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The geometric algebras of space and spacetime are derived by sucessively extending the real number system to include new mutually
anticommuting square roots of±1. The quantum mechanics of spin 1/2 particles are then expressed in these geometric algebras. Classical 2
and 4 component spinors are represented by geometric numbers which have parity, providing new insight into the familiar bra-ket formalism
of Dirac. The classical Dirac Equation is shown to be equivalent to the Dirac-Hestenes equation, so long as the issue of parity is not taken
into consideration, the latter quantity being constructed in such a way that it is parity invarient.
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1. Geometric Concept of Number

In his book “Number: The Language of Science” Tobias
Dantzig, in describing the invention of matrices has this to
say:

(It is) a theory in which a whole array of elements is
regarded as a number-individual. These “filing cabi-
nets” are added and multiplied, and a whole calculus of
matrices has been established which may be regarded
as a continuation of the algebra of complex numbers.
These abstract beings have lately found a remarkable
interpretation in the quantum theory of the atom, and
in man’s other scientific fields, [2].

We now show how these “filing cabinets” take on the
interpretation of geometric numbers in a geometric number
system calledgeometric algebra. It was William Kingdon
Clifford (1845-1879), himself, who first referred to his fa-
mous algebras asgeometric algebras, but some authors still
call these algebrasClifford algebras[3]. David Hestenes and
other theoretical physicists over the last half-century have
shown this comprehensive geometric interpretation imbues
the equations of physics with new meaning [4]. We shall re-
strict our attention to developing geometric algebras of the
plane, 3-dimensional space, and Minkowski spacetime and
their application to quantum mechanics, but the ideas apply
to higher dimensional spaces as well [5].

1.1. Geometric algebra of the plane

We extend the real number systemR to include two new an-
ticommuting square rootse1, e2 of +1, which we identify as
unit vectors along thex andy axis of the coordinate plane
R2. Thus,

e2
1 = e2

2 = 1, and e12 := e1e2 = −e2e1.

We assume that the associative and distributive laws of mul-
tiplication of real numbers remain valid in our geometrically

extended number system, and give the new quantityi := e12

the geometric interpretation of adirected plane segmentor
bivector. Note that

i 2 = e1e2e1e2 = −e2
1e

2
2 = −1

so thati has the same algebraic property as the imaginary unit
of the complex numbersC. Indeed, every unit bivector of the
n-dimensional Euclidean spaceRn shares this property and
is the generator of rotations in the vector plane of that bivec-
tor.

The Euler identity

eiθ = cos θ + i sin θ

for θ ∈ R and the unit bivectori = e12, and thehyperbolic
Euler identity

ee1φ = cosh θ + e1 sinh θ

for φ ∈ R and the unit vectore1, are easily established as
special cases of the general algebraic definition of the expo-
nential function

eX ≡
∞∑

n=0

Xn

n!
= coshX + sinh X.

In [5, Chp. 2] and [6], the author shows that the hy-
perbolic number plane, regarded as the extension of the real
number system to include a new sqrare roote1 :=

√
+1 of

+1, has much in common with the more famous complex
number plane. Since it took centuries for the complex num-
bers to be recognised as bonified numbers, I suppose that it
is not surprising that the sister hyperbolic numbers are dis-
criminated against even to this day. After all, it was Leopold
Kronecker (1823-1891) who said, “God made the integers,
all the rest is the work of man”.

Thestandard basisover the real numbers of the geomet-
ric algebraG2 := G(R2) is

G2 = span{1, e1, e2, e12}. (1)
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With respect to this basis a geometric numberg ∈ G2 can be
written

g = α + v = (a + bi) + (ce1 + de2) (2)

whereα = a + bi = reiθ behaves formally like a complex
number andv = ce1 + de2 ∈ R2 is a vector in the Euclidean
plane of the bivectori = e12. It can also be easily checked
thatvα = αv, whereα = a− βi is the (complex)conjugate
of α. It is this property that givesα the geometric significance
as the generators of rotations in the plane ofe12, [5, p.55].

Another basis ofG2, the spectral basis, gives the alge-
bra of real2 × 2 matrices the interpretation of representing
geometric numbers inG2. We write

G2 = span{
(

1
e1

)
u+(1 e1)}

= span{
(

u+ e1u−
e1u+ u−

)
}, (3)

or G2 = span{u+, e1u+, e1u−, u−}, where the idempo-
tentsu± := (1/2)(1 ± e2). The relationship between the
standard basis (1) and the spectral basis (3) is directly ex-
pressed by




1
e1

e2

e12


 =




1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0







u+

e1u+

e1u−
u−




Notinge1u+ = u−e1, it follows that

(1 e1)u+

(
1
e1

)
= u+ + e1u+e1 = u+ + u− = 1.

Using this last relationship, and the fact that

u2
+ = u+ = e2u+, and u+e1u+ = 0 = u+e12u+,

with similar relationships foru−gu+, u+gu− andu−gu−,
we calculate for the geometric numberg given in (2),

g = (1 e1)u+

(
1
e1

)
g(1 e1)u+

(
1
e1

)

= (1 e1)u+

(
α + v (α + v)e1

e1(α + v) e1(α + v)e1

)
u+

(
1
e1

)

= (1 e1)u+

(
a + d c− b
c + b a− d

)(
1
e1

)
(4)

= (a + d)u+

+ (c− b)e1u− + (c + b)e1u+ + (a− d)u−. (5)

We say that

[g] =
(

a + d c− b
c + b a− d

)

is the matrix of the geometric number

g = (a + be12) + (ce1 + de2) ∈ G2

with respect to the spectral basis (3). From (4) it follows that

g = (1 e1)u+[g]
(

1
e1

)
. (6)

The interesting thing about equation (6) is that it can be
turned around and solved directly for for the matrix of[g] of
g. To accomplish this we define thee1-conjugate ofg ∈ G2

by
ge1 := e1ge1.

Multiplying Eq. (6) on the left and right by

u+

(
1
e1

)

and
(1 e1)u+,

respectively, gives

u+

(
1
e1

)
g(1 e1)u+

= u+

(
1 e1

e1 1

)
u+[g]

(
1 e1

e1 1

)
u+ = u+[g].

By taking thee1-conjugate of the last equation, we get

u−

(
1
e1

)
ge1(1 e1)u− = u−[g].

