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Fractional viscoelastic models applied to biomechanical constitutive equations

J.E. Palomares-RuizM. Rodriguez-Madrigdl J.G. Castro Lugg and A.A. Rodriguez-Soto
“Maestiia en Ingeniefa Mecatibnica, Instituto Tecndgico Superior de Cajeme,
Carretera Internacional a Nogales km 2, Ciudad OliragSonora, Mxico,
e-mail: jepalomares@itesca.edu.mx, jcastro@itesca.edu.mx,
Phone: 01 644 4108650 ext. 1311,
2Facultad de Ingeniéa Mednica, Instituto Superior Politcnico Joé Antonio Echevera,
Calle 114, No. 11901, Entre Ciclavy 129, Cujae, Marianao, Ciudad de La Habana, Cuba,
e-mail: melchor@mecanica.cujae.edu.cu, arodriguezs@mecanica.cujae.edu.cu

Received 17 March 2015; accepted 4 May 2015

The aim of this work consist to compare the traditional viscoelastic material models vs the fractional ones, determinate the fractional orde
the differential operator that characterize the mechanical stress-strain relation, the stress relaxation and the creep compliance of this r
for a biological soft tissue, in particular a femoral artery. Apply the Laplace transform for Mittag-Leffler function type and the convolutio
on fractional standard lineal solid differential equation, known as Zener model, to obtain analytical solution. Simulated the force-press
related by singular blood flow pulse and the displacement response.
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1. Introduction 2. Fractional Calculus

Let f(t) € C? where f(t) : Rt — R, according to the

iemann-Liouville approach to fractional calculus the notion
of fractional integral of order > 0, is a natural analogue of
the Cauchy formula, Eq. (1).

In the last years the fractional calculus has demonstrated
huge range of applicability, for example on the electronic
field, the theory of control [1] and the circuit’s theory [2-4], in

mechanics the principal developments are in mechanical sys- t
tems [5_-8]. On the Biomec_hanics_ field the things are not so ol = 1 /(t — )l (n)dn, nezt (1)
much different [9], the fractional differential and integral op- (n—1)!

0

erators have a great development specially in the task of char-

acterize the mechanical behavior of soft tissues [10] like thén a natural way, one is lead to extend the above formula (1)
brain [11], liver [12,13], arteries [14-17] and the human cal-from positive integers values of the index to any positive real
caneal fat pad [18]. Biological soft tissues are mainly madeyalues by using the Gamma function andn arbitrary pos-

of collagen, elastin and muscular fiber [19] which bring spe-tive real number, one defines the Riemann-Liouville frac-
cial mechanical properties. This kind of material behaviortional integer of order > 0,

is known as viscoelasticity [20,21]. In general, viscoelastic

behavior may be imagined as a spectrum with elastic defor- 1
mation as one limiting case and viscous flow on the other ex- ol = ) /(t —7)"" f(n)dr, t>0 veRT (2
treme case, with varying combinations of the two spread over

the range between. Thus, valid constitutive equations for vis- . .
coelastic behavior embody elastic deformation and viscoug%r complementaglon of the Eq. (2), we need to define
flow as special cases and at the same time provide for réllt = I such thaply f(t) = f(?).

sponse patterns that characterize behavior blends of the two.

Intrinsically, such equations will involve not only stress and
strain, but time-rates of both stress and strain as well [22].

t

The local operator of the standard derivative of order
n € ZT for a givent is just the left inverse of the non-local
operator of the:-fold integral, 17, having as a starting point

Many of the basic ideas of viscoelasticity can be intro-any finitea < t.

duce within the context of a one-dimensional state of stress,

and once we obtain the relaxation modulus, the creep compli- DY o alf, t>a
ance and the complex modulus, this functions can be include
by a subroutine on a FEM software that includes the geom‘:’Ind
etry restrictions [23] and the viscoelastic relaxation modifi- n—1 (t — a)*
cations, or by an finite element model specially develop for 4l7 o D = f(t) — Z fFa™)
fractional differential and integral operators [24]. k=0

t>a (3)
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As a consequence, takiag= 0, we required thagD; be de- When all the limiting valuesf®(0*) = 0 for
fined as left inverse tgly . For this purpose we firstintroduce k = 1,2, ... are zero the Eq. (6), simplifies into:
the positive integem € Z* such thatn — 1 < v < m, and

