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The Liouville theorem as a problem of common eigenfunctions
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It is shown that, by appropriately defining the eigenfunctions of a function defined on the extended phase space, the Liouville theorem on
solutions of the Hamilton—-Jacobi equation can be formulated as the problem of finding common eigenfunetioorsiants of motion in
involution, wheren is the number of degrees of freedom of the system.
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Se muestra que, definiendo apropiadamente las eigenfunciones de uba filefanida en el espacio fase extendido, el teorema de Liou-
ville sobre las soluciones de la ecuatide Hamilton—Jacobi puede formularse como el problema de hallar eigenfunciones comunes de
constantes de movimiento en involaoj donden es el rimero de grados de libertad del sistema.

Descriptores: Ecuacbn de Hamilton—Jacobi; teorema de Liouville; eigenfunciones.
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1. Introduction In Sec. 2 we present the definition of the eigenfunctions

o ) ~of a function f(g;, p;,t) and we show that two functions,
In the framework of the Hamiltonian formulation of classical £(gi,pi,t) and g(g;, pi,t), have common eigenfunctions if

mechanics, the Liouville theorem asserts that, for a mechangng only if their Poisson bracket vanishes. Then, we prove
cal system with degrees of freedom, if we hawveconstants  that, if conditions (1)-(3) hold, a common eigenfunction of

of motionininvolution,Fy, Fy, ..., Fy, (thatis {F}, F;} =0, F, ... F,is, up to an additive function afonly, a com-
fori,j = 1,2,...,n, where{ , } is the Poisson bracket), plete solution of the HJ equation. In Sec. 3 we give some
then a complete solution of the Hamilton—Jacobi (HJ) equayjystrative examples, emphasizing the fact that we can make
tion can be found by quadrature [1-6]. use of constants of motion that depend explicitly on the time.
More precisely, if [ (¢, pi,t),. ... Fn(gi, pit) aren The statement of the Liouville theorem presented here al-
constants of motion in involution, that is, lows us to see that the Liouville theorem is analogous to one
OF, _ of the methods employed to solve the Sifinger equation,
5 {Fi,H} =0, i=12...,n (1) where we look for the common eigenfunctions of a complete
set of mutually commuting operators that also commute with
and the Hamiltonian €.g, for a spherically symmetric Hamilto-
{Fi, Fj} =0, i,j=12,...,n, (2)  nian we consider the common eigenfunctiond.8f L. and

where{ , } denotes the Poisson bracket (with the convention? )-
{qi,p;} = dij), then, assuming that

det (aFi
Op;

2. Eigenfunctions of a function and complete
> #£0, () solutions of the Hamilton—Jacobi equation

We start by giving the definition of the eigenfunctions of a
real-valued functiory (¢;, p;, t): We shall say thab(g;, t) is

an eigenfunction off (¢;, pi, t), with eigenvalue), if S is a
(a5, Fj, 1) dg; — H(qi,pi(qj,Fj,t),t) dt (4) solution of the first-order partial differential equation

so that, locally at least, we can expresshas functions of
q;, Fj, andt, the differential form

. . . . I as

is the differential of some functior§(g;, t), which is a com- f(a, 0 t)= A\ (5)
plete solution of the HJ equation (here and in what follows, i

there is summation over repeated indices). (It may be noticed that iff is a time-independent Hamil-

The aim of this paper is to show that the Liouville the- tonian, then Eq. (5) is the corresponding time-independent
orem can be formulated in another form, closer to the stanHJ equation.) We note that H(q¢;, t) is an eigenfunction of
dard formalism of quantum mechanics. Specifically, we shallf(g;, p;, t) with eigenvalue\, then so it isS(g;, t) + ¢(t), for
show that ifS(g;, t) is a common eigenfunction of the func- any functiong(t) of ¢ only, and that the solutions of (5) will
tionsFy, Fs, ..., F, (a concept to be defined below) then, by depend parametrically oh. Of course, in order for (5) to
adding toS an appropriate function dfonly, one obtains a be a differential equatiory, must depend on one of the, at
complete solution of the HJ equation. least.
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For instance, according to this definition, the eigenfunc-F, ..., F,,, with eigenvalues\, . .., \,,, respectively, then,
tions of the function assuming that the eigenvalues are constant, differentiating
with respect ta both sides of the equation
F(q,p,t) = mwgsinwt + p cos wt, (6)
oS

wherem andw are constants, are the solutions of the differ- F;(qj, B
4y

ential equation

1) = Ai, (8)

oS . . . .
mwgsinwt + 92 coswt = A, making use of the chain rule, the Hamilton equations and (1),