Adding the last two equations gives the desired result

[g] = u+

(
g g e1

e1g ge1

)
u+ + u−

(
ge1 e1g
g e1 g

)
u−. (7)

Let

gk = (1 e1)u+[gk]
(

1
e1

)

where[gk] is the matrix of the geometric numbergk ∈ G2

for k = 1, 2 as given in (2), (4) and (6). The algebra of real
2 × 2 matricesMatR(2) is algebraically isomorphic to the
geometric algebraG2 because[g1 + g2] = [g1] + [g2] and
[g1g2] = [g1][g2] for all 2× 2 matrices[g1], [g2] ∈ MatR(2)
and their corresponding geometric numbersg1, g2 ∈ G2. For
example, using (6) andu+e1u+ = 0,

g1g2 = (1 e1)u+[g1]
(

1
e1

)
(1 e1)u+[g2]

(
1
e1

)

= (1 e1)[g1]
(

u+ u+e1u+

u+e1u+ u+

)
[g2]

(
1
e1

)

= (1 e1)u+[g1][g2]
(

1
e1

)
= (1 e1)u+[g1g2]

(
1
e1

)

which shows that[g1g2] = [g1][g2].
Extending the real number systemR to include the new

anticommuting square rootse1, e2 of +1 is well defined since
the resulting geometric number systemG2 is algebraically
isomorphic to the2 × 2 matrix algebraMatR(2). Indeed,
each geometric algebraGp,q is either algebraically isomor-
phic to a real or complex square matrix algebra, or matrix
subalgebra, of the appropriate dimension, [5, p.205]. Next,
we consider the case of the geometric algebraG3 of space.
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1.2. Geometric algebra of space

The geometric algebraG2 of thexy-plane inR2 can be ex-
tended to the geometric algebraG3 of the spaceR3 simply by
extendingG2 to includee3, a new square root of+1, which
anticommuteswith bothe1 ande2. Naturally,e3 has the ge-
ometric interpretation of a unit vector along thez-axis. The
standard basisof G3, with respect to thecoordinate frame
{e1, e2, e3} of the Euclidean spaceR3, is

G3 : =G(R3)=span{1, e1, e2, e3, e12, e13, e23, e123}. (8)

The elementse12, e13, e23 areunit bivectorsin thexy-, xz-,
and yz-planes and generate rotations in those planes, and
i := e123 := e1e2e3 is the unit trivector or oriented vol-
ume elementof R3. The unit trivectori also has the property
thati 2 = −1, as follows from

i 2 = e1(e2e3)e1(e2e3) = e2
1(e2e3)2 = −1.

Any geometric numberg ∈ G3 can be written in the form

g =
3∑

k=0

αkek (9)

wheree0 := 1 andαk = ak + ibk for ak, bk ∈ R and where
0 ≤ k ≤ 3. The conjugation known as thereverseg† of the
geometric numberg, is defined by reversing the orders of all
the products of the vectors that make upg, giving

g† =
3∑

k=0

αkek. (10)

In particular, writingg = s + v + B + T, the sum of a real
numbers ∈ G0

3, a vectorv ∈ G1
3, a bivectorB ∈ G2

3 and
a trivectorT ∈ G3

3, g† = s + v − B − T as can be easily
checked.

Another conjugation widely used in geometric algebra is
the grade inversion, obtained by replacing each vector in a
product by its negative. It corresponds to an inversion in the
origin, otherwise known as aparity inversion. For the geo-
metric numberg given in (9), the grade inversion is

g− := α0 −
3∑

k=1

αkek. (11)

Wheng is written in the formg = s + v + B + T, the grade
inversion takes the formg− = s− v + B−T.

Alternatively, we can obtain the geometric algebraG3 by
extending orcomplexifyingG2 to include a commuting imag-
inary i, which we subsequently identify as the unit trivector.
We write

G3=G2(i):=span{1, e1, e2, e21i, e12,−e2i, e1i, i}, (12)

and then definee3 := e21i, e13 = −e2i ande23 = e1i.

Since the unit trivectori commutes with all the elements
of G3, we can simply complexify the spectral basis (3) ofG2

to obtain the spectral basis ofG3,

G3 = span{
(

1
e1

)
u+(1 e1)}

= span{
(

u+ e1u−
e1u+ u−

)
}, (13)

where in this caseu± := (1/2)(1±e3). We can then directly
apply the analogous formulas (4), (5), (6), and (7) to elements
g ∈ G3 merely by allowing the values ofa, b, c, d to be of the
form s + it wheres, t ∈ R andi = e123. The famousPauli
matricesof the coordinate frame{e1, e2, e3} are simply ob-
tained using the spectral basis (13), withu± = (1/2)(1±e3),
getting

[e1] =
(

0 1
1 0

)
, [e2] =

(
0 −i
i 0

)

[e3] = −i[e1][e2] =
(

1 0
0 −1

)
. (14)

In this representation, the imaginary uniti acquires the
geometric interpretation of the oriented volume element in
G3, as follows from

[e123] = [e1][e2][e3] = i

(
1 0
0 1

)
. (15)

In terms of the geometric product, all other products in
the geometric algebra are defined. For example, given vec-
torsa,b ∈ G1

3 ≡ R3,

ab = a · b + a ∧ b ∈ G0+2
3 , (16)

wherea · b := (1/2)(ab + ba) ∈ R is the symmetricinner
productanda ∧ b := (1/2)(ab − ba) is the antisymmetric
outer productof the vectorsa andb, respectively. The outer
product satisfiesa∧b = i(a×b), expressing the duality rela-
tionship between the standard Gibbs-Heaviside cross product
a× b and the outer producta∧ b ∈ G2

3. In what follows the
outer producta ∧ b ∧ c of three vectors is also used. Similar
to (16), we write

a(b ∧ c) = a · (b ∧ c) + a ∧ (b ∧ c), (17)

where

a · (b ∧ c) : =
1
2
(
a(b ∧ c)− (b ∧ c)a

)

= −a× (b× c) ∈ G1
3,

and

a ∧ (b ∧ c) : =
1
2
(
a(b ∧ c) + (b ∧ c)a

)

= a · (b× c)i ∈ G3
3.
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A much more detailed treatment ofG3 is given in [5,Chp.3],
and in Ref. 7 I explore the close relationship that exists be-
tween geometric algebras and their matrix counterparts. Ge-
ometric algebra is developed in Ref. 5 as thegeometric com-
pletion of the real number system, providing a new founda-
tion for much of mathematics and physics.

