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Complete sets of circular, elliptic and bipolar harmonic vortices on a plane
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A class of harmonic solutions to the steady Euler equations for incompressible fluids is presented in two dimensions in circular, elliptic and
bipolar coordinates. Since the velocity field is solenoidal in this case, it can be written as the curl of a vector potential, which will then satisfy
Poisson’s equation with vorticity as a source term. In regions with zero vorticity, Poisson’s equation reduces to Laplace’s equation, and this
allows for the construction of harmonic potentials inside and outside circles and ellipses, depending on the coordinate system. The vector
potential is normal to the coordinate plane, and is proportional to the scalar harmonic functions on the plane, thereby guaranteeing that the
velocity field is also harmonic and is located on the coordinate plane. The components of the velocity field normal to either a circle or an
ellipse are continuous, but the tangential components are discontinuous, so that, in effect, a vortex sheet is introduced at these boundaries.
This discontinuity is a measure of the vorticity, normal to the plane and distributed harmonically along the perimeter of the respective
circles or ellipses. An analytic expression for the streamlines is obtained which makes visualisation of vortices of various geometries and
harmonicities possible. This approach also permits a reformulation of the notion of multipolarity of vortices in the traditional sense of a
multipolar expansion of the Green function for Poisson’s equation. As an example of the applicability of this formulation to known vortical
structures, Rankine vortices of different geometries are expressed in terms of harmonic functions.

Keywords: Incompressible and inviscid fluids; steady vortices; Euler equations; superintegrability and exact solvability.
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1. Introduction dimensional Euler equations. For this purpose they simply

simulate numerically the generation of higher-order multi-
Multipolar vortices are known to be an important dynamicalpolar equilibria taking monopolar shielded vortices as their
feature of a variety of two-dimensional and quasi-geostrophistarting point. Although much of the research concerned with
flows [1]. They occur regularly in large-scale geophysi-multipolar vortices is either of an experimental or a numeri-
cal, atmospheric and meteorological flows at high Reynoldsal nature, due to their complicated structure, Crowdy [6] has
numbers. The term itself refers to a set of coherent vorterovided a class of exact solutions, which consists of a fam-
structures where vorticity is distributed according to char-ily of finite-area patches of nonzero vorticity, thus permitting
acteristic geometrical arrangements. Monopoles, for examsome insight into the shapes of these vortical equilibria which
ple, will have a single vorticity extremum, while a dipole is not possible when considering simple point-vortex models.
and tripole will have, respectively, two and three distinct vor-These solutions exhibit the same properties as experimen-
ticity extrema. Unstable monopolar structures can relativelyially observed multipolar vortices, and, interestingly, only al-
easily condense into two isolated dipolar structures. Howlow for interaction between vortices when these overlap. A
ever, it has been also observed that it is possible to norgeneralization, also by Crowdy [7], of this class of solutions
linearly destabilize an isolated monopolar vortical structurelS characterized by an annular region of vorticity enclosing
in order to obtain a single tripolar structure with distributed@ region of irrotational fluid . It is shown that a nonlinear
vorticity [2]. This formation of dipolar and tripolar struc- superposition property allows for the construction of multi-
tures has been observed in laboratory experiments [3]. It hagolar equilibria having vortical regions with more elaborate
also been shown that higher-order multipolar structures mageometries and topological structure. Further, both classes
result from strong perturbation of two-dimensional vortical of solutions presented by Crowdy [6, 7] share the important
structures [4]. These structures, which we may collectivelyproperty of “invisibility” in the sense that they do not induce
term n-polar vortices, typically consist of a central core of any irrotational velocity field outside the regions where vor-
vorticity surrounded, or shielded, by — 1 satellite vortices  ticity is nonzero. Thus, the physical detection of these vor-
with sign opposite to that of the central vortex, so that the tolices is not a trivial matter, as they cannot be detected through
tal circulation of the structure is approximately zero, and the'emote measurements of the far-field velocity.

whole structure rotates in steady fashion. In this paper we consider an alternative family of exact
Morel and Carton [5] have studied the generation andsolutions to the two-dimensional Euler equations, which we
stability of a variety of multipolar solutions to the two- associate with the notion of multipolarity in the traditional
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sense of a series expansion of the Green function for Poighe Rankine vortex, in terms of our harmonic solutions, high-
son’s equation on the plane. The solutions thus obtained diighting the usefulness of constructing a complete set of har-
not satisfy, in general, the criteria established by Crowdy [6]Jmonic solutions to these equations. Finally, we discuss, in
and Saffman [8] for vortical equilibria. However, they do Sec. 7, connections with other types of two-dimensional vor-
constitute, by construction, a complete set of solutions, sdices on planes and spheres, as well as extensions to three
that the solutions representing multipolar equilibria as dedimensions and other geometries.

scribed above may be represented in terms of this family
of solutions. They also satisfy the laws of vortex motion asy
originally set out by Helmholtz [9]. These solutions consist™

of a closed region of circular or elliptic shape where vor-Following Saffman [8], we describe the motion of an incom-

ticity sources are continuously distributed along the curvepressible fluid through the velocity field,= @(x, ¢), and we

at the border of the region, constituting, in effect, a vor-define the vorticitys = &(x, ¢) as follows:

tex sheet. As with Rankine vortices and Crowdy’s classes

of solutions, these solutions represent isolated finite-area re- W=V X, (1)

gions of nonzero vorticity surrounded by irrotational flow. .

