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The geometric algebras of space and spacetime are derived by sucessively extending the real number system to include new mutuall
anticommuting square roots &fl. The quantum mechanics of spin 1/2 particles are then expressed in these geometric algebras. Classical 2

and 4 component spinors are represented by geometric numbers which have parity, providing new insight into the familiar bra-ket formalism

of Dirac. The classical Dirac Equation is shown to be equivalent to the Dirac-Hestenes equation, so long as the issue of parity is not taken
into consideration, the latter quantity being constructed in such a way that it is parity invarient.
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1. Geometric Concept of Number extended number system, and give the new quantitye;,

_ ) ~ the geometric interpretation of directed plane segmeioir
In his book “Number: The Language of Science” Tobiaspjyector Note that

Dantzig, in describing the invention of matrices has this to

say: i?

= ejexe1ey = —e%eg =-1

(It is) a theory in which a whole array of elements is so thati has the same algebraic property as the imaginary unit
regarded as a number-individual. These “filing cabi-of the complex number8. Indeed, every unit bivector of the
nets” are added and multiplied, and a whole calculus of.-dimensional Euclidean spa&® shares this property and
matrices has been established which may be regarddd the generator of rotations in the vector plane of that bivec-
as a continuation of the algebra of complex numberstor.

These abstract beings have lately found a remarkable The Euler identity

interpretation in the quantum theory of the atom, and i o

in man’s other scientific fields, [2]. e =cost +isind

We now show how these “filing cabinets” take on the for ¢ € R and the unit bivectof = e, and thenyperbolic
interpretation of geometric numbers in a geometric numbeFuler identity
system callecgeometric algebra It was William Kingdon
Clifford (1845-1879), himself, who first referred to his fa-
mous algebras ageometric algebrasbut some authors still  for ¢ € R and the unit vectoe;, are easily established as
call these algebraGSlifford algebras[3]. David Hestenes and special cases of the general algebraic definition of the expo-
other theoretical physicists over the last half-century havenential function

€®1? = cosh 6 + e; sinh 0

shown this comprehensive geometric interpretation imbues © yn
the equations of physics with new meaning [4]. We shall re- eX = Z — = cosh X + sinh X.
strict our attention to developing geometric algebras of the n—o ¥

plane, 3-dimensional space, and Minkowski spacetime and
their application to quantum mechanics, but the ideas appl
to higher dimensional spaces as well [5].

In [5, Chp. 2] and [6], the author shows that the hy-
}Serbolic number plane, regarded as the extension of the real
number system to include a new sqgrare rept= /41 of

+1, has much in common with the more famous complex
number plane. Since it took centuries for the complex num-

We extend the real number syst@to include two new an-  Ders to be recognised as bonified numbers, | suppose that it
ticommuting square roots;, e of +1, which we identify as 1S not surprising that the sister hyperbolic numbers are dis-
unit vectors along the: andy axis of the coordinate plane criminated against even to this day. After all, it was Leopold

1.1. Geometric algebra of the plane

R2. Thus, Kronecker (1823-1891) who said, “God made the integers,
all the rest is the work of man”.
el=e2=1, and e :=ee; = —ese;. Thestandard basi®ver the real numbers of the geomet-

. o ric algebraG, := G(R?) is
We assume that the associative and distributive laws of mul-

tiplication of real numbers remain valid in our geometrically G2 = span{l, e, ez, €12}. Q)
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With respect to this basis a geometric number G, can be

written

g=a+v=_a+bi)+ (ce; + dey) 2

wherea = a + bi = re’® behaves formally like a complex
number andr = ce; + dey € R? is a vector in the Euclidean
plane of the bivectoi = e1,. It can also be easily checked
thatva = av, wherea = a — i is the (complextonjugate

of a.. Itis this property that gives the geometric significance

as the generators of rotations in the planef [5, p.55].

Another basis ofG., the spectral basisgives the alge-
bra of real2 x 2 matrices the interpretation of representing

geometric numbers if5,. We write

Gy — span{ (ell> wi(l e}

_ span{( s el“-)h 3)

€Ut U_—

or Gy = span{uy,ejus,eju_,u_}, where the idempo-
tentsus = (1/2)(1 £ e3). The relationship between the
standard basis (1) and the spectral basis (3) is directly ex-

pressed by
1 1 0 O 1 Uy
er | 01 1 0 el
es| | 1 0 0 -1 eju_
€12 0 1 -1 0 U—

Notinge;u, = u_ey, it follows that

1
(1 e1)uq <e ) =uy +eure; =uy +u_ =1
1
Using this last relationship, and the fact that
Ui = Uy = €U,

and ujejuy =0 =ujepuy,

with similar relationships fou_gu4, uygu_ andu_gu_,
we calculate for the geometric numhggiven in (2),

g=(1 eu, (ell> g(1 ey)uy <ell>

= (1 enuy (el?a—:—vv) ego(éa++v\)f()atlal) Ut (ell)
B
= (a+ dyuy

+ (c—=b)etu_ + (c+b)ejus + (a —d)u_. (5)

o= (215 220)

is the matrix of the geometric number

We say that

qg= (CL + be12) =+ ((381 + deg) € Gy

with respect to the spectral basis (3). From (4) it follows that
1
s=enuidal (). ©

The interesting thing about equation (6) is that it can be
turned around and solved directly for for the matrix@f of
g. To accomplish this we define tle-conjugate ofy € G,
by
gt = ejge;.

Multiplying Eq. (6) on the left and right by
1
= ()

(1 el)u-l-a

and

respectively, gives

Uy <ell) g(1 er)uy
= Ut (ell ef) 4 [g] (ell <311) U = ulgl.