1.3. Properties of idempotents and nilpotents

An idempotentp ∈ G3 has the defining propertyp2 = p.
Of course+1, 0 are idempotents, and so isp = (1/2)(1 +√

2e1 + i e2). For a general geometric numberg = ω +m+
in ∈ G3 to be an idempotent, we must have

g2 = ω2 + m2 − n2 + 2im · n
+ 2ω(m + in) = ω + m + in, (18)

or equivalently,

ω2 + m2 − n2 + 2im · n = ω

and
(2ω − 1)(m + in) = 0.

If m + in 6= 0, it follows thatω = (1/2), m · n = 0, and
m2 − n2 = (1/4). Equivalently, a geometric numberA, not
equal to0 or 1, is an idempotent iff

A =
1
2
(1 + m + in), where

m2 − n2 = 1, and m · n = 0, (19)

for m,n ∈ G1
3. It follows immediately that any idempotent

A has the important cannonical form

A =
1
2
(1 + m + in) = m

1
2
(1 + m−1 + im−1n)

= m
1
2
(1 + â) = mâ+, (20)

whereâ = m−1 + im−1n ∈ G1
3, â+ = (1/2)(1 + â) and

â ·m = 1. We use the notation̂a± = (1/2)(1 ± â) for the
mutually annihiliating idempotentŝa+ andâ−.

For the idempotentŝa±, note that

ââ+ = â+ and ââ− = −â−.

Because of these properties, we would like to identifyâ± as
the twopure eigenprojector spin statesof an electron. Unfor-
tunately, as is discussed in the next section, this is not quite
correct.

Given a second idempotentb̂+, we calculate

2〈â+b̂+〉0 =
1
2
〈(1 + â)(1 + b̂)〉0

=
1
2
(1 + â · b̂), (21)

where〈 〉0 denotes real scalar part of the enclosed expres-
sion, and usinga·b = 〈ab〉0 that we found in (16). A closely
related calculation givesalmostthe same answer

(â+b̂+)†(â+b̂+) = (b̂+â+)(â+b̂+) = b̂+â+b̂+

=
b̂+

4
(1 + â)(1 + b̂) =

b̂+

4
(1 + â + b̂ + âb̂)

=
b̂+

4
(1 + â + b̂− b̂â + 2â · b̂) =

1
2
(1 + â · b̂)b̂+,

but multiplied by the idempotent̂b+. In summary,

(â+b̂+)†(â+b̂+) = b̂+â+b̂+ = Prob(â+|b̂+)b̂+, (22)

whereProb(â+|b̂+) := (1/2)(1+ â ·b̂) and(g1g2)† = g†2g
†
1

for all g1, g2 ∈ G3 is the operation of reverse defined in (10).
Another important property that easily follows is

b̂+mb̂+ =
1
2
b̂+m(1 + b̂)

=
1
2
b̂+(m− b̂m + 2b̂ · â) = (b̂ ·m)b̂+. (23)

A geometric numberg is anilpotentif g2 = 0. A similar
analysis to (18) for a general idempotent shows that a nilpo-
tentN has the canonical form

N =
1
2
(r + i s) = r

1
2
(1 + i r−1s) = rn̂+ = n̂−r, (24)

wheren̂ := i r−1s ∈ G1
3 for the orthogonal vectorsr · s = 0

andr2 = s2. Thus, every nilpotentN has associated with it
a corresponding idempotentn̂+.

2. Quantum mechanics of spin

The observablecorresponding to thespin of an electron in
a coordinate frame{e1, e2, e3} is a unit vectorm̂ = m1e1

+m2e2 +m3e3 in the Euclidean spaceR3 of that frame. The
Hermitian matrixof the observablêm is

[m̂] =
(

m3 m1 − im2

m1 + im2 −m3

)
=

(
m3 m−
m+ −m3

)
,

as given in (13) and (14), withu± = (1/2)(1 ± e3) and
m± = m1 ± im2, where

m̂ = (1 e1)u+[m̂]
(

1
e1

)

= m3u+ + m−e1u− + m+e1u+ −m3u−. (25)

By a geometric spinor |α〉 with respect to
u+ = (1/2)(1 + e3), we mean

|α〉 :=
√

2(α0 + α1e1)u+ ⇐⇒ 〈α|
:= |α〉† =

√
2u+(α0 + α1e1) (26)

whereα0, α1 ∈ G0+3
3 . The spinor|α〉 is said to benon-

degenerateif in addition α0α0 + α1α1 6= 0. Spinors have
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the importantsuperposition propertythat if |α〉 and |β〉 are
spinors with respect tou+ then

|ω〉 := λ1|α〉+ λ2|β〉 for λ1, λ2 ∈ G0+3
3 (27)

is also a spinor with respect tou+. This is precisely the prop-
erty that naked idempotentsm+,n+ do not have.

Given two spinors|α〉 and|β〉, the geometric product

〈α||β〉 = 2u+(α0 + α1e1)(β0 + β1e1)u+

= 2(α0β0 + α1β1)u+ (28)

is also a spinor. Theinner product〈α|β〉 is defined to be the
scalar and pseudoscalar parts of the geometric product of the
spinors,

〈α|β〉 :=
〈
〈α||β〉

〉
0+3

= α0β0 + α1β1. (29)

An important observation which will be used later is that
〈(〈α||β〉)†(〈α||β〉)

〉
0+3

= 2〈α|β〉〈α|β〉, (30)

as can be easily verified. The spinor|α〉 is said to be anor-
malized spinorif

〈α|α〉 = α0α0 + α1α1 = 1. (31)

Traditionally, a2-component column spinor is

[α]2 :=
(

α0

α1

)
where α0, α1 ∈ C. (32)

In general, for a spinor|α〉 :=
√

2(α0 + α1e1)u+ with
α0 6= 0, we can write

|α〉 =
√

2α0

(
1 +

α1

α0
e1

)
u+ =

√
2α0A (33)

for A =
(
1 + (α1/α0)e1

)
u+. It is easily checked thatA is

an idempotent, so thatA can be expressed in the cannonical
form (20),

A =
1
2

(
1 +

α1

α0
e1 − i

α1

α0
e2 + e3

)

=
1
2
(1 + m + in) = m

1
2
(1 + â) = mu+, (34)

sinceâ = (m + imn/m2) = e3. Another closely related
canonical form for the idempotentA, with the help of (23), is

A = mu+ = mm̂m̂u+mu+ = m2â+u+, (35)

where we have redefined the unit vectorâ := m̂e3m̂.
All of the above quantities can be expressed in terms of