We stress that these multipolar harmonic expansions are valul';? that, by construction, the vorticity is solenoidal. Notice
at, if we takel’ to be the circulation ofi for the closed

and unique both inside and outside the region within WhICh

the sources of vorticity are distributed, and, crucially, that® urveC', we have

sources of a given harmonicity produce velocity fields with r— / 5 il = 7{ i d

the same harmonicity. Ley-Koo ando@gora have exam-

ined similar multipole expansions inside and outside region

in which ;  either the electrostatic or maanetost ti%vhereS is the surface element delimited by the closed curve
ch sources of either the electrostalic o ag etosta . Thus, we may interpret the vorticity asa circulation den-

e e o o S Sy per i ara. FUthr, o an compressie i, e
ip veIocny field is aIso solen0|dal that is,

ity field to which it is associated in an incompressible fluid is

formally equivalent to the relationship between a currentin a V.-i=0. ©)

conducting wire and the magnetic field to which it gives rise.

This equivalence was already noted by Helmholtz [9], is disJ this case, we may also define a vector potenfialich that

cussed in detail by Moffatt [12], and it serves as motivation P—VxA 4)

for many of the ideas and methods explored in this paper. ’
From a mathematical point of view, it is important and allowing us to write

convenient to recognize the superintegrability and exact solv- = S .

ability of the Euler equations. In the specific case of vor- @ =V x (V X A) =V (V : A) - V?A. (5)

tices in two dimensions on a plane, their solutions involve

the familiar circular functions in the angular coordinates, andBY fixing the gauge of{ so thatV - A = 0, we observe that

power functions and exponential or hyperbolic functions inEd- (5) is, in effect, Poisson’s equation,

the radial coordinates for the successive geometries. On the V2A— 3 ©)

other hand, this article is intended for the fluid physics read- ’

ership, and we have thus chosen to formulate it using the fa- Equations (3) and (1) can be written in the form of condi-

miliar methods of differential equations. Correspondingly,tions to be satisfied along a given boundary. Equation (3) can

in Sec. 2 we include the differential equations relating thepe recast in the integral forms,

solenoidal vector fields of velocity, vorticity, and velocity po-

tential, as well as the integral forms of the appropriate bound- j{ i@-dS = (up —uy) -nAS =0, @)

ary conditions which will permit us to distribute vorticity s

along circular and elliptic boundaries. In Sec. 3 we writewhereu; andus are the velocities on either side of the bound-

the Laplace equations in polar, elliptic, and bipolar coordi-ary, enclosed by a Gauss pill-box with areag AS. This

nates, and their associated solutions. In Sec. 4 we use theggm of the equation clearly expresses the continuity of the

solutions to derive the exact, explicit form of the vorticity and normal components of the velocity across the boundary.

velocity fields associated with harmonic vortices both inside  Equations (1) and (2), on the other hand, can be used to

and outside the given boundaries for all three sets of coofyyrite:

d!nate_s. Graphlpal representatlon_pf these veloc_lty fu_alds is a-dl — (uiy —y) - £ AL = AT, (8)

given in Sec. 5 in the form of families of streamlines illus- c

trating distinctive features of the vortical structures for eachfor a Stokes rectangular circuit with tangential elements

coordinate system. Using the Green functions for Poisson’s-t A¢. Thus, the tangential components of the velocity are

equation in all three coordinate systems, we express in Sec.dscontinuous across the boundary, and this discontinuity

a well-known stable vortex solution of the Euler equations,gives the measure of the circulation per unit lengt,/ AZ.

Velocity, vorticity, and vector potential

@)
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3. Laplace’s equation in polar, elliptic, and on the value 1 — as the angular function, and the radial func-
bipolar coordinates tions

Our objective now is to write the Laplacian operator in terms o (r) = Ao+ Bolnr, (47
of the three sets of coordinates described in the Appendix. Q) (u) = (Ao + Bou), (18)
We shall denote, in general form, the two independent coor-

dinates on the plane ag, andg,, with ¢, andé, the unit @ (7) = (Ao + Bor), (19)
vectors normal to lines of constant values of the respectivgvhich is logarithmic in the circular case, and linear in the
coordinates, andq; anddg, their corresponding variations elliptic and bipolar cases.

in these directions. In our casgy, é;) = (7, 9) = (4,0) =

o,7) for polar, elliptic, and bipolar coordinates, respec- . . S .