By taking thee;-conjugate of the last equation, we get

u (ell) (1 e)u_ = u_lg].

Adding the last two equations gives the desired result
g9 gel g%t ey
Ug <e1g e > Ugp +U_ < gei g ) u_. (7)

g = (1 e))u[gr] ( ell )

wherelg;] is the matrix of the geometric numbegr € Go
for k = 1,2 as given in (2), (4) and (6). The algebra of real
2 x 2 matricesMatg(2) is algebraically isomorphic to the
geometric algebré, becausdg: + g2] = [91] + [g2] and
[9192] = g1][g=] for all 2 x 2 matrices[g1], [g2] € Matr(2)
and their corresponding geometric numbgrsy, € Go. For
example, using (6) and, ejuy = 0,

nae =1 el () (1 eualol )

€1

u+;i1ru+) [92] (ell)
= (1 e1)uy[gi]lge] <611> = (L er)ulgige] <ell)

which shows thalg; g2] = [91][g2]-

Extending the real number systdito include the new
anticommuting square roogs, e, of +1 is well defined since
the resulting geometric number systép is algebraically
isomorphic to the2 x 2 matrix algebraMatg(2). Indeed,
each geometric algebi@, , is either algebraically isomor-
phic to a real or complex square matrix algebra, or matrix
subalgebra, of the appropriate dimension, [5, p.205]. Next,
we consider the case of the geometric algebsaf space.

9] =

Let

— (1 el ., 4

Uyr€1u4
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GEOMETRY OF SPIN] PARTICLES 213

1.2. Geometric algebra of space Since the unit trivectoi commutes with all the elements

of G3, we can simply complexify the spectral basis (3)5f
The geometric algebr&, of the zy-plane inR? can be ex-  tg obtain the spectral basis 6f;,

tended to the geometric algeliZg of the spac®? simply by

extendingGs to includees, a new square root of 1, which

anticommutesvith bothe; ande,. Naturally,e; has the ge-
ometric interpretation of a unit vector along thaxis. The
standard basi®f G3, with respect to theoordinate frame = span{( Ut elu‘) + (13)
{e1, ey, e3} of the Euclidean spadg?, is C1uy U

Gy = span{<ell) wr(l e}

where in this case := (1/2)(1+e3). We can then directly
apply the analogous formulas (4), (5), (6), and (7) to elements
. . g € Gz merely by allowing the values af, b, ¢, d to be of the
and s planes. and Generste rotations i hose planes, arfgM * il WhEres.t € R andi ~ e.zs. The famousaul

A yz P 9 P ' atricesof the coordinate framée;, ez, e3} are simply ob-

1 := eja3 = ejeges is theunit trivector or oriented vol- . . . .
o in ing th ral is (1 =(1/2)(1+
ume elementf R3. The unit trivector: also has the property tained using the spectral basis (13), with = (1/2)(1+es),

G3 : =G(R*)=span{l,e;, ez, e3, €12, €13, €23, €123}. (8)

thati? = —1, as follows from getting
i? = ej(eses)e;(ere3) = e?(ezes)? = —1. lel] = <(1) é) , [e2] = (? OZ)
Any geometric numbey € G3 can be written in the form fes] = —ifer][ea] = <(1) _01> . (14)
g= iakek 9) In this representation, the imaginary unidcquires the
k=0 geometric interpretation of the oriented volume element in

G3, as follows from
wheree, := 1 anday, = ay, + by, for ay, by, € R and where 3

0 < k < 3. The conjugation known as threverseg' of the /1 0
geometric numbey, is defined by reversing the orders of all [e123] = [ea][e2][es] =i ( 0 1 ) : (15)
the products of the vectors that make gmiving

In terms of the geometric product, all other products in

; 5. the geometric algebra are defined. For example, given vec-
g =) dxer. (10)  torsa,b € G} = R3,
k=0
. 0-+2
In particular, writingg = s + v + B + T, the sum of a real ab=a-b+aAbeG;™, (16)

numbers € G3, E;;VEftOI’v € Gj, abivectorB € Gand o0, (1/2)(ab + ba) € R is the symmetriénner

atrivectorT € G, g' = s +v—B—Tascanbeeasly .4 ctanda A b = (1/2)(ab — ba) is the antisymmetric

checked. . . . . . ._outer productof the vectorsa andb, respectively. The outer
Another conjugation widely used in geometric algebra 'Sproduct satisfieaAb — i(axb), expressing the duality rela-

thegrattji |r_1;/er5|ontc_)bta||rt1ed by replracw:g eagh vegtor .mtﬁ tionship between the standard Gibbs-Heaviside cross product
product by Its hegative. 1t corresponas to an INVersion INNE, , 1, and the outer produet A b € G3. In what follows the
origin, otherwise known as parity inversion For the geo-

i b . in(9) th dei L outer product A b A ¢ of three vectors is also used. Similar
metric numbeg given in (9), the grade inversion is to (16), we write

g ::ao_iakek. (11) a(bAc)=a-(bAc)+aAn(bAc), a7

k=1
where

Whenyg is written in the formg = s + v + B + T, the grade

1
inversion takes the forp~ =s —v+B — T. a-(bAc):= 3 (a(bAc) — (b Ac)a)
Alternatively, we can obtain the geometric algefiraby .
extending ocomplexifyings- to include a commuting imag- =—ax (b xc) € Gs,
inary 7, which we subsequently identify as the unit trivector.
We write and
1
ngGg(i):zspan{l, €1,€eq, egli, €192, —egi, eli, i}, (12) an (b A C) - = 5 (a(b A C) + (b A C)a>
. 3
and then dEﬁne?, ‘= eg11, €13 = —eol ande23 = eql. =a- (b X C)Z € G3'
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214 G. SOBCZYK

A much more detailed treatment @ is given in [5,Chp.3],

where( _ ), denotes real scalar part of the enclosed expres-

and in Ref. 7 | explore the close relationship that exists besion, and using-b = (ab), that we found in (16). A closely
tween geometric algebras and their matrix counterparts. Geelated calculation givealmostthe same answer

ometric algebra is developed in Ref. 5 as gg@metric com-
pletion of the real number system, providing a new founda-

tion for much of mathematics and physics.