α0 andα1. We find that

m =
1

2α0α0

(
(α1α0 + α0α1)e1

+ i(α0α1 − α1α0)e2

)
+ e3, (36)

n =
1

2α0α0

(
i(α0α1 − α1α0)e1

− (α0α1 + α1α0)e2

)
, (37)

and the unit vector̂a = m̂e3m̂ = a1e1 + a2e2 + a3e3 is
specified by

a1 =
α0α1 + α0α1

α0α0 + α1α1
, a2 =

i(α0α1 − α1α0)
α0α0 + α1α1

,

a3 =
α0α0 − α1α1

α0α0 + α1α1
. (38)

For a normalized spinor (31),

m2 =
2

1 + â · e3
=

α0α0 + α1α1

α0α0
=

1
α0α0

. (39)

Using the above information (34) and (35) for the idem-
potentA, the spinor|α〉 takes the canonical form

|α〉 =
√

2α0A =
√

2α0mu+ =
√

2α0m2â+u+. (40)

The matrix[â+] of â+ is thedensity matrixof the pure state
|α〉. By taking the reverse of the spinor equation (40), we get

〈α| =
√

2α0u+m =
√

2α0m2u+â+, (41)

and find that

1
2
|α〉〈α| = α0α0m2m̂u+m̂ = â+. (42)

It is interesting to note that aCartan spinoris specifed by

|α〉e1|α〉∗ = |α〉e1〈α|−

= (α2
0 − α2

1)e1 + i(α2
0 + α2

1)e2 − 2α0α1e3

= −α0

α0
m̂(e1 + ie2)m̂ = − 2

α2
0

â+m̂e1m̂

and represents a null complex vector, [8,p.41].
There are several other operations on spinors which are

important. By multiplying the spinor equation (40) on the
left and right bye3, we find that

|α〉e3 : = e3|α〉e3 =
√

2α0e3me3u+

=
√

2α0m2e3â+e3u+. (43)

Multiplying the spinor equation (40) on the left and right
by e1, we get

|α〉e1 : = e1|α〉e1 =
√

2α0e1me1u−

=
√

2α0m2e1â+e1u−. (44)

The spinor|α〉e3 is called thee3-conjugateof |α〉, and
the spinor|α〉e1 is called thee1-conjugateof |α〉. Using (11)
and (40) thegrade inversion|α〉− of the spinor|α〉 ∈ G3 is

|α〉− : =
√

2
(
(α0 + α1e1)u+

)−
=
√

2(α0 − α1e1)u−

= −
√

2α0mu− =
√

2α0m
2â−u−. (45)
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Given normalized spinors|α〉, |β〉, we calculate with the
help of (40) and (23),

〈α|β〉 = 2αβ0u+mnu+

= 2α0β0

(
m · n + i(m× n) · e3

)
u+ = 0

iff m ·n = 0 and(m×n) ·e3 = 0. Expressed in terms of the
associated spinor directionŝm, n̂, the inner product〈α|β〉 is
quite different than the component expression (29). A great
simplification occurs when we calculate〈α|β〉〈α|β〉, finding
with the help of (30) and (39),

〈α|β〉〈α|β〉 =
1
2

〈(〈α||β〉)†(〈α||β〉)
〉

0+3

=
1
2

〈
〈β|(|α〉〈α|)|β〉

〉
0+3

=
〈
〈β|â+|β〉

〉
0+3

=
1
2
(1 + â · b̂).

Given an observablêa, suppose that an electron has been
prepared in the pure spin state|α〉. Then the probability of
finding the electron in the pure spin state|β〉 is

Prob(|α〉, |β〉) : = 〈α|β〉〈α|β〉

=
1
2
(1 + â · b̂) = 2〈â+b̂+〉0, (46)

just as we have already seen in (21) and (22). Immediately
after the measurment is carried out, the electron will be in the
pure state|β〉. Identity (46) is independent of the basis spinor
u+ that was used in the definition (26) of the spinors|α〉 and
|β〉. Clearly, the spinor states|α〉 and|β〉 areorthogonaliff
â = −b̂.

Given a spinor state|α〉, theaverage valueof the observ-
ableb̂ in that state is defined by〈α|b̂|α〉. Using (22), (23),
(39), (40), we calculate

b̂|α〉 =
√

2α0b̂mu+ =
√

2α0(b̂ ·m + b̂ ∧m)u+, (47)

and

〈α|b̂|α〉 : = 2〈u+(m̂b̂m̂)u+〉0+3 = (m̂b̂m̂) · e3

= b̂ · (m̂e3m̂) = b̂ · â. (48)

It follows that the average value lies in between the values
±1. It is important to note that the final values in both (46)
and (48) in no way depend upon the idempotentu+, sou+

could be replaced by any other idempotentĉ+ defined by any
unit vectorĉ, but we would then also have to redefine|α〉.

In the special cases where

|α〉 = |0〉 :=
√

2u+ or |α〉 = |1〉 :=
√

2e1u+,

we have

b̂|0〉 =
√

2(b3 + b+e1)u+ and

b̂|1〉 =
√

2(b− − b3e1)u+. (49)

Using (48) and (49), we also calculate

〈0|b̂|0〉 = b3, and 〈1|b̂|1〉 = −b3, (50)

and

〈1|b̂|0〉 = b+ = b1 + ib2, and

〈0|b̂|1〉 = b− = b1 − ib2. (51)

Often an electron in the spinor state|0〉 =
√

2u+ is said to be
up, and an electron in the spinor state|1〉 =

√
2e1u+ is said

to bedown. Using (50), the average value of the observable
b̂ in the state|0〉 is b3, and the average value ofb̂ in the state
|1〉 is−b3.

We can also carry out the above calculation using spinor
operators. Following [10,p.63], given the spinor|α〉, the
spinor operatorψ of |α〉 is defined by

ψ : =
1√
2

(
|α〉+ |α〉−

)

= m(α0u+ − α0u−) ∈ SU(2), (52)

where the inversion|α〉− has been defined in (45). The spinor
operator is an even multivector inG+

3 and hence invarient un-
der a parity swap. It retains the normalization property that
ψψ† = det[ψ] = 1, and allows us to calculate the associated
directionâ of |α〉 as a rotation of the unit vectore3. With the
help of (22), (38) and (52), we find that

ψe3ψ
† = m(α0u+ − α0u−)e3(α0u+ − α0u−)m

= m(α0u+ + α0u−)(α0u+ − α0u−)m

= α0α0m2m̂(u+ − u−)m̂ = â, (53)

and also

ψu+ψ† =
1
2
ψ(1 + e3)ψ† = â+. (54)

The relationship (54) should be compared with (42).

