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Fractional viscoelastic models applied to biomechanical constitutive equations

J.E. Palomares-Ruiza, M. Rodriguez-Madrigalb, J.G. Castro Lugoa, and A.A. Rodriguez-Sotob
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e-mail: jepalomares@itesca.edu.mx, jcastro@itesca.edu.mx,

Phone: 01 644 4108650 ext. 1311,
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The aim of this work consist to compare the traditional viscoelastic material models vs the fractional ones, determinate the fractional order of
the differential operator that characterize the mechanical stress-strain relation, the stress relaxation and the creep compliance of this models
for a biological soft tissue, in particular a femoral artery. Apply the Laplace transform for Mittag-Leffler function type and the convolution
on fractional standard lineal solid differential equation, known as Zener model, to obtain analytical solution. Simulated the force-pressure
related by singular blood flow pulse and the displacement response.
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1. Introduction

In the last years the fractional calculus has demonstrated a
huge range of applicability, for example on the electronic
field, the theory of control [1] and the circuit’s theory [2-4], in
mechanics the principal developments are in mechanical sys-
tems [5-8]. On the Biomechanics field the things are not so
much different [9], the fractional differential and integral op-
erators have a great development specially in the task of char-
acterize the mechanical behavior of soft tissues [10] like the
brain [11], liver [12,13], arteries [14-17] and the human cal-
caneal fat pad [18]. Biological soft tissues are mainly made
of collagen, elastin and muscular fiber [19] which bring spe-
cial mechanical properties. This kind of material behavior
is known as viscoelasticity [20,21]. In general, viscoelastic
behavior may be imagined as a spectrum with elastic defor-
mation as one limiting case and viscous flow on the other ex-
treme case, with varying combinations of the two spread over
the range between. Thus, valid constitutive equations for vis-
coelastic behavior embody elastic deformation and viscous
flow as special cases and at the same time provide for re-
sponse patterns that characterize behavior blends of the two.
Intrinsically, such equations will involve not only stress and
strain, but time-rates of both stress and strain as well [22].

Many of the basic ideas of viscoelasticity can be intro-
duce within the context of a one-dimensional state of stress,
and once we obtain the relaxation modulus, the creep compli-
ance and the complex modulus, this functions can be include
by a subroutine on a FEM software that includes the geom-
etry restrictions [23] and the viscoelastic relaxation modifi-
cations, or by an finite element model specially develop for
fractional differential and integral operators [24].

2. Fractional Calculus

Let f(t) ∈ C2 wheref(t) : R+ → R, according to the
Riemann-Liouville approach to fractional calculus the notion
of fractional integral of orderν > 0, is a natural analogue of
the Cauchy formula, Eq. (1).

0Int =
1

(n− 1)!

t∫

0

(t− τ)n−1f(τ)dτ, n ∈ Z+ (1)

In a natural way, one is lead to extend the above formula (1)
from positive integers values of the index to any positive real
values by using the Gamma function andν an arbitrary pos-
itive real number, one defines the Riemann-Liouville frac-
tional integer of orderν > 0,

0Iνt =
1

Γ(ν)

t∫

0

(t− τ)ν−1f(τ)dτ, t > 0 ν ∈ R+ (2)

For complementation of the Eq. (2), we need to define
0I0t = I such that0I0t f(t) = f(t).

The local operator of the standard derivative of order
n ∈ Z+ for a givent is just the left inverse of the non-local
operator of then-fold integralaInt , having as a starting point
any finitea < t.

Dn
t ◦ aInt , t > a

and

aInt ◦ Dn
t = f(t)−

n−1∑

k=0

fk(a+)
(t− a)k

k!
, t > a (3)
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As a consequence, takinga = 0, we required that0Dν
t be de-

fined as left inverse to0Iνt . For this purpose we first introduce
the positive integerm ∈ Z+ such thatm− 1 < ν < m, and
then we define the Riemann-Liouville fractional derivative of
orderν > 0,

0Dν
t f(t) = Dm

t ◦ 0Im−ν
t f(t),

with, m− 1 < ν < m, (4)

namely:

0Dν
t f(t) =

1
Γ (m− ν)

dm

dtm

t∫

0

f(τ)
(t− τ)ν+1−m

dτ,

if m− 1 < ν < m and dm/dtmf(t), if ν = m
For complementation, we define0D0

t = I.
By interchanging in the Eq. (4) the process of differen-

tiation and integration we are lead to the so calledCaputo
fractional derivative, defined properly and in extensive way
in [25,26], of orderν > 0 defined as:

∗
0Dν

t f(t) = 0Im−ν
t ◦ Dm

t f(t),

with, m− 1 < ν < m, (5)

namely:

∗
0Dν

t f(t) =
1

Γ (m− ν)

t∫

0

f (m)(τ)
(t− τ)ν+1−m

dτ,

if m− 1 < ν < m and
dm

dtm
f(t), if ν = m

For ν /∈ Z+ theCaputodefinition (5), requires the abso-
lute integrability of the derivative of orderm.