1.3. Properties of idempotents and nilpotents

An idempotentp € G3 has the defining property? = p.
Of course+1, 0 are idempotents, and sops= (1/2)(1 +
V2e; +ies). For a general geometric numbgee= w 4 m +
in € G3 to be an idempotent, we must have

@ =w+m?>-—n’+2im-n

+2w(m+in) =w+m+in, (18)

or equivalently,
WV4+m?-n’+2im-n=uw

and
(2w —1)(m+in) =0.

If m +in # 0, it follows thatw = (1/2), m - n = 0, and
m? — n? = (1/4). Equivalently, a geometric numbel, not
equal to0 or 1, is an idempotent iff

1
A= §(l—|—m+in), where

2

m?—n?=1, and m-n=0, (19)

for m,n € G3. It follows immediately that any idempotent

A has the important cannonical form

1 1
A= 5(1+m+in) :m§(1+m*1+im*1n)

1

= m§(1 +4a)=ma,, (20)

wherea = m~!' +im~'n € G}, a; = (1/2)(1 +a) and
a-m = 1. We use the notatioay = (1/2)(1 £ a) for the

mutually annihiliating idempotent, anda_.
For the idempotenta_, note that

aa; =a;, and aa_ = -—a_.

Because of these properties, we would like to iderdifyas

the twopure eigenprojector spin state$an electron. Unfor-
tunately, as is discussed in the next section, this is not quite By a geometric spinor |a)

correct.
Given a second idempoteht_, we calculate

2abido = {(1+a)(1+ B

=-(1+a-b), (21)

(a4by)(ayby) = (bya,)(a by) =byayby

= (1 +a)(1+b)=—L(1+a+b+ab)
by
77(1+a+b—ba+2a ):5(1+a )b,

but multiplied by the idempoteﬂL. In summary,
(A4by)"(a1by) =bya by = Prob(asby)by, (22)

whereProb(ay |by) := (1/2)(1+4a-b) and(g1g2)" = gig!
forall g1, go € Gg3 is the operation of reverse defined in (10).
Another important property that easily follows is

.. 1- .
b, mb, = §b+m(1 +b)
1~ . . . .
= ;b (m —bm+2b-a) = (b-m)b,. (23)
A geometric numbey is anilpotentif g2 = 0. A similar

analysis to (18) for a general idempotent shows that a nilpo-
tent NV has the canonical form

1 1
N=g@+is)=ry(l+ir's)=rh =n_r (24)

wheren := ir~!'s € G for the orthogonal vectors- s = 0
andr? = s2. Thus, every nilpotenV has associated with it
a corresponding idempotent, .

2. Quantum mechanics of spin

The observablecorresponding to thepin of an electron in
a coordinate framée;, e, ez} is aunit vectorm = m;e;
+maes +mses in the Euclidean spadg?® of that frame. The
Hermitian matrixof the observablen is

o o ") ()
1 1ma ms my ms

as given in (13) and (14), withy = (1/2)(1 £+ e3) and

m4+ = my + ims, Where

i = (1 e1)us [ (1)

€1
=mauy +m_eju_ +mieju, — mau_. (25)
with  respect to
uy = (1/2)(1 4 e3), we mean
o) == V2(ag + arer)uy <= (af
= |a)T = V2uy (@ + @) (26)

whereag, a; € G3. The spinor|a) is said to benon-
degeneratéf in addition @gay + a1y # 0. Spinors have

Rev. Mex. Fis61(2015) 211-223
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the importantsuperposition propertyhat if |«) and|3) are
spinors with respect ta; then

lw) := Ai]a) + A2|B) for A, A2 € GIT? (27)

is also a spinor with respect ta. . This is precisely the prop-
erty that naked idempotents,, n; do not have.
Given two spinorga) and|j3), the geometric product

(a]|B) = 2uy (ap + arer)(Bo + frer)uy
= 2(@ofo + o1 B1)uy (28)
is also a spinor. Thner product(a|s) is defined to be the

scalar and pseudoscalar parts of the geometric product of the

spinors,
=SB + 1.

(018) = ((all®)), .
An important observation which will be used later is that
((@la) (el13),,, = 2@iFals). (30

as can be easily verified. The spirja) is said to be anor-
malized spinoif

(29)

<0£|Oz> = agpog + a1 = 1. (31)
Traditionally, a2-component column spinor is
[as = <30> where g, a1 € C. (32)
1

In general, for a spinoja) := v/2(ag + azeq)u with

ap # 0, we can write

o) = V2aq (1 + Z—;el)u_,_ =V2apA

(33)
for A= (14 (a1/a)er )us. Itis easily checked that is

an idempotent, so that can be expressed in the cannonical

form (20),
( )

1
(1+m+in):m§(1+é):mu+,

aq .
A= 1+ —e; —1—ey +e3
(6]

Qo 0

(34)

N = DN

sincea = (m +imn/m?) = ez. Another closely related

canonical form for the idempotewt, with the help of (23), is
(39)

A =mu, = mmmu;mu; =m?a u,,

where we have redefined the unit vedio= mesm.

