with radiia cscσ
centered at(x = 0, y = a cot σ), where circles are dis-
tributed symmetrically on either side of thex axis, with
intersection points at(x = ±a, y = 0).
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