t(ively). Note that the unitary vectors that constitute each coor-4' Harmon.lc vortices In.SIde and outside coor-
dinate pair are always orthogonal. The displacement vector ~ dinate circles and ellipses

df can then be expressed in the following form: In this section we construct explicitly the velocity and vortic-

ity fields associated with harmonic vortices both inside and
outside coordinate circles and ellipses corresponding to the

. use of circular and bipolar coordinates on the one hand, and
whereh; andh, are scale factors, and their values, for the ;. . .
elliptic coordinates on the other.

three coordinate systems under consideration, are given bée- . . .
For vortices on a plane, we consider the vector velocity

low. potentialA to point in the direction of, perpendicular to the
x —y plane. These functions, as we have seen in Sec. 2, must
be harmonic and bounded both inside and outside the corre-

Elliptic coordinates:  h; = ho = f V/cosh® u — cos2 v. sponding boundaries, circles or ellipses. The velocity can be
obtained from this vector velocity potential in a straightfor-

d[: élhldql + é2h2dq27 (9)

Polar coordinates: hy =1, ho =7

Bipolar coordinates:  h; = hy = a/(cosh T — cos o). ward manner, as follows:
, N , hiér  hoéy k
The Laplacian operator can now be written in terms of curvi- U Ao 1 9 5 3 20
linear orthogonal coordinates as follows: U(a1,q2) =V x A= hyha % % ;3‘? - (20)
V2 — 1 {8h23 0 m 0 (10)  Notice that in this formulation the vector potential formally
hihy [Oq1 h1 Oq1  Ogqa ho Dg2 ]’ incorporates the role normally assigned to the stream func-

hat. for th di di | tion. Finally, once we have the velocity, we can plot the
so that, for the corresponding coordinate systems, Lap aceéorresponding streamlines to visualize the flow around the

equation takes the following forms: vortices. The equations for the streamlines are arrived at by
. iting the velocity as

10 0 1 02 wrl

[ ®(r,p) =0, (11)

ror or 120y
1 0? 02 and observing that the componentsiahust be proportional
F2 (coshu — cos? v) 22 T 902 (u,v) =0, (12) g he respective componentsd, in the form of (9), at ev-
, i ery point. Thus, we obtain
(coshT —cosa)” [ 92 0? hid hod
4~ — q 1204
5 52+ 207 | ®(r,0)=0. (13) mdq _ hadgy 22)

U = €1u1 + éaua;, (21)

Ui %)
We will now proceed to write the vector velocity poten-

a

The solutions to these equations are given in terms of the cir-

cular, elliptic, and bipolar harmonics, respectively, as tial for each of the three coordinate systems, and to obtain the
velocity and the streamline equations, both inside and outside
i the appropriate borders. Superindi¢emnde are used to de-
. m —m sinme
D, (1,0) = (Amr™ + Bpr™™) < cos me ) » (1% nhote whether the velocity potential and velocity correspond

to the interior or exterior regions, respectively.

cos mv

(I)m (u,v) — (Amemu 4 Bme_mu) < s muv ) 7 (15) - - -
4.1. \ortices in polar coordinates

cI)m, (T, O') — (Amem'r + B7,L€7m7—) < smmo ) , (16) Whenm = 0 we set

cosmo
0 = kAj, (23)
form = 1,2,3,... Isotropic solutions, which occur when . .
m = 0, correspond to the choice of the cosine — which takes 0 = kAjInr, (24)
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and whenm > 1 we set

—

cos me

Al = kAL ™ ( . ) , (25)
S mep
A, = RAGm ( e ) . (26)
Sin me

199

are circles with radiug > ro. Whenm > 1, the stream-
lines are obtained from Eqgs. (33) and (34), according to the
orientation of the velocity field, and are given either by

Since we require the vector potential to be continuous at the
boundary, using Egs. (23)-(26) we impose the following con-or by

ditions atr = rg:
Aé = Aflnrg = Aglnro,

1 ,.m e ,.—m
Ay rgt = Ay ™ = A,

(27)
(28)

r™ cosmp = r{’ cos mpg for r<ro, (35)
=™ cosmp =1y cosmypy  for  r>re,  (36)
r™sinme = r{" sin mepg for r <y, (37)
r~™ sinme =1, " sinmygy  for r>mry,  (38)

where A, is a constant. Equations (23)-(26) may now peWhereyy is an arbitrary angle. As we can see from the equa-

written in a more compact form, as follows:

/Yé’e = kAgInrs, (29)
At = hAg = ( cosmy ) , (30)
rm \ sinme

wherer. = min{r,ro} andrs = max{r,ro}.

tions above, the dependence of the angular part of the ve-
locities i on eithercos m or sin m¢ determines the har-
monicity of each family of streamlines, which is inherited
directly from the harmonicity of the vorticity.