All of the above quantities can be expressed in terms of

ag andaq. We find that

m = 20070 ((04150 + o1 )ey
+ iy — alao)e2) + e, (36)
1 o _
= T (z(aoal — a10p)er
— (g + Oélao)eg), (37)

Rev.
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and the unit vectoA = mesm = aje; + ases + azes is
specified by

apoy + apaq . i(ao&l — 01160)

a; = — — = — —
Qoo + a1’ Qoo + a1ay
Qo — 10y

a3 = ———————. (38)
a0 + 10

For a normalized spinor (31),
2 a0 + 10 1

m° = - = — = —. (39)

1+a-e;3 ol fa T

Using the above information (34) and (35) for the idem-
potentA, the spinof«) takes the canonical form
lo) = V2a9A = V20omuy = V2aom?a,u,.  (40)

The matrix[a] of &, is thedensity matrixof the pure state
|cr). By taking the reverse of the spinor equation (40), we get

(a| = V2aousm = V2aom?u, a, (41)
and find that
1 e
§|oz><oz| = qp@om°mum = a, . (42)

It is interesting to note that@artan spinoris specifed by

@)er]a)” = [a)er(al”

= (af —ad)e; +i(ad + a)ey — 209 e3
Qg . o A s

= —jm(el + Zeg)m = —j2a+melm
ao ao

and represents a null complex vector, [8,p.41].

There are several other operations on spinors which are
important. By multiplying the spinor equation (40) on the
left and right byes, we find that

|a)® . = es|la)es = V2apesmegu

= \/§a0m2e3é+e3u+. (43)

Multiplying the spinor equation (40) on the left and right
by e, we get

)1 : = ej|a)e; = V2apeme;u_
= \/§a0m2elé+e1u,. (44)
The spinor|«a)© is called thees-conjugateof |«), and

the spinorja)©! is called thee;-conjugateof |a). Using (11)
and (40) thegrade inversiorja) ~ of the spinorfa) € G35 is

o)~ ;= ﬂ((ao + alel)u+)_ = V2(a@ — e )u_

= —V2aymu_ = V2aym?a_u_. (45)

Mex. Fis61(2015) 211-223
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Given normalized spinorigy), |3), we calculate with the  Using (48) and (49), we also calculate

help of (40) and (23), . .

(0lbl0) = b3, and (1]b[1) = —bs, (50)

(a|B) = 2afpuymnu
and
= 2&060(111 ‘n+i(m x n) ~e3)u+ =0

iff m-n = 0and(m xn)-e; = 0. Expressed in terms of the (1[b|0) = by = b1 +iby, and
associated spinor directioms, n, the inner producta|3) is (0|b|1) = b_ = by — ibs. (51)
quite different than the component expression (29). A great
simplification occurs when we calculate| ) («|5), finding  often an electron in the spinor stdé = v/2u. is said to be
with the help of (30) and (39), up, and an electron in the spinor staté = v/2e;u, is said

_ 1 + to bedown Using (50), the average value of the observable
(a]B)(alB) = 3 < ((all8))" ({al18)) >0+3 b in the statg0) is b3, and the average value bfin the state
|1> is 7b3.
= 1<<g| (‘a> <a|) |5>> We can also carry out the above calculation using spinor
2 0+3 operators. Following [10,p.63], given the spinir), the
_ <<ﬂ|é+\5>> _ }(1 +a-b). spinor operator) of |«) is defined by
0+3 2 .
Given an observabl&, suppose that an electron has been Y= 7 (\a) + \a)‘)
prepared in the pure spin stdte). Then the probability of 2
finding the electron in the pure spin st is =m(auy — Gou—) € SU(2), (52)
Prob(|a),[B)) : = (a|B)(c|B) where the inversiofn) ~ has been defined in (45). The spinor
1 . . operator is an even multivectord‘ﬁgr and hence invarient un-

=5(1+a-b)=2(aibi)o,  (46) der a parity swap. It retains the normalization property that

: . : det[¢)] = 1, and allows us to calculate the associated
just as we have alrea(_jy seenin (21) and (22). Immed_'ate%recnona of |«v) as a rotation of the unit vecteg. With the
after the measurment is carried out, the electron will be in th%elp of (22), (38) and (52), we find that

pure statés). ldentity (46) is independent of the basis spinor

u4 that was used in the definition (26) of the spinfrsand it — . (= _
). Clearly, the spinor statds)) and|3) areorthogonaliff vesy! =m(aguy — Tou-)es(@ous — aou-)m
a=-b. = m(apus + dou—)(@ouy — aou_)m
ijen a spinor statgy), theavergge valu®ef the observ- . . 3
ableb in that state is defined bix|b|a). Using (22), (23), = apGom m(ut — u_)m = a, (53)
(39), (40), we calculate
and also

bla) = V2aobmu, = V2a5(b-m+bAm)u,, (47) Yupt = %1/1(1 eyt =a,. (54)

and The relationship (54) should be compared with (42).
(afbla) : = 2(u (tbr)uy o1 = (brh) - e
=b- (thesm) =b- 4. 4g) 3. Geometric algebra of spacetime

It follows that the average value lies in between the valuedhe geometric algebraG; of the coordinate frame
+1. It is important to note that the final values in both (46) {e1, ez, e3} in R* can be extended to the geometric alge-
and (48) in no way depend upon the idempotent sou,  braG, ; of the pseudoeuclidean spag-* of Minkowski
could be replaced by any other idempoténtdefined by any  spacetimeby extendingGs by an additional square rogt
unit vectore, but we would then also have to redefine. of +1 which anticommuteswith each of the space vectors