then we define the Riemann-Liouville fractional derivative of L{oDY f(t);s} =s"f(s), m—-1<v<m (7)
orderv > 0, The Laplace transform can be expressed in terms of functions
» m ey of Mittag-Leffler type,
oDy f(t) = D" o ol} f@), 9 yp
. B y V%
with,  m-—1<v<m, (4) L{t?T By p(—wt");s} = S+ w ®)
namely: where -
. By o(—wt”) = Z (wt)" Q)
, 1 gm f(7) ® = (vn+ )
ODt f(t) = m vrl—m dTa .
['(m—v)dt (t—r7) with v, p € Rt andw € R.

0 Another Laplace transform that we need to remember, is

ifm—1<v<mandd'/dt™f(t), if v=m the notion of Laplace convolution
For complementation, we defiraé)? =1. .
By interchanging in the Eqg. (4) the process of differen-
tiation and integration we are lead to the so calGaputo LU *g()} =L /f(t —&§)9()dé;
fractional derivative defined properly and in extensive way 0
in [25,26], of orders > 0 defined as: = f(s)-g(s) (10)
oDY f(t) = oli"™" o Di" f(1),

_ 3. Fractional viscoelastic material models
with, m—1<v<m, (5)

3.1. Integer order viscoelastic models
namely:

. Viscoelasticity is one of the major fields in the application
e 1 Fm () of the fractional differential and integral operators [27-29].
oD f(t) = I ( ) / (t — 7)rti-m dr, A material that exhibit elements of both the elastic and vis-
0 cous behaviors is known as a viscoelastic material. The
stress - strain behavior of such materials can be model by
. am . combining the relationships between the solids Hooke’s law
if m-1<v<m and =2f(t), if v=m o(t) = ee(t), represented by springs and for Newtonian flu-
ids o(t) = né(t), represented by dash pots, whereg are
Forv ¢ Z* the Caputodefinition (5), requires the abso- const(a)nts ir? sEa\Zeralpways as shgwn in FFi)g. 1. "
lute integrability of the derivative of orden. The viscoelastic models may be use to represent the rate-
_The Caputo fractional derivative represent a sort of reQuyenendent hehavior [30] where the stress-strain relation is a
Igrlzauon in the time origin for t_he R|.emann—L|ouvnI§ fr.a.tc— function of the rate of strain, the creep complian¢g be-
tional derivative. Note that for its existence all the limiting ,ovior where the strain increases under a constant applied
values load and the stress relaxatior{/Bbehavior where the stress
F®OF) = Tim DEf(t), k=0,1,2,..,m — 1 d_ec_reases_ under a constant applied strain.. When thg mate-
t—0+ rial its subjected to harmonic stress or strain another impor-
tant part of the theory of viscoelasticity are the useful con-
cept [23] of the complex modulus *Gw) where the real
2.1. Laplace transform for fractional derivatives part, G(w), of this modulus is associated with the amount
of energy stored in the element during a complete loading
We point out the major usefulness of the Caputo fractionatycle and is called the storage modulus. The imaginary part,
derivative in treating initial value problems for physical ap- G”’(w), relates to the energy dissipated per cycle and is called
plications where the initial conditions are usually expressedhe loss modulus.
in terms of integer order derivatives. For the Caputo deriva- We mentioned before that viscoelastic model are arrays
tive of orderv with m — 1 < v < m, we have of springs and dash pots like the shown in Fig. 1, this arrays
_— can be express mathematically by the Eq. (11) for the Kevin
* Y N1 wF v—1—Fk p(k) (n+ model (KM) [31] and the equation (12) for the standard lineal
EAoDY S ()5 = s"(s) = Z s UG solid, also know as Zener model (ZM) [32].

m —v

are required to be finite.

k=0

e1+ eo

—0
n

€162

F®(0%) = lim DEf(H) o(t) + () =ere®+—=et) QD
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FIGURE 1. Kelvin model (KM) on top, Standard lineal solid model
other known as Zener model (ZM).
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FIGURE 2. Fractional Kelvin model (FKM) on top and at the bot-
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€ e1e
iD{o(t) + Jro(t) = (e1 +e2) §DYe(t) + = Ze(t) (14)