4.2. \ortices in elliptic coordinates

The corresponding velocity fields are then obtained byThe same criteria applied in the preceding section are used

means of Eq. (20) and are given, far= 0, by

—

ig =0, (31)
e Ao
Uy = —P—) (32)
r
and, form > 1, by
i A mrmfl —7sinmy — @ cos my (33)
m 0 T 7 cosmy — ¢ sinmep ’
e Ty —7sinme + ¢ cosmyp
i = Ao mr’”“ < 7 cos mep + @ sinmep > G

Note that while the radial components are continuous at the

circular boundary defined by = r, the tangential compo-
nents are discontinuous.

here to arrive at the expressions for the vector velocity poten-
tial both inside and outside the boundaries, which in this case
are ellipses with major axes aligned along thexis. Us-

ing the same notation as before, with = min{u, uo} and

us = max{u,ug} for a givenug, these potentials are given

by

AL = kAo us, (39)

cosh mu~ cos muv
sinh mu sin mv

Az_;le = IA{AO e—mu> ( (40)

)

The corresponding velocity fields are obtained as before,
and they are given, fan = 0, by

Using Eg. (22) we obtain the analytical form of the 0="0, (41)
streamlines inside the circular boundary. When= 0, we e 0 Ag
.. . Uy = — y (42)
see from Eq. (31) that inside the circle there are no stream- f /eosh® 1 — cos? v
lines, and from Eq. (32) that outside the circle the streamlines
| and, form > 1, by
. _ 3 3 —ANa) - —mug
i = Agm U ?Obh musinmy — 9 sinh mu cos my e 7 (43)
m @ sinh mu cos mv — v cosh mu sin mv ha,
e cosh mug (—@sinmov + 0 cosmov) | e ™
U = Aom ( sinh mug (& cos mv + 9 sin mv > hy (44)

whereh, = fv/cosh?u — cos?v. Note again that the nor-

mal components are continuous at the boundary while th

tangential components are not.
Once again, whem = 0 there are no streamlines inside

Eellipses. Whenn > 1, we obtain from (43) and (44) the
analytic expression for the streamlines, given either by

cosh mu cosmv = coshmug cosmvg  for u < ug, (45)

the elliptic boundary, and the streamlines outside the bound-

ary, which corresponds t@ = wg, are confocal coordinate

e~ ™" cosmu = e~ ™" cos muyg for uw > ug, (46)

Rev. Mex. Fis61(2015) 196-206
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or by different values ofr < 9. Whenm > 1, the families of
streamlines are given either by
sinh mu sin mv = sinh mug sinmovy  for w < wug, (47)
e ~SINTIMT (o ma = e ~SINTIMT0 cogmay
e ™ sinmu = e~ "0 sinmuyg for u > ug, (48)
for |7 > |70l, (55)
whereuy is a constant. Again, the distribution of the stream-
lines depends on whether the tangential part of the velocity is
of the formcos mv or sin mwv. for |7 < |70l (56)

sinh m7 cos mo = sinh mry cos moy

or by
4.3. \ortices in bipolar coordinates

e~ SIIMT inma = e~ SINTO)IMT0 gin ma,
While the boundaries for both polar and elliptic coordinates
consisted solely of one closed curve, in bipolar coordinates for 7| > |7l (57)
the boundary consists of two circles, which correspond to
T = +719, Wherery is a positive constant. Note that when
7 = 0, the boundary coincides with theaxis. The two cir- for IT| <ol (58)
cles are located symmetrically one on each side oftheis,

and the regions interior and exterior to the circles are givef'N€reoo is an arbitrary angle. These equations represent,
by || > || and|7| < ||, respectively. Taking this into once more, families of streamlines with different harmonici-

account, if|r| > || we definer. = 7o andrs = 7, and ties depending on the form taken by the tangential part of the
conversely, ifir| < |ro| we definer. = 7 andr. = . Itis ~ Velocities.
now possible to write the vector velocity potentials as

sinh m7 sin mo = sinh mry sin moyg

4.4, Harmonicity and distribution of vorticity
A" = kAo, (49) An important property derived from the analysis above is
cosmo that, regardless of the choice of coordinate system, the har-
) (50) monicity of the initial vector potential is inherited by the ve-
locity field, and is in turn reflected in the form taken by the

sinmo

A‘iﬁe = ]%AO Sinh mr< e—Sgr(7-> )mT> (

The corresponding velocity fields are, far= 0, equations describing the streamlines. The sets of solutions
for the velocity field, both inside and outside the boundaries,
il =0, (51)  constitute complete harmonic bases which allow for the rep-
resentation of any number of vortical structures in the form
i = _&@ (coshT — cos o), (52)  of multipolar expansions. _
a In the previous sections, the tangential components of

the velocity are shown to be discontinuous at the boundaries,
which are either circles or ellipses. Thus, the surfaces formed
by the totality of the vortex filaments that pass through these

and, form > 1,

m = Aom sinhmr boundaries are, in fact, vortex sheets. These discontinuities
—7sinmo+6sgn(7) cosma '\ ¢—SINT) mr represent, according to Eq. (8), a measure of the distribution
X ( . . y > L (53)  along the boundaries of circulation per unit length, and thus,
7 cosmo+Gsg(7) sinmo T of vorticity itself. Indeed, we may write the distributed vor-
, e—S9Mm0) m7o ticity for all of the above coordinate systems as
), = Aym ———

h. A ‘
&(q1,q2) = k o(a q}lﬁ)hFQ(qqu)