In the special cases where e1,es,e3. S0 satisfiesy? = 1 andvyer, = —epyo for

k =1,2,3. Equivalently, thespacelike vectors
la) = 0) :=V2uy or |a)=|1):=V2eiu,,

we have Yk = €xo < €L = YkY0 = Vko,

b|0) = V2(bs + byei)u, and together with theimelike vectory,, define thespacetime al-
gebra

bl1) = V2(b- — bse:)u,. (49) G1,3 = gen{v0,71,72,73}
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of the orthonormal spacetime framgy,| 0 < ¢ < 3} in  and similarlyys; = ey3, it follows that

R'3. In summary, the spacetime vectors obey the rules
€13U4 4+ = U4 —_€13, e3U

2 2
Yo = 1, Ve = -1, YuYv = =NV =U_j€3, €U+ = U__€7, (56)
for u # v, u,v = 0,1,2,3, andk = 1,2,3. Note also that where
pseudoscalar 1 .
Up— 1= 1(1 +70)(1 = im12),
70123 = 710720730 = €123 1
. u—y:=—(1 =)L+ i72),
of G; 3 is the same as the pseudoscalar of st frame 4
{e1,e3,e3} of G3, and it anticommutes with each of the L0 i)
spacetime vectorg, for u =0, 1,2, 3. U=——"7=7 o ma)-

The forgoing shows that the geometric algeGrais nat-  The idempotentsi; , u4_, u_, u__ aremutually anni-

urally isomorphic to theeven subalgebr&;, of the space- hjliating in the sense that the product of any two of them is
time algebraG 3 generated by the bivectorg,y, of G 3, zero, andpartition unity

[9]. Any elementg € G 3 can be expressed in the form

g = G1 + Govo WhereGy, G € Gs. In particular, a unit Upg F g Fuy tu_ =1 (57)
vectorm = me; + mge; + mgey in the geometric algebra By the spectral basiof the Dirac algebr&, 5 we mean
G3 of the rest framde, e2, e} becomes the unit spacetime ihe elements of the matrix '
bivector 1
m = (my7y1 + maye +m37¥3)70 € G%,?ﬂ 213 ur(l —ey3 ez eq)
3
with the spacelike vectorn, vy, +may, +msys € G 3 asa e
factor. . . Ugy —e3Ut_  esU_4 eiu__
In the above, we have carefully distinguished the rest et v e e
frame {e|, ey, e3} in the spacetime algebr&; ;. Any = el?’u++ o ;r_ ; - _e?’u“ . (58)
other rest frame{e], e}, €4} can be obtained by an ordi- e?uii 7(;3;: e13;++ 113 -

nary space rotation of the rest franfe;, e2, es} followed
by a Lorentz boost In the spacetime algebr@, 3, this Any geometric numbey € G; 3 can be written in the
is equivalent to defining a new frame of spacetime vectordorm
{710 < pu <3} C Gy 3, and the corresponding rest frame o
{e}, = 74| k = 1,2,3} of a Euclidean spac&® moving g=(1 ei3 ez e)uii[g] 1 (59)
with respect to the Euclidean spa&é defined by the rest
frame {e1, e2,e3}. The way we introduced the geometric
algebrasGs; and G, 3 may appear novel, but they perfectly
reflect all the common relativistic concepts [5,Chp.11].

where[g] is theDirac matrix corresponding to the geometric
numberg. In particular,

The well-knownDirac matricescan be obtained as a sub- 10 0 O
algebra of thel x4 matrix algebral/at¢(4) over the complex 01 0 0
numbers. We first define the idempotent [vo] = 00 -1 0 )

00 0 -1
Py— 1 y
Upt t = Z(]‘ + 70)(1 + 2712) 0 0 O -1
00 -1 0
1 0 O 0
where the unit imaginary = +/—1 is assumed to com-
mute with all elements ofz; 5. Whereas it would be nice and
to identify this unit imaginary; with the pseudoscalar ele- 0 0 0 4
mentyp123 = €123 as we did inGs, this is no longer possible o] = 0 0 —i O
sinceqo123 anticommutes with the spacetime vectoysas 0 — 0 0 |
previously mentioned. i 0 0 0
Noting that 0 0 -1 0
M2 = V1707072 D .
1 0 0 O
= €e9€e] — €97 0 -1 0 0
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It is interesting to see what the representation is of the 1
. ) _ e
basis vectors os5. We find that fork = 1,2, 3, D=1 e e e )urs[P]a e313
€1

[ex]a = [kllvo] = ([[eok]]z [[eok]};> wd

w1 (3

where the outer subscripts denote the order of the matrices

and, in particular|0]2, [1]2 are the2 x 2 zero and unit matri-
ces, respectively. The last relationship shows that teeur-

ing in the Pauli matrix representation (15), which represents

the oriented unit of volume, is different than the= /—1

(64)

To establish the last equality above, with the help of (57),
note that

= 1 + aze13 + azes + ageq € Gf3

Y =vury +puy +Yu_g +Yu__,
and then succesively show that

YUty = (041 + asei3 + ages + 04491)Uii,

which occurs in the complex matrix representation (60) offor each of different sign combinations+, +—, —+, ——.

the of Dirac algebra.
A Dirac spinoris a4-component column matriko]4,

¥1
P2
¥3
P4

for ¢ € C. (61)

[pla ==

As an even geometric number Kﬁfg, 1 generates
Lorentz boosts in addition to ordinary rotations in the
Minkowski spaceR':3. The amazing property of (64) is
that where as we started by formally introducing the com-
plex numberi = +/—1, in order to represent the Dirac
gamma matrices, we have ended up with a spinor operator
¢ € Gy in which the role ofi = \/—1 is taken over by

Following [10,p.143], we use the Dirac spinor to constructthe v21 = ejo € Gs. This is the key idea in the Hestenes

the (matrix)spinor operator

P11 —P2 P3Py
[w] _ P2 fl P4 :23

Y3 P4 P1 P2

Y4 —P3 P2 Py

(62)

Unlike the Dirac spinofy]4, the spinor operatdi)] is invert-
ible iff det[t)] # 0. We find that

det[y)] = 72 + 4a® > 0, (63)

where

r=|e1]* + |@2|® — |es|® — |a|> and

a=S(P,p3 + Papa).