3.3. Analytical solution

Applying the Laplace transform (7) to booth sides of the

Eqg. (13) we obtain,
|:SV—|— <€1 +€2>:| &(s) = [elsv + (6162>:| &(s)

n n
¥+«

solving fore(s)
€(s) = mﬁ(s)

wherea = (e; +e2/n) and 5 = ejes/n, applying the
Laplace inverse transform and the convolution law (10)

1 sY o 1
e(t)=|—L7! + —r1
o- e e

this functions don't have the require form to apply the laplace
transform of the Mittag-Leffler function (8), then we re-
scribe on the form

I s- sVl
e(t)[elﬁ {s”+<}

—v+1 v—1
o s
+—L o, }] x o (t)

S
€1

now we can separate

e(t) = [1 (6‘1 {s}-£7 {f:c}> M o)

(et e {E)) e

By the Mittag-Leffler Laplace transform (8) and the convolu-

tom Zener fractional model (FZM), can be observe that the basiction (10) we have:
idea consist in to replace the dash pot for a new element know as

spring-pot.

€2 €1€2

3.2. Fractional viscoelastic models

We now consider the fractional generalization of the KM and

(07

e(t) = [611 /5/(t — &) By (=€) dE + T —1)

x /(t - 5)"2Ey(<£”)d£] *0(t)
0

in terms of Eq. (9) we obtain the analytical solution for

ZM, shown in Fig. 2. For this purpose it's sufficient to re- keyin fractional model, in similarly way can be obtained the
place the first order derivative with the fractional derivative of 5| ;tion for the ZEM

orderv € (0, 1) in their constitutive equations. We obtain the
following stress-strain relationship and corresponding mate-

rial functions.

The Egs. (13) and (14) are basically the same shown be-
fore, but here we replace the first derivative with the Caputo

fractional differential operator

€1€2

DFo(t) + Pt = e §Dfe(t) + “e(t) (19)

e(t) =

5(t 1 o= (—=¢t)"
g*m;(rfnuﬁ

at’ S (—¢t)"
e Tt D)

n=0

* o (t)

wered(t) it's the traditional Dirac’s delta.
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FIGURE 3. Displacement response for the Zener model (fractional Figure 5. Stress-strain curve for the ZM, KM, KFM and ZFM.
and integer order), for arbitrary constant values and fractional order
v = 0.4. The election of this value will be justify latter.
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o FIGURE 6. Fractional relaxation modulus, can be observed that
Force load application of(t)for 5 seconds

for a near integer order; = 0.99 the relaxation function have an
FIGURE 4. Displacement response for the Kelvin model. Frac- exponential behavior.

tional and integer.
of characterize the viscoelastic mechanical description of the
artery segment. For last we plot the stress-strain relationship

4. Results for the four material models on Fig. 5, where we can observe
) that only the fractional models corresponds with the classical
4.1. Model analysis curve that expected, but the KFM have an initial translation

that it not desire.
Now we can obtain the temporary deformation response for o
the integer and fractional viscoelastic models, first we apply}.2. Artery characterization

an 50 MPa step function in a time lapse of 5 seconds. The ) . . .
displacement response for the ZFM an ZM integer order visNow we have described the material model functions like the

coelastic constitutive equation is shown on Fig. 3. relaxation modulus, creep compliance and complex modulus.
On Fig. 3, we can appreciate for the ZFM, the clas- The relaxation modulus for the ZFM have the form,

sic viscoelastic ideal behavior, the almost one on one force- es

displacement relationship and the relaxation phenomena G(t)=e1+ex B, {— (t”ﬂ

once the load its retire, other hand ZM integer order have g

an almost linear response in the beginning, not a one on one In Fig. 6 is plot the relaxation modulus function for four

relationship and a minor relaxation time. From here we cariractional order values.