The Caputo fractional derivative represent a sort of regu-
larization in the time origin for the Riemann-Liouville frac-
tional derivative. Note that for its existence all the limiting
values

f (k)(0+) = lim
t→0+

Dk
t f(t), k = 0, 1, 2, ...,m− 1

are required to be finite.

2.1. Laplace transform for fractional derivatives

We point out the major usefulness of the Caputo fractional
derivative in treating initial value problems for physical ap-
plications where the initial conditions are usually expressed
in terms of integer order derivatives. For the Caputo deriva-
tive of orderν with m− 1 < ν < m, we have

L{∗0Dν
t f(t); s} = sν f̄(s)−

m−1∑

k=0

sν−1−kf (k)(0+), (6)

f (k)(0+) = lim
t→0+

Dk
t f(t)

When all the limiting valuesf (k)(0+) = 0 for
k = 1, 2, ... are zero the Eq. (6), simplifies into:

L{∗0Dν
t f(t); s} = sν f̄(s), m− 1 < ν < m (7)

The Laplace transform can be expressed in terms of functions
of Mittag-Leffler type,

L{
tϕ−1Eν,ϕ(−ωtν); s

}
=

sν−ϕ

sν + ω
(8)

where

Eν,ϕ(−ωtν) =
∞∑

n=0

(−ωtν)n

Γ(νn + ϕ)
(9)

with ν, ϕ ∈ R+ andω ∈ R.
Another Laplace transform that we need to remember, is

the notion of Laplace convolution

L{f(t) ∗ g(t)} = L




t∫

0

f(t− ξ)g(ξ)dξ; s





= f̄(s) · ḡ(s) (10)

3. Fractional viscoelastic material models

3.1. Integer order viscoelastic models

Viscoelasticity is one of the major fields in the application
of the fractional differential and integral operators [27-29].
A material that exhibit elements of both the elastic and vis-
cous behaviors is known as a viscoelastic material. The
stress - strain behavior of such materials can be model by
combining the relationships between the solids Hooke’s law
σ(t) = eε(t), represented by springs and for Newtonian flu-
ids σ(t) = ηε̇(t), represented by dash pots, wheree, η are
constants in several ways as shown in Fig. 1.

The viscoelastic models may be use to represent the rate-
dependent behavior [30] where the stress-strain relation is a
function of the rate of strain, the creep compliance J(t) be-
havior where the strain increases under a constant applied
load and the stress relaxation G(t) behavior where the stress
decreases under a constant applied strain. When the mate-
rial its subjected to harmonic stress or strain another impor-
tant part of the theory of viscoelasticity are the useful con-
cept [23] of the complex modulus G∗(iω) where the real
part, G′(ω), of this modulus is associated with the amount
of energy stored in the element during a complete loading
cycle and is called the storage modulus. The imaginary part,
G′′(ω), relates to the energy dissipated per cycle and is called
the loss modulus.

We mentioned before that viscoelastic model are arrays
of springs and dash pots like the shown in Fig. 1, this arrays
can be express mathematically by the Eq. (11) for the Kevin
model (KM) [31] and the equation (12) for the standard lineal
solid, also know as Zener model (ZM) [32].

σ̇(t) +
e1 + e2

η
σ(t) = e1ε̇(t) +

e1e2

η
ε(t) (11)
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FIGURE 1. Kelvin model (KM) on top, Standard lineal solid model
other known as Zener model (ZM).

FIGURE 2. Fractional Kelvin model (FKM) on top and at the bot-
tom Zener fractional model (FZM), can be observe that the basic
idea consist in to replace the dash pot for a new element know as
spring-pot.