Where-as the spinor operatpp] obviously contains the
same information as the Dirac spinfgs],, we will shortly

representation of thBirac equation[18].

Although we have formally eliminated the need for the
artificial i = /—1 in the Dirac spinor by replacing it with
the bivectorys; = ejs in the spinor operator, such a quan-
tity occuring in a real geometric algebra is unacceptable.
The imaginary; = +/—1 has the effect otomplexifying
the geometric algebr&, 5 to the complex geometric alge-
braG4(C)=Mat4(C), [10,p.217]. We might, instead, search
for a larger real geometric algebra containing the geometric
algebraG, 3, just as we enlarged the geometric algeGea
of space to the geometric algeb@s ; of spacetime. The
real geometric algebr&. 3, obtained from the geometric
algebraG, 3 by assuming the existence of a new timelike
vector vy which anticommutes with all the spacetime vec-
torsv, € G, 3, has the required properties. Theit pseu-
doscalari’ := y§voy17273 € G2,3 has all the desired alge-
braic properties of the imaginagy= /—1, commuting with
all the elements of, 5 and having square1. All of the pre-

see that it acquires the geometric interpretation of an eveMious arguments in the complex algelita(C) remain valid

multivector inG7 ;.

Noting that
1 )
Up Y21 = 1(1 +70) (Y21 + iv12721)
1 ) )
= 1(1 +7) (i — 712) = Uty = Yoruqy,

it follows thatu. o = ur t R(pk) + urriv12S(pg)i =
ui4 (R(er) +7213(¢x)) and hence

Uit (Y] = ug i [Y]a,

where each of the elements, in [¢)],, is defined bya;, =
ki - Using (59), the geometric number € Gf?, cor-
responding to the matrix spinor operafgt is

in Go,3, but nowi’ is the oriented element of volume of the
5-dimentional pseudoeclidean spaRes.

However, the real geometric algebras of the pseudoeu-
clidean space®*! andR%% also fit the bill, as is seen in
Table | in [10, p.217]. In [11, p.326], Hestenes argues that
the geometric algebr&, ; of R*! might be an even bet-
ter choice because the even subalg@b}jq is isomorphic to
G153 in exactly the same way thmi3 is isomorphic taGs.

In the paper, “Vector Analysis of Spinors” [12], the author
explores the interpretation of a geometric Pauli spinor on the
Riemann sphere, ideas which he then generalizes in another
paper to geometric Dirac spinors in the complex geometric
algebraG;(C) [13]. These real and complex geometric alge-
bras open up many new possibilities for the interpretation of
relativistic quantum mechanics.
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4. Tensor products of geometric numbers where we are using thgubit notation

Tensor products of geometric numbers, and their correspond-
ing geometric algebras, are necessary for describing multi-
particle systems used, for example, in the construction of a
quantum computer, or even in the much simpler “double slit’and, similarly, for the definitions df0) and|11). Taking the
experiments. The resultinguantum entanglementvhich  reverseof the product statéy) @ |3) gives
implies the “spooky action-at-a distance” that even Einstein
couldn't stomach, is discussed in Sec. 5. +

By the tensor productGs @ G5 of the geometric alge- (|04> ® |ﬁ>) = (o ® (4]
bra G3 with itself, we essentially mean two distinguishable
copies of thesamegeometric algebrés;. We can express
this as

|00) :=2uy @ uy, [|01):=2uy Qequy

and

Gs ® Gs = {91 ® 92| 91,92 € Gs}. (65) (tal® (81) (1) @ 18)) = (ala)(818).
In addition, the subspace consisting of everything which
commutes with the entire algebra, called tenterof Gs,

Th t stat ts the state of t
may be identified with the complex numbers e product statén) ® |5) represents the state of two

unentangleckelectrons, where each electron is prepared in-
C = span{l,i = e1s3}. dependently, and can be measured independently. A direct
consequence of (48) is that for any values € [—1, 1] cho-
The tensor products @f;, g2, 93,94 € Gz anda, 8 € Csat-  sen, directionsi andn can always be found resulting in the
isfies the rules average values

a(gr ® g2) = (ag1) ® g2 = 91 ® (aga), (66)
(ag1 + Bg2) ® g3 = a(g1 ® g3) + B(92 ® g3),  (67)

and The state§S.) = |01) £ |10) areentangledstates. In
® ( + Bgs) = alg1 ® g2) + Blor © gs) (68) an entangled state if one of the electrons is measuredup be
g1 @ eg2 T Pg3) = g1 ¥ g2 912 93): along a given direction, then the other will definitelyd@wvn

Either the standard basis (8) or the spectral basis (13) cafithout the need for measurement. For any directiorthe
be tensored with itself to get the respectitendard basier ~ averages of the statgS..) measured in the directiona ® 1
spectral basiof the tensor algebr&; @ G; overC. By the ~ and1l ® m is 0, meaning that measurements of the first and

productof tensorsy; ® g, andgs ® g4, we mean second electrons along this direction are equally likely to be
+1. With the help of (49), we easily calculate

(ajmm|a) = s, and (B|a|8) =t.