3. Geometric algebra of spacetime

The geometric algebraG3 of the coordinate frame
{e1, e2, e3} in R3 can be extended to the geometric alge-
bra G1,3 of the pseudoeuclidean spaceR1,3 of Minkowski
spacetime, by extendingG3 by an additional square rootγ0

of +1 which anticommuteswith each of the space vectors
e1, e2, e3. So γ0 satisfiesγ2

0 = 1 andγ0ek = −ekγ0 for
k = 1, 2, 3. Equivalently, thespacelike vectors

γk := ekγ0 ⇐⇒ ek = γkγ0 = γk0,

together with thetimelike vectorγ0, define thespacetime al-
gebra

G1,3 = gen{γ0, γ1, γ2, γ3}
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of the orthonormal spacetime frame{γµ| 0 ≤ µ ≤ 3} in
R1,3. In summary, the spacetime vectors obey the rules

γ2
0 = 1, γ2

k = −1, γµγν = −γνγµ

for µ 6= ν, µ, ν = 0, 1, 2, 3, andk = 1, 2, 3. Note also that
pseudoscalar

γ0123 = γ10γ20γ30 = e123

of G1,3 is the same as the pseudoscalar of therest frame
{e1, e2, e3} of G3, and it anticommutes with each of the
spacetime vectorsγµ for µ = 0, 1, 2, 3.

The forgoing shows that the geometric algebraG3 is nat-
urally isomorphic to theeven subalgebraG+

1,3 of the space-
time algebraG1,3 generated by the bivectorsγµγν of G1,3,
[9]. Any elementg ∈ G1,3 can be expressed in the form
g = G1 + G2γ0 whereG1, G2 ∈ G3. In particular, a unit
vectorm̂ = m1e1 + m2e2 + m3e3 in the geometric algebra
G3 of the rest frame{e1, e2, e3} becomes the unit spacetime
bivector

m̂ = (m1γ1 + m2γ2 + m3γ3)γ0 ∈ G2
1,3,

with the spacelike vectorm1γ1 + m2γ2 + m3γ3 ∈ G1
1,3 as a

factor.
In the above, we have carefully distinguished the rest

frame {e1, e2, e3} in the spacetime algebraG1,3. Any
other rest frame{e′1, e′2, e′3} can be obtained by an ordi-
nary space rotation of the rest frame{e1, e2, e3} followed
by a Lorentz boost. In the spacetime algebraG1,3, this
is equivalent to defining a new frame of spacetime vectors
{γ ′µ| 0 ≤ µ ≤ 3} ⊂ G1,3, and the corresponding rest frame
{e′k = γ ′kγ ′0| k = 1, 2, 3} of a Euclidean spaceR3′ moving
with respect to the Euclidean spaceR3 defined by the rest
frame {e1, e2, e3}. The way we introduced the geometric
algebrasG3 andG1,3 may appear novel, but they perfectly
reflect all the common relativistic concepts [5,Chp.11].

The well-knownDirac matricescan be obtained as a sub-
algebra of the4×4 matrix algebraMatC(4) over the complex
numbers. We first define the idempotent

u++ : =
1
4
(1 + γ0)(1 + iγ12)

=
1
4
(1 + iγ12)(1 + γ0), (55)

where the unit imaginaryi =
√−1 is assumed to com-

mute with all elements ofG1,3. Whereas it would be nice
to identify this unit imaginaryi with the pseudoscalar ele-
mentγ0123 = e123 as we did inG3, this is no longer possible
sinceγ0123 anticommutes with the spacetime vectorsγµ as
previously mentioned.

Noting that

γ12 = γ1γ0γ0γ2

= e2e1 = e21

and similarlyγ31 = e13, it follows that

e13u++ = u+−e13, e3u++

= u−+e3, e1u++ = u−−e1, (56)

where

u+− : =
1
4
(1 + γ0)(1− iγ12),

u−+ : =
1
4
(1− γ0)(1 + iγ12),

u−− : =
1
4
(1− γ0)(1− iγ12).

The idempotentsu++, u+−, u−+, u−− aremutually anni-
hiliating in the sense that the product of any two of them is
zero, andpartition unity

u++ + u+− + u−+ + u−− = 1. (57)

By thespectral basisof the Dirac algebraG1,3 we mean
the elements of the matrix



1
e13

e3

e1


 u++(1 − e13 e3 e1)

=




u++ −e13u+− e3u−+ e1u−−
e13u++ u+− e1u−+ −e3u−−
e3u++ e1u+− u−+ −e13u−−
e1u++ −e3u+− e13u−+ u−−


 . (58)

Any geometric numberg ∈ G1,3 can be written in the
form

g = (1 e13 e3 e1)u++[g]




1
−e13

e3

e1


 (59)

where[g] is theDirac matrix corresponding to the geometric
numberg. In particular,

[γ0] =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 ,

[γ1] =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 , (60)

and

[γ2] =




0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0


 ,

[γ3] =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 .
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It is interesting to see what the representation is of the
basis vectors ofG3. We find that fork = 1, 2, 3,

[ek]4 = [γk][γ0] =
(

[0]2 [ek]2
[ek]2 [0]2

)
and

[e123]4 = i

(
[0]2 [1]2
[1]2 [0]2

)
,

where the outer subscripts denote the order of the matrices
and, in particular,[0]2, [1]2 are the2× 2 zero and unit matri-
ces, respectively. The last relationship shows that thei occur-
ing in the Pauli matrix representation (15), which represents
the oriented unit of volume, is different than thei =

√−1
which occurs in the complex matrix representation (60) of
the of Dirac algebra.

A Dirac spinor is a4-component column matrix[ϕ]4,

[ϕ]4 :=




ϕ1

ϕ2

ϕ3

ϕ4


 for ϕk ∈ C. (61)

Following [10,p.143], we use the Dirac spinor to construct
the (matrix)spinor operator

[ψ] =




ϕ1 −ϕ2 ϕ3 ϕ4

ϕ2 ϕ1 ϕ4 −ϕ3

ϕ3 ϕ4 ϕ1 −ϕ2

ϕ4 −ϕ3 ϕ2 ϕ1


 . (62)

Unlike the Dirac spinor[ϕ]4, the spinor operator[ψ] is invert-
ible iff det[ψ] 6= 0. We find that

det[ψ] = r2 + 4a2 ≥ 0, (63)

where

r = |ϕ1|2 + |ϕ2|2 − |ϕ3|2 − |ϕ4|2 and

a = = (
ϕ1ϕ3 + ϕ2ϕ4

)
.