, (59)

—7 sinh m7 sinmo — & cosh m7 cos mo
ol WP . . , (54)
7 sinh m7 cosmo — 6 coshm7 sinmo

whereq, is the coordinate that varies in the direction nor-
mal to the boundaryyyq is the value of this coordinate on
whereh, = a/(coshT — coso). As expected, the nor- the boundary, and'(qi0, ¢2) is the intensity of the vortex
mal components of the velocities are continuous across thilament which passes through the point on the boundary at
boundary,r = 7, while the tangential components are dis- which ¢, = ¢1,. It should be stressed that the boundaries do
continuous. not coincide with streamlines of the flow, as is often the case,

As before, whenm = 0, there are no streamlines in- but, rather, they represent regions of non-zero vorticity. In-
side the boundary, which in this case corresponds to the radeed, the vorticity is distributed solely along the boundaries,
gions inside the two circles. On the outside of the circlesand as a result the velocity field is nonsingular in the whole
the streamlines are nested coordinate circles correspondingtd both the interior and the exterior regions.

Rev. Mex. Fis61(2015) 196-206
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Circle: m=5

Ellipse: m=5, e=0.8
T T

w B A = 2 a 3 . 8 FIGURE 2. Typical streamlines corresponding to multipolar vor-
tices around an ellipse, withh = 5. The harmonicity of the asso-

FIGURE 1. Typical streamlines corresponding to multipolar vor- ciated velocity field is given byin mo.

tices around a circle, witm = 5. The harmonicity of the associ-

ated velocity field is given byos mep.
Y 9 yosme nates. Changing the angular dependence between a cosine

function and a sine function simply results, in these cases, in
. . . ar/2m-shift of the angular variable. Note, for example, that
5. Graphical representation of the solutions in Fig. 1 there is a separatrix along thexis, while in Fig. 2,
In this section we plot families of streamlines illustrating dif- the separatrix coincides with theaxis. From the previous
ferent features of the vortical structures for each coordinaté:Igures we may ob;erve that as the ecc entricity of an.elllps'e
system. In all cases we plot the boundaries, which are eflicreases, the vortices on opposing sides of the Major axis
row closer together. Eventually, as may be seen in Fig. 3,

ther ellipses or circles, and a number of streamlines botld hich sh " i insid d outsid I ith
inside and outside said boundaries. It may be observed, yfich shows streamiines Inside and outside an eliipse, wi
= 2, two streamlines may join, giving rise to distinctive

general, that streamlines arriving at the boundary at very' . L : ) ;
oblique angles experience a marked change in direction t's-eye patterns, similar to those typically associated with
they go across the boundary, whereas streamlines arriving uart vortices [44_]' In the_ plot on the left, the t.W 0 stream-
the boundary at almost the normal direction to the boundar))neS are not yet joined, while on the plot on the right, around
experience very small changes of direction as they go across
the boundary. This is completely in accordance with the re- s e 4567 iloimaste SiE7a
sults obtained in the previous section regarding the continu- [ ' ' '
ity of the normal components of the velocities at the bound-
ary, and the discontinuity of the tangential components of the
same velocities at the boundary. The boundary circles and
ellipses essentially constitute continuous sources of vorticity.
Figure 1 shows the distribution of streamlines inside and
outside a circle of radiugy = 5, with m = 5, and with har- it
monicity cos mep. The resulting street of 10 vortices equally -2
spaced around the perimeter of the circle may be comparec -
with Fig. 8 in Crowdy’s paper [13]. Figure 2 shows a similar -
configuration of vortices, still fom = 5, but now distributed i
along the perimeter of an ellipse, and with harmonicity differ-
ent from the previous plokin me. An immediately observ-
able difference between this Figure and Fig. 1 is that now
the shape of the streamlines associated with vortices nearg{syra 3. Typical streamlines corresponding to multipolar vor-
the origin is different from that of the streamlines associatedices around two ellipses, witln = 2, but different eccentricity
with vortices farther from the origin, a behavior caused bye. The harmonicity of the associated velocity fields is given by
the particular scaling factors associated with elliptic coordi- cos muv.
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202 P.L. RENDON AND E. LEY-KOO

Bipolar circles: m=1
T

symmetrically on opposite sides of theaxis, and form = 4

we observe two octupoles, which are also distributed sym-
metrically on opposite sides of theaxis, as before, but with
thez axis now acting as a separatrix as well, due to the dif-
ferent harmonicity of the angular dependence. A distinctive
feature of the vortical structures which form around bipolar
circles, again due to the presence of scaling factors, is that the
area covered by the streamlines associated with these struc-
tures is smaller close to the origin than far from it.