(91 ® 92) (93 ® 94) = (9193) ® (9294)- (69)

The tensor product (65) satisfies the same algebraic rules (M ®1)[5+) = mlu) @ |1) £1m[1) © [0)
(67) and (68) as the geometric product itself. This suggests B 0 1 1
extending the tensor product to commuting copies of the geo- o (m?" )+ ] >) ®1)

metric algebras 3 of spacetime. In [14,15] the authors iden-
tify the tensor product ofV copies ofGs with commuting (
copies ofG{ , in the geometric algebr& y ;v to represent (

H_

ms|1) +m_|0)) @ |0)

the spinor operators of as-qubit quantum computer. As ex- ms|01) + m+\11>)

plained in Ref. 14, in order to get the usual tensor products of
complex matrices that is used for multi-distinguishable spin +
(1/2) particles, one must introduce a commuting idempotent
to project down to only a single set of complex numbers.

— m|10) + m_ |00>)

from which we find that

5. Non-entangled and entangled states (Salth ® 1|S4) = (<01| I <10|)

If |a) = v2(ag +aq)uy and|B) = v/2(Bo + B1)uy are nor-
malized states, then th@roduct states given by thetensor
product

lo) ® |B) = (\@(040 + 04161)U+) Y (\/5(50 + ﬁlel)u+)

(m3|01> my |11) F ms|10) £ m_|oo>)

=mgz—mg3 =0,

and a similar calculation shows th@i. |1 @ m|Sy) = 0.
= a9f5|00) + agf1[01) + a1 fo[10) + a1 Bi[11), (70)  For a further insightful discussion of these results, see [1].

Rev. Mex. Fis61(2015) 211-223



220 G. SOBCZYK

6. The Schibdinger, Pauli, and Dirac Equa- for theelectric field potential” and themagnetic fieldB =
tions —i(V A A) =V x A of a particle of mass: with electric
chargee, and where = e;,3 is the unit pseudoscalar &f;.
Spin and quantum entanglement have been studied by mamBxpanding Eq. (76), we find that
authors. The Susskind Lectures [1] give a fascinating ac- 1 o2
count, presenting clearly the issues that separate quantuihd;|a) = — ( — V2 + —2A2
and classical mechanics. Another elementary presentation is 2me ¢

given in [16]. Of course, no account of quantum mechan- +ins (VA + Av)) |y + eV |a)
ics can be complete without at least a cursory presentation of ¢
the fundamental Schdinger and Dirac equations, the foun- 1

2
_ 22y CAZ il (. :
dation upon which all of quantum mechanics is built. - 2mc< VT c? il th (V S V)

The Schidinger equation is obtained from the classical LB
expression for théotal energyH of a particle at the position - >|0‘> +eVla)

X = re; +yes + zes, This is equivalent to the classicalx 2 matrix form of this
1 1 equation,
H:fmv2+V:2—p2+V (71) dlal] 1 9
2 m ’ Lol ( e A) 77
th=g~ = 5 —(thV] + Z[A]) [a]s +eVials, (77)

wherep = p,e; + pyes + p.e3 is themomentum vectosf

the particle and V is the potential, by way of thgbstitution obtained by taking the matrix of both sides of (76) and ex-

tracting the first column, wherky] are the Pauli matrices
p — —ihV, (72) 9givenin (14) andy]» is the2-component spinor (32). The
matrix Eq. (77) can be expanded in the same way that we
whereV := V, is the standargradientwith respect to the expanded Eq. (76). See reference [17,eqn(A.4)]. The reader
positionx € R3, A = h/27 andh is Planck’s constant. The is referred to the Appendix for more technical details.

Schibdinger equation thus becomes Recall that the spinor operator (52)is= (1/v/2) (|«) +
la) 7). If |a) satisfies the Scbdinger-Pauli equation (76),
m%: — Hp = ( _ zivz + V) o, (73)  then|a)™ will satisfy the parity inversion of this equation,
m . _ 1 /. e \?2 _ _
for the Hamiltonian A = —(%/2m)V? + V, where ihdple” = 2me (th cA> @)™ +eVie)™. (78)
p:=p(x,t) e C. It then follows that the operator spingmwill satisfy the equa-
When the potential/ is independent of time, there will tion obtained by taking1/1/2) times the sum of equations
be a complete set atationary states (76) and (78), giving the parity invarient S@uinger-Pauli-
, Hestenes equation
SOn(X,t) — e—zEﬂ,(x)t/h

1 2
ihdyes = —— (mv + 9A) s
where thespatial wave functionp,, (x) satisfies thegime in- 2me ¢

o . )
dependenSchidinger equation + — (z‘hv — EA) Yu_ + eV
. 2mc c
- —V? n = En n 74 2

< 2mv + V)(p (X) ® ,(X)v ( ) _ 1 (_ h2V2 + iAg)w
. . _ _ _ 2me c?
in terms of which thdime dependerBchibdinger equation ihe
has the general solution + S(V-A42A-V)yes
2mc
p(x,t) =D copn(x)e  Ent/h, (75) __he Bi + Vi)
n 2mc? ’

[17, eqn.(1.8)].