Where-as the spinor operator[ψ] obviously contains the
same information as the Dirac spinor[ϕ]4, we will shortly
see that it acquires the geometric interpretation of an even
multivector inG+

1,3.
Noting that

u++γ21 =
1
4
(1 + γ0)(γ21 + iγ12γ21)

=
1
4
(1 + γ0)(i− γ12) = iu++ = γ21u++,

it follows that u++ϕk = u++<(ϕk) + u++iγ12=(ϕk)i =
u++

(<(ϕk) + γ21=(ϕk)
)

and hence

u++[ψ] = u++[ψ]α,

where each of the elementsαk in [ψ]α is defined byαk =
ϕk|i→γ21 . Using (59), the geometric numberψ ∈ G+

1,3 cor-
responding to the matrix spinor operator[ψ] is

ψ = (1 e13 e3 e1)u++[ψ]α




1
−e13

e3

e1




= α1 + α2e13 + α3e3 + α4e1 ∈ G+
1,3. (64)

To establish the last equality above, with the help of (57),
note that

ψ = ψu++ + ψu+− + ψu−+ + ψu−−,

and then succesively show that

ψu±± =
(
α1 + α2e13 + α3e3 + α4e1

)
u±±,

for each of different sign combinations++, +−,−+,−−.
As an even geometric number inG+

1,3, ψ generates
Lorentz boosts in addition to ordinary rotations in the
Minkowski spaceR1,3. The amazing property of (64) is
that where as we started by formally introducing the com-
plex numberi =

√−1, in order to represent the Dirac
gamma matrices, we have ended up with a spinor operator
ψ ∈ G+

1,3 in which the role ofi =
√−1 is taken over by

the γ21 = e12 ∈ G3. This is the key idea in the Hestenes
representation of theDirac equation[18].

Although we have formally eliminated the need for the
artificial i =

√−1 in the Dirac spinor by replacing it with
the bivectorγ21 = e12 in the spinor operator, such a quan-
tity occuring in a real geometric algebra is unacceptable.
The imaginaryi =

√−1 has the effect ofcomplexifying
the geometric algebraG1,3 to the complex geometric alge-
braG4(C)=̃Mat4(C), [10,p.217]. We might, instead, search
for a larger real geometric algebra containing the geometric
algebraG1,3, just as we enlarged the geometric algebraG3

of space to the geometric algebraG1,3 of spacetime. The
real geometric algebraG2,3, obtained from the geometric
algebraG1,3 by assuming the existence of a new timelike
vector γ ′0 which anticommutes with all the spacetime vec-
torsγµ ∈ G1,3, has the required properties. Theunit pseu-
doscalari ′ := γ ′0γ0γ1γ2γ3 ∈ G2,3 has all the desired alge-
braic properties of the imaginaryi =

√−1, commuting with
all the elements ofG1,3 and having square−1. All of the pre-
vious arguments in the complex algebraG4(C) remain valid
in G2,3, but nowi ′ is the oriented element of volume of the
5-dimentional pseudoeclidean spaceR2,3.

However, the real geometric algebras of the pseudoeu-
clidean spacesR4,1 andR0,5 also fit the bill, as is seen in
Table I in [10, p.217]. In [11, p.326], Hestenes argues that
the geometric algebraG4,1 of R4,1 might be an even bet-
ter choice because the even subalgebraG+

4,1 is isomorphic to
G1,3 in exactly the same way thatG+

1,3 is isomorphic toG3.
In the paper, “Vector Analysis of Spinors” [12], the author
explores the interpretation of a geometric Pauli spinor on the
Riemann sphere, ideas which he then generalizes in another
paper to geometric Dirac spinors in the complex geometric
algebraG3(C) [13]. These real and complex geometric alge-
bras open up many new possibilities for the interpretation of
relativistic quantum mechanics.
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4. Tensor products of geometric numbers

Tensor products of geometric numbers, and their correspond-
ing geometric algebras, are necessary for describing multi-
particle systems used, for example, in the construction of a
quantum computer, or even in the much simpler “double slit”
experiments. The resultingquantum entanglement, which
implies the “spooky action-at-a distance” that even Einstein
couldn’t stomach, is discussed in Sec. 5.

By the tensor productG3 ⊗ G3 of the geometric alge-
braG3 with itself, we essentially mean two distinguishable
copies of thesamegeometric algebraG3. We can express
this as

G3 ⊗G3 = {g1 ⊗ g2| g1, g2 ∈ G3}. (65)

In addition, the subspace consisting of everything which
commutes with the entire algebra, called thecenterof G3,
may be identified with the complex numbers

C ≡ span{1, i = e123}.
The tensor products ofg1, g2, g3, g4 ∈ G3 andα, β ∈ C sat-
isfies the rules

α(g1 ⊗ g2) = (αg1)⊗ g2 = g1 ⊗ (αg2), (66)

(αg1 + βg2)⊗ g3 = α(g1 ⊗ g3) + β(g2 ⊗ g3), (67)

and

g1 ⊗ (αg2 + βg3) = α(g1 ⊗ g2) + β(g1 ⊗ g3). (68)

Either the standard basis (8) or the spectral basis (13) can
be tensored with itself to get the respectivestandard basisor
spectral basisof the tensor algebraG3 ⊗ G3 overC. By the
productof tensorsg1 ⊗ g2 andg3 ⊗ g4, we mean

(
g1 ⊗ g2

)(
g3 ⊗ g4

)
= (g1g3)⊗ (g2g4). (69)

The tensor product (65) satisfies the same algebraic rules
(67) and (68) as the geometric product itself. This suggests
extending the tensor product to commuting copies of the geo-
metric algebraG1,3 of spacetime. In [14,15] the authors iden-
tify the tensor product ofN copies ofG3 with commuting
copies ofG+

1,3 in the geometric algebraGN,3N to represent
the spinor operators of anN -qubit quantum computer. As ex-
plained in Ref. 14, in order to get the usual tensor products of
complex matrices that is used for multi-distinguishable spin
(1/2) particles, one must introduce a commuting idempotent
to project down to only a single set of complex numbers.

5. Non-entangled and entangled states

If |α〉 =
√

2(α0 +α1)u+ and|β〉 =
√

2(β0 +β1)u+ are nor-
malized states, then theproduct stateis given by thetensor
product

|α〉 ⊗ |β〉 =
(√

2(α0 + α1e1)u+

)
⊗

(√
2(β0 + β1e1)u+

)

= α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉, (70)

where we are using thequbitnotation

|00〉 := 2u+ ⊗ u+, |01〉 := 2u+ ⊗ e1 u+

and, similarly, for the definitions of|10〉 and|11〉. Taking the
reverseof the product state|α〉 ⊗ |β〉 gives

(
|α〉 ⊗ |β〉

)†
= 〈α| ⊗ 〈β|

and
(
〈α| ⊗ 〈β|

)(
|α〉 ⊗ |β〉

)
:= 〈α|α〉〈β|β〉.