6. Line vortices and patch vortices

Point vortices and uniform vortex patches are the most widely
FIGURA 4. Typical streamlines corresponding to multipolar vor- studied vortex structures, and they are closely related. The
tices around bipolar circles, with = 1. The harmonicity of the  radius of a Rankine vortex, which is a classical example of

associated velocity field is given s mo. a vortex patch, can be made to tend to zero while its vortic-
ity tends to infinity in such a way that its circulation is con-

: : LT : ‘ stant. The structure arrived at in this manner is a point vortex.

o N Conversely, a point-vortex solution may be desingularized by

smearing out the vorticity to a uniform patch of nonzero area,
as is done, for example, by Dritschel [15]. Both types of vor-
tices have been used to model multipolar vortex equilibria.
z | Crowdy and Marshall [16] use a finite distribution of point
— vortices superimposed on a uniform vortex patch to model
R multipolar vortices, while Aref and Vainchtein [17] construct
complicated point-vortex equilibria by considering a frame of
reference corotating with one such equilibrium, and “grow-
\ /N 7\ ing” point vortices at well-chosen corotating points.
s N | N The discussion in this section deals with connections of
: : L ‘ ‘ : : the three complete and orthogonal sets of harmonic vortices
X introduced in this article with these other types of vortices on
FIGURA 5. Typical streamlines corresponding to multipolar vor- a plane, but considering line vortices instead of point vortices,
tices around bipolar circles, with. = 4. The harmonicity of the a5 required by our formulation. We use the Green function for
associated velocity field is given jn mo. Poisson’s equation in standard fashion to obtain representa-

an ellipse with areater eccentricity. the two streamlines havt|ons of both patch vortices and line vortices in terms of the
P 9 Y, ets of harmonic vortices given in Sec. 4, and we then con-

coalesced. All of the above ellipses have been plotted in SucE‘truct Rankine vortices for different geometries using these
a way that the length of the major axes is equal to 10, and th?epresentations

eccentricitye is then varied by giving different values to the
focal distancef.

Figures 4 and 5 show typical streamline distributions cor-6.1. The Green function for Poisson’s equation
responding to bipolar coordinates with = 1 andm = 4,
respectively. In both cases we have ggt= 5 anda = 5,  The Green functiorG for Poisson’s equation, correspond-
so thatry = acsch(rg/a) = 4.2546, as we see from the ing to unit line vortex sources, has the following forms and
Appendix. Form = 1 we observe two dipoles, distributed €xpansions in polar, elliptic and bipolar harmonics, respec-

| tively:
7 cosm(p — ¢')
Y A AN <
G(r,p;r',¢") = ——1n|7“—7"|_——1n7'>—|— Z o - , (60)
!/ / 1 - 1 —mu / s —mu 3 : /
G(u,v;u',v") = —— — Z — coshmu< e > cosmu cosmv’ + sinhmu« e”™"> sinmv sinmv ), (61)
7r m

s

1 - - 1
G(r,o;7',0") = > (ln|7"+r’|—1n\77—r’|) =— (T« —7s) +
I

1
E — e™"< sinhm7s
2m —=m
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(oo}
E e~™"> sinhmr. (cosmo cosmao’+sinmo sinmo’) (62)

m=1

X ( cosmo cosmo’ + sinmo sinmo’) +

3| -
3|~

where7 and’ are position vectors of the field and source
points. Their respective harmonic compositions are easili/tributions for the respective Rankine-like vortices inside the
appreciated in the above expressions, and, further, a literalespective boundaries are chosen as follows:

reading of each term suggests the distinction between the har-

monic functions to be used inside and outside the coordinate W(u,v) = k———, (66)
: ; : SRR Py, By

boundary circles or ellipses along which the vorticity is dis-

tributed. &(r,0) = Tk for 7 < 0, (67)

For any vorticity fieldd(7) = kw(7) distributed on the hr he
plane, the corresponding vector potential is given by the folwhereT is the strength of the vortex filaments. The scale
lowing integral, with the corresponding Green function as &factors in Eq. (63) and the above expressions for the vortic-

kernel: ities allow for the direct integration of the vector potentials
. . A inside the boundaries, and the calculation of the correspond-
A(P) = kA(F) = k/h(f}i#}é) ha (1, 43) ing velocity fields thereof. For the elliptic Rankine vortex we
obtain
X Gla1, 420}, 45) w(ah, ) ddf das. (63) =02, (68)
As an illustration, in the following section we use this equa-and for the bipolar Rankine vortex we obtain
tion to construct the familiar Rankine vortex. _ Tt
u = Erh—. (69)