deduce that ZFM presents a more accurate description of the Using experimental data [33,34] and the application of

biological soft tissue that ZM, wich posses a viscoelastic mathe Levenberg-Marquardalgorithm based on a Gauss New-

terial behavior. ton method for least-squares problems, we can determinate
On the Kelvin model, Fig. 4, we observe a more accuratéhe fractional order = 0.4 that better fit the relaxation mod-

behavior for the integer model with respect to the fractionalulus from the experimental obtained data and the value its

one, but the response almost duplicate the force function. Fan the range that finding different researches for all kind of

that reason we choose the Zener fractional model for the tadbiological tissue [15,32].
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FIGURE 7. Creep compliance function, here we observe that for FIGURE 9. 125/80 mmHg blood pulse in Mega Pascals.
values close to real order= 1 the behavior its almost lineal.
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FIGURE 10. Numerical approximation of regular blood flow, this
FIGURE 8. Complex modulus, observe that for values nearest to new function have continuity derivatives.

integer order one, the graphic present the traditional form.

: . 0.25 ; : ;
In the same way, we obtain and plot the creep compliance '
function, that it's illustrate on Fig. 7 for different fractional £ [
valuesv, the creep compliance functio(tJ have the form: o e ;
c
o
1 o5
€1 n =
werep = 1/e1 + es. % G40
The complex modulus, present on Fig. 8, complete the set s
of basic functions require for biomechanical characterization. g 05
0.00 . i i ‘
4.3. Blood flow response 5 3 5 = i g

. . . . . Pulse pressure load application o(t
Describe the mechanical stress-strain relationship for the B ah ®

blood pulse, its one of the principal biomechanical objectivesricure 11. ZFM and ZM response for a single blood pulse.
[35,36], in that sense we model a blood flow pulse (BFP)
of 125/80 diastolic sistolic, that its the regular pulse stagebut B(t) ¢ C2, to avoid that problem we use thevenberg-

Fig. 9. Marquardt algorithm to approximate the function to a new
The BFP its parametrize by the function, oneB(t) € C?, the numerical approximation is represent on
Ugin (ZL) 4+ 2 0<t<0.18 Fig. 10.
10 5 \5.36) T 10 : The function that represents the blood flow and that be
B8 }Tl) cos (7T (% — %)) + 1% 0.18 <t < 0.5 use like force load on ZFM, has the form
t) = .
1—90 — % sin(r (5t — 3)) 05<t<0.9 B(t) = 1.26 cos(3.79t) — 0.34 cos(10.82t)
> 09<t<1 +2.01sin(1.97¢) + 0.13 sin(12.11¢)
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The displacement response shown in Fig. 11 its only thehanical properties characterization that in the future research
ideal response for a singular blood flow pulse, can we see thgermits the integration on a finite element method software,
pulse response on top during the second and a expected s aloud to include the geometry of the artery and all the
laxation before that, compare with the ZM that only have ageometrical restrictions, in that sense we can obtain the dy-
curve displacement and a relaxation linear stage. namical response of the artery under different load events,
or the inclusion of different kind and prolonged load blood
flow rates by new numerical methods for fractional differen-
tial equations [37,38] or finite elements paradigmas [23,24].

We demonstrate that the fractional model preserves the relax- For last we parametrize a blood flow pulse obtained from
ation phenomena that characterize the viscoelastic material§al medical researches [35,36], and development a numeri-
and special the biological ones, like the artery that is the recal adjustment with continuum derivatives and using the an-
search object, due to the relaxation soft decay and the |ogalytical solution obtained in the present research we can able
arithmic increment on the initial case of load. An a certaint0 determinate the displacement response for the pulse load
way, with the fractional differential and integral operators, is@Pplication.
easily to obtain the principal functions relatives to the mate-
rial behavior, like the relaxation modulus, creep complianceacknowledgments
and the complex modulus, that are very useful in the case
that we need realize adjustment to data obtained from expeirhe authors wants to thankful all the support bring from the
imental creep or relaxation test, to in vivo material, or in theTecnobgico Nacional de Mxico, Instituto Tecndlgico Su-
case of the complex modulus that is in terms of the frequencyperior de Cajeme and the Instituto Superior Raiitico Jog
and are very helpful when the soft tissue are stimulated by aAntonio Echeveiia, Biomechanics Research Group for the
harmonic function, like the pulse or when try to obtain me-facilities bring in the investigation and the technical support.
chanical constants via ultrasound stimulation.

Using fractional differential and integer operators, and all
the background related, we get a reliable model for the me-
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