The product state|α〉 ⊗ |β〉 represents the state of two
unentangledelectrons, where each electron is prepared in-
dependently, and can be measured independently. A direct
consequence of (48) is that for any valuess, t ∈ [−1, 1] cho-
sen, directionŝm andn̂ can always be found resulting in the
average values

〈α|m̂|α〉 = s, and 〈β|n̂|β〉 = t.

The states|S±〉 = |01〉 ± |10〉 areentangledstates. In
an entangled state if one of the electrons is measured to beup
along a given direction, then the other will definitely bedown
without the need for measurement. For any directionm̂, the
averages of the states|S±〉measured in the directionŝm⊗ 1
and1 ⊗ m̂ is 0, meaning that measurements of the first and
second electrons along this direction are equally likely to be
±1. With the help of (49), we easily calculate

(m̂⊗ 1)|S±〉 = m̂|u〉 ⊗ |1〉 ± m̂|1〉 ⊗ |0〉

=
(
m3|0〉+ m+|1〉

)
⊗ |1〉

±
(
−m3|1〉+ m−|0〉

)
⊗ |0〉

=
(
m3|01〉+ m+|11〉

)

±
(
−m3|10〉+ m−|00〉

)
,

from which we find that

〈S±|m̂⊗ 1|S±〉 =
(
〈01| ± 〈10|

)

(
m3|01〉+ m+|11〉 ∓m3|10〉 ±m−|00〉

)

= m3 −m3 = 0,

and a similar calculation shows that〈S±|1 ⊗ m̂|S±〉 = 0.
For a further insightful discussion of these results, see [1].
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6. The Schr̈odinger, Pauli, and Dirac Equa-
tions

Spin and quantum entanglement have been studied by many
authors. The Susskind Lectures [1] give a fascinating ac-
count, presenting clearly the issues that separate quantum
and classical mechanics. Another elementary presentation is
given in [16]. Of course, no account of quantum mechan-
ics can be complete without at least a cursory presentation of
the fundamental Schrödinger and Dirac equations, the foun-
dation upon which all of quantum mechanics is built.

The Schr̈odinger equation is obtained from the classical
expression for thetotal energyH of a particle at the position
x = xe1 + ye2 + ze3,

H =
1
2
mv2 + V =

1
2m

p2 + V, (71)

wherep = pxe1 + pye2 + pze3 is themomentum vectorof
the particle and V is the potential, by way of thesubstitution

p → −i~∇, (72)

where∇ := ∇x is the standardgradientwith respect to the
positionx ∈ R3, ~ = h/2π andh is Planck’s constant. The
Schr̈odinger equation thus becomes

i~
∂ϕ

∂t
= Ĥϕ =

(
− ~

2m
∇2 + V

)
ϕ, (73)

for the Hamiltonian Ĥ = −(~/2m)∇2 + V , where
ϕ := ϕ(x, t) ∈ C.

When the potentialV is independent of time, there will
be a complete set ofstationary states

ϕn(x, t) = e−iEn(x)t/~

where thespatial wave functionϕn(x) satisfies thetime in-
dependentSchr̈odinger equation

(
− ~

2m
∇2 + V

)
ϕn(x) = Enϕn(x), (74)

in terms of which thetime dependentSchr̈odinger equation
has the general solution

ϕ(x, t) =
∑

n

cnϕn(x)e−iEnt/~, (75)

[16,p.122]. According to the Born interpretation of the wave
function, the probability of finding the particle in the in-
finitesimal volume

|d3x| = dxdydz is |ϕ(x, t)|2|d3x|.

The Schr̈odinger equation (73) is generalized to include
spin in theSchr̈odinger-Pauliequation [10,p.51]. Expressed
in terms of our spinor (26) with respect tou+,

i~∂t|α〉 =
1

2mc

(
i~∇+

e

c
A

)2

|α〉+ eV |α〉 (76)

for theelectric field potentialV and themagnetic fieldB =
−i(∇ ∧A) = ∇ ×A of a particle of massm with electric
chargee, and wherei = e123 is the unit pseudoscalar ofG3.
Expanding Eq. (76), we find that

i~∂t|α〉 =
1

2mc

(
− ~2∇2 +

e2

c2
A2

+ i~
e

c

(∇A + A∇))|α〉+ eV |α〉

=
1

2mc

(
− ~2∇2 +

e2

c2
A2 + i~

e

c

(∇ ·A + 2A · ∇)

− ~e

c
B

)
|α〉+ eV |α〉

This is equivalent to the classical2 × 2 matrix form of this
equation,

i~
∂[α]2
∂t

=
1

2mc

(
i~[∇] +

e

c
[A]

)2

[α]2 + eV [α]2, (77)

obtained by taking the matrix of both sides of (76) and ex-
tracting the first column, where[ek] are the Pauli matrices
given in (14) and[ϕ]2 is the2-component spinor (32). The
matrix Eq. (77) can be expanded in the same way that we
expanded Eq. (76). See reference [17,eqn(A.4)]. The reader
is referred to the Appendix for more technical details.

Recall that the spinor operator (52) isψ = (1/
√

2)
(|α〉+

|α〉−)
. If |α〉 satisfies the Schrödinger-Pauli equation (76),

then|α〉− will satisfy the parity inversion of this equation,

−i~∂t|α〉− =
1

2mc

(
i~∇− e

c
A

)2

|α〉− + eV |α〉−. (78)

It then follows that the operator spinorψ will satisfy the equa-
tion obtained by taking(1/

√
2) times the sum of equations

(76) and (78), giving the parity invarient Schrödinger-Pauli-
Hestenes equation

i~∂tψe3 =
1

2mc

(
i~∇+

e

c
A

)2

ψu+

+
1

2mc

(
i~∇− e

c
A

)2

ψu− + eV ψ

=
1

2mc

(
− ~2∇2 +

e2

c2
A2

)
ψ

+
i~e

2mc2

(∇ ·A + 2A · ∇)
ψe3

− ~e
2mc2

Bψ + eV ψ,

[17, eqn.(1.8)].
The Schr̈odinger equation (73) applies to all quantum

phenomena except magnetism and relativity. The magnetism
and spin of an electron are taken care of in the Schrödinger-
Pauli equation (76), or equivalently (77). In order to extend
quantum mechanics to special relativity, we start with the ex-
pression forrelativistic energy(E2/c2) − p2 = m2c2. Fol-
lowing [19, (5.5)] and [10, p.136], we express the Dirac equa-
tion in terms of the Dirac spinor operator (64), getting what
is known as theDirac-Hestenesequation

~∂ψγ21 − eAψ = mψγ0, (79)
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where∂ =
∑3

µ=0 γµ(∂/∂xµ), and an interaction with a elec-
tromagnetic field is included by way of the spacetime poten-
tial A =

∑3
µ=0 γµAµ.