The Schédinger equation (73) applies to all quantum
phenomena except magnetism and relativity. The magnetism
and spin of an electron are taken care of in the &dimger-

\dB3x| = dedydz is  |p(x,t)[2|d3x]. Pauli equation (76), or equivalently (77). In order to extend
gquantum mechanics to special relativity, we start with the ex-

The Schodinger equation (73) is generalized to include pression forelativistic energy( E*/c*) — p* = m*c*. Fol-
spin in theSchibdinger-Pauliequation [10,p.51]. Expressed lowing [19, (5.5)] and [10, p.136], we express the Dirac equa-

[16,p.122]. According to the Born interpretation of the wave
function, the probability of finding the particle in the in-
finitesimal volume

in terms of our spinor (26) with respecttq., tion in terms of the Dirac spinor operator (64), getting what
, is known as thd®irac-Hestenegquation
. 1 /. e
ihhla) = 5— (mv + EA) o) +eV]a)  (76) hOay — eAd = mibo, (79)
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whered = Zizo 7*(0/9z"), and an interaction with a elec- 1 18] = [(Bo + Brer)u_]
tromagnetic field is included by way of the spacetime poten- 2

. 3

t|aIA:Zu=0~y#A“. . . . 0 B\/0 O 0 &
Just like for the Stirdinger-Pauli equation (76), thotas- =\o g)lo 1) \o 4

sical Dirac equationcan be retrieved from its spinor oper-

ator form (79). First, multiply both sides of the Eq. (76) g4 theright column spino(ffl) is represented by the matrix
on the right by the primitive idempotent, ., using that Bo

U+4Y0 = Uiy ANAuii99 = duiy, and using the spec- <O A1) Unlike with ordinary2-component spinors (32),
tral basis relations (58), (59), and (60). Finally, extracting the\0

first column on each side of the resulting matrix equation, wehe full matrix [g] of a geometric numbeg € G can be

obtain recovered from the corresponding matrices of left and right
ind)lela — elAllgls = mlpla (80) ~ column spinors,
1
where[p], is the Dirac spinor (61) andl= /—1. To show g=guy +gu_ = E(M +13)°)
the full equivalence of (80) and (79), one must also show
that (80) implies (79), which is taken up in the Appendix. — (1 er) ag (1 1
In[17-19], and in many other papers, Hestenes explores new o Vi o Go) \e1/) "’

geometric features of the Dirac theory of the electron mad%’aking the matrix representation of (28), we find that
possible by the spinor operator form (79) of the Dirac equa- '

tion. [(el|8)] = 2[ut][(@o + aren)][(Bo + Bre1)][u+]
= 2(aofo + a1 51)[uy]

Appendix or
In this Appendix, we explore in greater detail how our pre- <1 0) <Oéo a1>
sentation of quantum mechanics is related to the more usual 0 0)\a1 ap
approaches. 10 _ _ 0
Multiplying the spectral basis (13) on the right by (go g1> (0 0) = (O‘Oﬁogalﬁl 0);
ut = (1/2)(1 + e3) gives thdeft spinor basis Lo
from which it follows that
1 U eju_
(o) wetenus = (%" ) (@l) = (elia)),
_(ur O _ Qofo+arfr 0\ _ _ _
= (e1u+ O) (81) =Tr < 0 g ) = @bo+af

Similarly, multiplying the spectral basis (13) on the right The matrix of the spinor operator (52) is given by

byu_ = (1/2)(1 — es) gives theright spinor basis ] = %(“aﬂ + o)1)
() et e - <§11r+ ) (90 )
@) e ()

Taking the matrix of each side of Eq. (26), we get Recalling (40)}a) = v/2aomu., the calculation (42), is

1 equivalent to the matrix calculation
ﬁ“aﬂ = [(@o + are1)uy] 1 A
5 lla){al] = agto[mlfu [im] = [a,]
ay o 1 0 ag 0 . .
“\y a/lo o/ e, 0 where the matrice@n], [u] and[a ] are specified by
m (s %)
so theleft column spinor(go) is represented by the matrix o =1 )
1
(7)) 0 .. 1 0
a1 0] The factor of(1/+/2) is inserted as a matter of [ug] = 0 0}
1
convenience in the way that we defined the Hermitian inner
product (29). Similarly, taking the matrix of each side of the [ay] = 1 (1 taz  a- > )
e;-conjugate(44), we get 2\ ar l-—as
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Analogously to (82) for the spectral basis (13) of the Paulicorresponds to the Dirac spinor (61).
algebra, we can extract any column of the spectral basis (58) The classical Dirac equation (80) is equivalent to the
of the Dirac algebra. For example, to extract the third columrDirac-Hestenes equation (79) multiplied on the righthy; ,

we multiply (58) on the right by to get

U4+ —€13U4— e3uU_ 4+ eju__
€13U4 4 Uy — (S5 —e3Uu_ _ u_
€e3U4 4+ e1Uy— U— 4 —e13U__
€Ut 4 —e3U4— €13U_ 4 U_—

0 0 e3uU_ 4
0 0 euU_4+
0 0 wu_4

0 0 €13U_ 4

OO OO

Multiplying the spinor operator (64) on the right by
we obtain

YUt = Pruq4 + P2e13U4 4 + P3€3Usy + Pa€1Ut 1,

whose spinor matrix

©1 0 0 0
s 0 0 0
[uss]=| w3 0 0 0
s 0 0 0
a; 0 0 0
| a2 000

= ag 0 0 o |Modluer)
a; 0 0 0

(ihaw —eAd — mw) wpy = 0. (83)

Taking thespacetime inversionf this equation, by replac-
ing all spacetime vectors by their negatives, gives the parity
related equation

(ihaw — A+ mzp)u,+ —0.

Two more equations are obtained, which are parity related to
(83), by taking thecomplex conjugatef both of these last
two equations, giving

(ihaw +eAy + mw) T

and
(ih@lb + eAy — m@[})u__ =0.

But the sum of these four parity related equations is exactly
the parity invarient Dirac-Hestenes equation (79).
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