σ̇(t) +
e2

η
σ(t) = (e1 + e2) ε̇(t) +

e1e2

η
ε(t) (12)

3.2. Fractional viscoelastic models

We now consider the fractional generalization of the KM and
ZM, shown in Fig. 2. For this purpose it’s sufficient to re-
place the first order derivative with the fractional derivative of
orderν ∈ (0, 1) in their constitutive equations. We obtain the
following stress-strain relationship and corresponding mate-
rial functions.

The Eqs. (13) and (14) are basically the same shown be-
fore, but here we replace the first derivative with the Caputo
fractional differential operator

∗
0Dν

t σ(t) +
e1 + e2

η
σ(t) = e1

∗
0Dν

t ε(t) +
e1e2

η
ε(t) (13)

∗
0Dν

t σ(t) +
e2

η
σ(t) = (e1 + e2) ∗

0Dν
t ε(t) +

e1e2

η
ε(t) (14)

3.3. Analytical solution

Applying the Laplace transform (7) to booth sides of the
Eq. (13) we obtain,

[
sν +

(
e1 + e2

η

)]
σ̄(s) =

[
e1s

ν +
(

e1e2

η

)]
ε̄(s)

solving forε̄(s)

ε̄(s) =
sν + α

e1sν + β
σ̄(s)

where α = (e1 + e2/η) and β = e1e2/η, applying the
Laplace inverse transform and the convolution law (10)

ε(t) =

[
1
e1
L−1

{
sν

sν + β
e1

}
+

α

e1
L−1

{
1

sν + β
e1

}]
∗ σ(t)

this functions don’t have the require form to apply the laplace
transform of the Mittag-Leffler function (8), then we re-
scribe on the form

ε(t) =

[
1
e1
L−1

{
s · sν−1

sν + ζ

}

+
α

e1
L−1

{
s−ν+1 · sν−1

sν + ζ

} ]
∗ σ(t)

now we can separate

ε(t) =

[
1
e1

(
L−1 {s} · L−1

{
sν−1

sν + ζ

})
+

α

e1Γ(n− 1)

×
(
L−1

{
Γ(ν − 1)

sν−1

}
· L−1

{
sν−1

sν + ζ

}) ]
∗ σ(t)

By the Mittag-Leffler Laplace transform (8) and the convolu-
tion (10) we have:

ε(t) =

[
1
e1

t∫

0

δ′(t− ξ) · Eν (−ζξν) dξ +
α

e1Γ(ν − 1)

×
t∫

0

(t− ξ)ν−2Eν(−ζξν)dξ

]
∗ σ(t)

in terms of Eq. (9) we obtain the analytical solution for
Kelvin fractional model, in similarly way can be obtained the
solution for the ZFM,

ε(t) =

[
δ(t)
e1

+
1

e1t

∞∑
n=1

(−ζtν)n

Γ(nν)

+
αtν−1

e1

∞∑
n=0

(−ζtν)n

Γ(ν(n + 1))

]
∗ σ(t)

wereδ(t) it’s the traditional Dirac’s delta.
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FIGURE 3. Displacement response for the Zener model (fractional
and integer order), for arbitrary constant values and fractional order
ν = 0.4. The election of this value will be justify latter.

FIGURE 4. Displacement response for the Kelvin model. Frac-
tional and integer.

4. Results

4.1. Model analysis

Now we can obtain the temporary deformation response for
the integer and fractional viscoelastic models, first we apply
an 50 MPa step function in a time lapse of 5 seconds. The
displacement response for the ZFM an ZM integer order vis-
coelastic constitutive equation is shown on Fig. 3.

On Fig. 3, we can appreciate for the ZFM, the clas-
sic viscoelastic ideal behavior, the almost one on one force-
displacement relationship and the relaxation phenomena
once the load its retire, other hand ZM integer order have
an almost linear response in the beginning, not a one on one
relationship and a minor relaxation time. From here we can
deduce that ZFM presents a more accurate description of the
biological soft tissue that ZM, wich posses a viscoelastic ma-
terial behavior.

On the Kelvin model, Fig. 4, we observe a more accurate
behavior for the integer model with respect to the fractional
one, but the response almost duplicate the force function. For
that reason we choose the Zener fractional model for the task

FIGURE 5. Stress-strain curve for the ZM, KM, KFM and ZFM.

FIGURE 6. Fractional relaxation modulus, can be observed that
for a near integer order,ν = 0.99 the relaxation function have an
exponential behavior.

of characterize the viscoelastic mechanical description of the
artery segment. For last we plot the stress-strain relationship
for the four material models on Fig. 5, where we can observe
that only the fractional models corresponds with the classical
curve that expected, but the KFM have an initial translation
that it not desire.