6.2. Rankine vortices The vorticities given in (66) and (67) may then be recovered

The Rankine vortex, as defined by Saffman [8] andfrom the corresponding velocity fields above, as expected.
Crowdy [6, 7], is a uniform, rectilinear, circular vortex fila- Outside the ellipse and the circles, the velocity varies in the

ment, with constant vorticity, distributed inside a circle of S&Me manner as in (42) and (52), respectively, so that the vor-
radiusr — ro. Specifically, it is given by ticity outside the boundaries is zero in both cases. The ellip-

tic Rankine vortex is represented by confocal elliptic stream-

wWor ro lines, and the bipolar Rankine vortex is represented by pairs
Uy = 2, ’ (64)  Of nested circular streamlines.
“ro . o The shielded Rankine vortices proposed by Crowdy [16]
2r are constructed as the superposition of a Rankine vortex and a

whereu,, is the angular component of the velocity We line vortex at its center with a pirculation of the same magni-
now use Eq. (63) to calculate the appropriate vector potent-Ude but Filrecteq in the opposite sense, thus ensuring Fhat the
tial inside the circle. Observe that in this case, calculation o¥€l0City field vanishes for > 1, and also that the combined
the integral in (63) in polar coordinates involves the surfacestructure has zero total circulation. The angular component
elementr dr dy, so that only then = 0 term in Eq. (60) ©f the velocity is now written as

contributes, as the higher harmonic angular contributions all wor  worl
vanish. If we now write the vorticity simply as = kwy, the w.—d o9 "o T <To (70)
vector potential inside the source circle, with radius rg, ? 0 s
i 0
is
At = —k % [72 + r§(2 In ro — 1)] . (65) In our formulation, the line vortex at the origin of circular

coordinates can be seen as the limiting situation in which
This potential leads to the same velocity field inside the cirr, — 0: the velocity field inside does not appear, and the
cle given in (64). The Rankine vortex is completed by usingvelocity field outside is given by Eg. (32). This line vortex
the same form of the vector potential given in Eq. (29) out-can then be superposed on the circular Rankine vortex ob-
side the source circle, withy = —(wo r2)/2. The respective tained previously to produce a shielded Rankine vortex. This
streamlines are represented by concentric circular lines.  is essentially the same treatment as that proposed by Morel
Taking into account the above representation of the cirand Carton [5], who express the shielded Rankine vortex as
cular Rankine vortex in terms of circular harmonics, we maya limit of the two-contour Rankine vortex. Alternatively, we
propose an extension of the Rankine vortex in both ellipticmay arrive at the shielded Rankine vortex by superposing the
and bipolar geometries. The elliptic and bipolar vorticity dis- vector potential (29) outside the source circle onto the ex-
isting Rankine vortex, wittd, as before, but with opposite
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sign. In this manner, the shielded Rankine vortex is obtainedion and an angular function of the forsim ¢, the differential
without placing a line vortex within the existing patch vortex, equation for the radial function turns out to be Bessel’s equa-
and as a result the velocity field inside the circular boundaryion for m = 1. By replacingsin ¢ by sin mp or cos me,
is everywhere non-singular. with m = 2,3,4,..., we obtain higher harmonicity vortic-

As natural geometric extensions of the circular shieldedty sources, accompanied by the corresponding radial Bessel
Rankine vortex, we consider shielded Rankine-like vorticedunctions of orderm.
in elliptic and bipolar coordinates. For the first case, as Extensions of vortices on a plane for higher harmonics
ug — 0, the ellipse, withe — 1, takes on the form of two and for other geometries have been the subject of investiga-
straight line segments, one just above:tlaxis, the other just tions by Crowdy, who studies Stuart vortices on a plane [25]
below, going around the two foci. The velocity field outside and a sphere [13], and by Bogomolov [26] and Kimura and
this degenerate ellipse is given by Eq. (42), and the corre©kamoto [27] on a sphere, amongst others. These papers
sponding streamlines will be confocal coordinate ellipses. Irsuggest that stereographic projections from the plane onto
bipolar coordinates, as — +oo we obtain two line vortices  spherical surfaces can be performed on the complete sets of
of opposite polarities, centered @t, y) = (+a,0). In this  vortices on a plane presented in this paper, allowing for com-
case, the velocity field outside would be given by Eq. (52)parisons with the corresponding harmonic vortices on such
corresponding to the bipolar vortex with = 0, and with  surfaces.
streamlines in the form of nested coordinate circles which  On the other hand, we point out that our approach may
cover the entire plane. The shielded form of the correspondalso be used to identify complete sets of spherical, sphero-
ing vortices may be arrived at in the same manner as thatonal, and prolate and oblate spheroidal harmonic vortices in

described above for the case of circular vortices. three dimensions, inside and outside spherical or spheroidal
boundary coordinate surfaces, where the vorticity fields are