Just like for the Shr̈odinger-Pauli equation (76), theclas-
sical Dirac equationcan be retrieved from its spinor oper-
ator form (79). First, multiply both sides of the Eq. (76)
on the right by the primitive idempotentu++, using that
u++γ0 = u++ andu++γ21 = iu++, and using the spec-
tral basis relations (58), (59), and (60). Finally, extracting the
first column on each side of the resulting matrix equation, we
obtain

i~[∂][ϕ]4 − e[A][ϕ]4 = m[ϕ]4 (80)

where[ϕ]4 is the Dirac spinor (61) andi =
√−1. To show

the full equivalence of (80) and (79), one must also show
that (80) implies (79), which is taken up in the Appendix.
In [17-19], and in many other papers, Hestenes explores new
geometric features of the Dirac theory of the electron made
possible by the spinor operator form (79) of the Dirac equa-
tion.

Appendix

In this Appendix, we explore in greater detail how our pre-
sentation of quantum mechanics is related to the more usual
approaches.

Multiplying the spectral basis (13) on the right by
u+ = (1/2)(1 + e3) gives theleft spinor basis

(
1
e1

)
u+(1 e1)u+ =

(
u+ e1u−

e1u+ u−

)
u+

=
(

u+ 0
e1u+ 0

)
(81)

Similarly, multiplying the spectral basis (13) on the right
by u− = (1/2)(1− e3) gives theright spinor basis

(
1
e1

)
u+(1 e1)u− =

(
u+ e1u−

e1u+ u−

)
u−

=
(

0 e1u−
0 u−

)
. (82)

Taking the matrix of each side of Eq. (26), we get

1√
2
[|α〉] = [(α0 + α1e1)u+]

=
(

α0 α1

α1 α0

)(
1 0
0 0

)
=

(
α0 0
α1 0

)

so theleft column spinor

(
α0

α1

)
is represented by the matrix

(
α0 0
α1 0

)
. The factor of(1/

√
2) is inserted as a matter of

convenience in the way that we defined the Hermitian inner
product (29). Similarly, taking the matrix of each side of the
e1-conjugate(44), we get

1√
2
[|β〉e1 ] = [(β0 + β1e1)u−]

=
(

0 β1

0 β0

)(
0 0
0 1

)
=

(
0 β1

0 β0

)

so theright column spinor

(
β1

β0

)
is represented by the matrix

(
0 β1

0 β0

)
. Unlike with ordinary2-component spinors (32),

the full matrix [g] of a geometric numberg ∈ G3 can be
recovered from the corresponding matrices of left and right
column spinors,

g = gu+ + gu− =
1√
2
(|α〉+ |β〉e1)

= (1 e1)u+

(
α0 β1

α1 β0

)(
1
e1

)
.

Taking the matrix representation of (28), we find that

[〈α||β〉] = 2[u+][(α0 + α1e1)][(β0 + β1e1)][u+]

= 2(α0β0 + α1β1)[u+]

or (
1 0
0 0

) (
α0 α1

α1 α0

)

(
β0 β1

β1 β0

)(
1 0
0 0

)
=

(
α0β0 + α1β1 0

0 0

)
,

from which it follows that

〈α|β〉 =
〈
[〈α||β〉]

〉
0+3

= Tr

(
α0β0 + α1β1 0

0 0

)
= α0β0 + α1β1.

The matrix of the spinor operator (52) is given by

[ψ] =
1√
2

(
[|α〉] + [|α〉−]

)

=
(

α0 0
α1 0

)
+

(
0 −α1

0 α0

)

=
(

α0 −α1

α1 α0

)

Recalling (40),|α〉 =
√

2α0mu+, the calculation (42), is
equivalent to the matrix calculation

1
2
[|α〉〈α|] = α0α0[m][u+][m] = [â+]

where the matrices[m], [u+] and[â+] are specified by

[m] =
(

1 α1
α0

α1
α0

−1

)
,

[u+] =
(

1 0
0 0

)
,

[â+] =
1
2

(
1 + a3 a−

a+ 1− a3

)
.
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Analogously to (82) for the spectral basis (13) of the Pauli
algebra, we can extract any column of the spectral basis (58)
of the Dirac algebra. For example, to extract the third column
we multiply (58) on the right byu−+ to get




u++ −e13u+− e3u−+ e1u−−
e13u++ u+− e1u−+ −e3u−−
e3u++ e1u+− u−+ −e13u−−
e1u++ −e3u+− e13u−+ u−−


 u−+

=




0 0 e3u−+ 0
0 0 e1u−+ 0
0 0 u−+ 0
0 0 e13u−+ 0


 .

Multiplying the spinor operator (64) on the right byu++

we obtain

ψu++ = ϕ1u++ + ϕ2e13u++ + ϕ3e3u++ + ϕ4e1u++,

whose spinor matrix

[ψu++] =




ϕ1 0 0 0
ϕ2 0 0 0
ϕ3 0 0 0
ϕ4 0 0 0




=




α1 0 0 0
α2 0 0 0
α3 0 0 0
α4 0 0 0


Mod(u++)

corresponds to the Dirac spinor (61).
The classical Dirac equation (80) is equivalent to the

Dirac-Hestenes equation (79) multiplied on the right byu++,
(
i~∂ψ − eAψ −mψ

)
u++ = 0. (83)

Taking thespacetime inversionof this equation, by replac-
ing all spacetime vectors by their negatives, gives the parity
related equation

(
i~∂ψ − eAψ + mψ

)
u−+ = 0.

Two more equations are obtained, which are parity related to
(83), by taking thecomplex conjugateof both of these last
two equations, giving

(
i~∂ψ + eAψ + mψ

)
u+− = 0,

and (
i~∂ψ + eAψ −mψ

)
u−− = 0.

But the sum of these four parity related equations is exactly
the parity invarient Dirac-Hestenes equation (79).
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