4.2. Artery characterization

Now we have described the material model functions like the
relaxation modulus, creep compliance and complex modulus.
The relaxation modulus for the ZFM have the form,

G(t) = e1 + e2 · Eν

[
−

(
e2

η
tν

)]

In Fig. 6 is plot the relaxation modulus function for four
fractional order values.

Using experimental data [33,34] and the application of
theLevenberg-Marquardtalgorithm based on a Gauss New-
ton method for least-squares problems, we can determinate
the fractional orderν = 0.4 that better fit the relaxation mod-
ulus from the experimental obtained data and the value its
in the range that finding different researches for all kind of
biological tissue [15,32].
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FIGURE 7. Creep compliance function, here we observe that for
values close to real orderν = 1 the behavior its almost lineal.

FIGURE 8. Complex modulus, observe that for values nearest to
integer order one, the graphic present the traditional form.

In the same way, we obtain and plot the creep compliance
function, that it’s illustrate on Fig. 7 for different fractional
valuesν, the creep compliance function J(t) have the form:

J(t) = µ +
(

1
e1
− µ

)[
1− Eν

[
−

(
e1e2µ

η
tν

)]]

wereµ = 1/e1 + e2.
The complex modulus, present on Fig. 8, complete the set

of basic functions require for biomechanical characterization.

4.3. Blood flow response

Describe the mechanical stress-strain relationship for the
blood pulse, its one of the principal biomechanical objectives
[35,36], in that sense we model a blood flow pulse (BFP)
of 125/80 diastolic sistolic, that its the regular pulse stage,
Fig. 9.

The BFP its parametrize by the function,

B(t) =





11
10 sin

(
πt

0.36

)
+ 9

10 0 < t < 0.18
11
10 cos

(
π

(
100t
64 − 28

100

))
+ 9

10 0.18 < t < 0.5
9
10 − 1

20 sin(π(5t− 5
2 )) 0.5 < t < 0.9

9
10 0.9 < t < 1

FIGURE 9. 125/80 mmHg blood pulse in Mega Pascals.

FIGURE 10. Numerical approximation of regular blood flow, this
new function have continuity derivatives.

FIGURE 11. ZFM and ZM response for a single blood pulse.

but B(t) /∈ C2, to avoid that problem we use theLevenberg-
Marquardt algorithm to approximate the function to a new
oneB̆(t) ∈ C2, the numerical approximation is represent on
Fig. 10.

The function that represents the blood flow and that be
use like force load on ZFM, has the form

B̆(t) = 1.26 cos(3.79t)− 0.34 cos(10.82t)

+ 2.01 sin(1.97t) + 0.13 sin(12.11t)
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The displacement response shown in Fig. 11 its only the
ideal response for a singular blood flow pulse, can we see the
pulse response on top during the second and a expected re-
laxation before that, compare with the ZM that only have a
curve displacement and a relaxation linear stage.

5. Conclusions

We demonstrate that the fractional model preserves the relax-
ation phenomena that characterize the viscoelastic materials
and special the biological ones, like the artery that is the re-
search object, due to the relaxation soft decay and the log-
arithmic increment on the initial case of load. An a certain
way, with the fractional differential and integral operators, is
easily to obtain the principal functions relatives to the mate-
rial behavior, like the relaxation modulus, creep compliance
and the complex modulus, that are very useful in the case
that we need realize adjustment to data obtained from exper-
imental creep or relaxation test, to in vivo material, or in the
case of the complex modulus that is in terms of the frequency,
and are very helpful when the soft tissue are stimulated by an
harmonic function, like the pulse or when try to obtain me-
chanical constants via ultrasound stimulation.

Using fractional differential and integer operators, and all
the background related, we get a reliable model for the me-

chanical properties characterization that in the future research
permits the integration on a finite element method software,
this aloud to include the geometry of the artery and all the
geometrical restrictions, in that sense we can obtain the dy-
namical response of the artery under different load events,
or the inclusion of different kind and prolonged load blood
flow rates by new numerical methods for fractional differen-
tial equations [37,38] or finite elements paradigmas [23,24].

For last we parametrize a blood flow pulse obtained from
real medical researches [35,36], and development a numeri-
cal adjustment with continuum derivatives and using the an-
alytical solution obtained in the present research we can able
to determinate the displacement response for the pulse load
application.
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