. . . ) distributed.
7. Discussion and connections with other types The solutions examined in this paper represent coher-
of vortices ent vortical structures characterized by a continuous distribu-

tion of nonvanishing vorticity on circular and elliptic bound-

Vortices with bipolar and elliptic geometries have been thearies. The associated streamlines differ from those normally
subject of previous studies, and their physical feasibility hasbtained in the context of multipolar vortex structures (see
been well established, albeit for the case of rotating vorticesCrowdy [6]) in that they are not confined to a bounded region
Kirchhoff [18] generalized the idea of a Rankine vortex by of the plane, but rather, they cover the whole plane, inside
proving that isolated two-dimensional vortex patch ellipsesand outside the corresponding boundaries. We do observe
are exact solutions of the nonlinear Euler equations. Th&eparatrix streamlines, and their number and geometrical dis-
associated flow is nonsteady, with the elliptic patch rotatingribution depend critically on the harmonicity of the vorticity
steadily about its center. The stability of these patch vorticesources. Although these solutions are not, in general, con-
has been shown by Mitchell and Rossi [19] to depend presistent with observed multipolar vortical structures, they do
cisely on the eccentricity of the ellipse - we have shown inshare several properties in common with such structures, and
Sec. 5 that the eccentricity of the boundary ellipse does init must be stressed that the completeness of our set of so-
deed affect the behavior of the associated streamlines. Mootations allows for the expression of well-known solutions to
and Saffman [20] have, in turn, generalized the Kirchhoff el-the two-dimensional steady Euler equations in terms of se-
liptic vortex to an elliptic vortex patch in a uniform straining ries expansions of harmonic functions. As an example, we
field. have written both the circular Rankine vortex and the cir-

With regard to dipolar vortices, the best-known exam-cular shielded Rankine vortex in terms of the harmonic so-
ple is the Lamb—Chaplygin dipole, with Chaplygin indepen-lutions obtained above, and we have extended the idea of
dently deriving the same dipole solution as that outlined byRankine vortices to elliptic and bipolar geometries. These
Lamb in his famous book [21]. Chaplygin’s work on two- structures may be further extended to higher harmonicities,
dimensional coherent vortex structures in an inviscid fluidthus, in principle, allowing for the description of multipolar
was originally published over a hundred years ago [22] anequilibria of the various forms discussed in Section 1.. These
was recently translated and commented by Meleshko and Vagxtensions to other types of vortices, both on the plane and
Heijst [23, 24]. The Lamb—Chaplygin dipole consists of aon the surface of a sphere, will be presented in future works.
dipolar vortex structure with continuous vorticity distributed
inside a circle. Our own comments on the original descriptionacknowledgements
of the dipole inside a circle have to do with recognizing the
possibility of extending this description to higher harmonic The authors wish to thank Christian Esparzéapkz for
vortices. We observe that the equation for the vector potenhis helpful comments. The authors gratefully acknowledge
tial is simply Poisson’s equation with a source term chosen tdinancial support for this research from DGAPA UNAM
be proportional to the vector potential itself. When the latterthrough project PAPIIT IN109214, and from CONACYT
is chosen specifically as the product between a radial funahrough SNI 1796.
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A. Polar, elliptic, and bipolar coordinates
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The relationship between the polar coordingtesy)
and Cartesian coordinatés, y) is expressed as fol-
lows:

T = TCOS ¢,

Yy =rsingp,
where0 < r < oo and0 < ¢ < 27m. Conversely,

polar coordinates are expressed in terms of Cartesian
coordinates through

2 2 2
re=x"+y°,

which represents a family of circles with radiusen-
tered on the origin, and

p = tan"! (y/z),

a family of straight lines which pass through the origin
with slopetan .

2. Elliptic coordinates

Elliptic coordinates(u, v) are related to Cartesian co-
ordinateqz, y) by means of the following transforma-
tion:

x = fcoshucosv,
y = fsinhusinwv,
where0 < u < oo and0 < v < 27. In this case, the

inversion is given by

$2 y2

=1
f2cosh?u  f2sinh®u

)

205

which represent ellipses centered at the origin, foci at
(x = +£f,y = 0), major semiaxes coshu, minor
semiaxeg sinh u, and eccentricity = 1/ cosh «, and
x2 y2
fZeos?v  f2sin®v

:]_7

which are hyperbolas which share foci with the above
family of ellipses, with real semiaxefcos v, imagi-
nary semiaxeg sin v, and eccentricity = 1/ cosv.

3. Bipolar coordinates

Bipolar coordinates(c, ) are defined in terms of
Cartesian coordinatés;, y) as follows:

asinh 7

coshT —coso’
asino

coshT —coso’

where(—oco < 7 < 00,0 < ¢ < 27). The inverse
transformation is given by

(z — acotht)? + y? = a’cschr,

and

2® + (y —acoto)® = a?csc? 0.

The first of these expressions describes a family of
nested circles with radiuzcsch centered atlx =

a cotht,y = 0). For each fixed value ofr|, we
obtain a couple of nonintersecting circles placed sym-
metrically on either side of thg axis. The second ex-
pression represents a family of circles with radiiser
centered afx = 0,y = a cot o), where circles are dis-
tributed symmetrically on either side of thexis, with
intersection points atx = +a,y = 0).
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