0q we have
which can be readily integrated giving 0 5Fz‘q. OF, d 8S OF,
= ; Bl
S = Agsecwt — %(f tanwt + ¢(t), (7 9g; Op; dt dq; — Ot
_ _ _ _ OF; 0H 8Fi(825+ 9?8 )
W_heregb(t) is an arbitrary fl_Jnctlon of only. Note that the dq; Op; | Op; \0tdq; | Oqudq; 4k
eigenvaluex may be a function of.
If S(q:,t) is a common eigenfunction gf(q¢;, p;,t) and _OF;0H  OF 0H
g(qs, pi, ), with eigenvalues\ andy, respectively, that is$ dq; Op; ~ Opj Og;
satisfies (5) and Jye _OF, ( 928 . 928 3H+3H)
9(ai, aT;,;’” = i, dp; \0tdq; ' dqrdq; Opr | Bq; )’
then, differentiating with respect tg, making use of the i=1,...,n.
chain rule, we obtain
af  af 9S dg g 82S By virtue of (3), the last equations are equivalent to
—_— =0 and — =0,
dq; ~ Op; 0q;0q; dq; ~ Op; 0q;0q; . 525 N %5 oH oM
hence, ~ Otdq;  0qi0q; Opr  Oq;
of 9g 99 Of of 9°S 9y o [os a8
gt = - =—— = |5 +H(qk, 5—t)|, =1...,n,
{9} 0q; Op;  0g; Op; Op; 0q;0q; Op; dq; | Ot + H(a Oq ) J "
dg 02°S 0 0?8 9?58 \ of 0
67?8 % 48f4 = <6 S0 900 > 8f879- =0. which implies that the expression inside the brackets is a
p] QJ qi Op; q] qi qi QJ Di p] function Oft only,
Thus, if f(q;,p:,t) and g(g;, p;, t) pOSSess common eigen-
functions, ther{ f, g} = 0. 9 g, 95
In order to see that the converse is also true, we now ot + H(gr, g’ ) =x(@)-
assume thaff,¢g} = 0. If f andg are functionally inde-
pendent, then there exists, locally at least, a set of canorFhus,
ical coordinates();, P;, such that,P, = fand P, = g. t
Then, the eigenvalue gquations ﬁbaan aredS/0Q, = >\ S—9_ /X(U) du
and9S5/90Q2 = p, which have the simultaneous solutions

S =2Q1+pQ2+¢(Qs,...,Qn,t), wherep is an arbitrary ) ) ) )
function ofn — 1 variables, thus showing thdtandg have IS & solution of the HJ equation. We can verify that this so-

common eigenfunctions. (Note that this does not mean thdt!tion is complete by differentiating (8) with respect ig,

every eigenfunction of is an eigenfunction of (cf. Ref. 7, ~ Which gives

Sec. 2.9).) The expression f8rin terms of the original coor- oF; 0*S

dinates,(¢;, t), is not given by the simple substitution of the opr m A

Q; as functions ofg;, p;, t) [8]; what is relevant here is the

existence of common eigenfunctions fbandg. Taking into account (3), this last equation shows that

In the case wherg¢ andg are functionally dependent, the det(9%S/0);0qy,) # 0.
eigenvalue equations fgrandg are equivalent to each other
and, trivially, possess common solutions.

2.1. Alternative formulation of the Liouville theorem 3. Examples

We now assume thafy, ..., F,, aren functions satisfying In this section we give some examples of the method pre-
(1)—(3), and we consider a common eigenfunctign;, t) of  sented above.
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3.1. One-dimensional harmonic oscillator

kt?
S = A+ —q+ p(t), 11
The function ¢+ 5 a+ o) (11)
where¢(t) is an arbitrary function of only. Then
F(q,p,t) = mwgsinwt + p cos wt 1 (35)2 Lt2 +8S
already considered above [see (6)], is a constant of motion if 2m \ 9q 2 ot
the Hamiltonian is given by A2 Nkt2 R
=_— + —+¢'(¢),
2m 2m 8m
2 mw2 .
H=2 4 ¢ (9) hence, choosing
2m 2 ’

N AR B
wherew _is a constant. According to the results of the preced- ¢(t) = “om 6m__ 40m’
ing section, ifA is a constant,

(11) is a complete solution of the HJ equation (which is not
mw separable). (Incidentally, this solution coincides with the one
2

5= Agsecwt — —=¢" tanwt + (1) (10)  given by Eq. (18) of Ref. 8.)

must be a solution of the HJ equation for the Hamiltonian (9),3.3.  Particle in two dimensions

if the function¢ is appropriately chosen. A direct computa- ] ) o
tion yields As a final example we consider the Hamiltonian

eB \? eB \?2

which corresponds to a charged particle of masand elec-
and, therefore, choosingt) = —\? tan wt/2mw, we obtain  tric chargee in a uniform magnetic field3. The functions
the complete solution of the HJ equation

g\ . A2 n mw? 5\ tanwt mw mw
= Agsecw 5 5 4 o o sinwt — T(1 — coswt)y, (13)

1
1 /0S\? 2 28 A2 "= am
(3‘1) m;d q2+§=%5602wt+¢/(t)7 2m

2m

1 1
F = 5(1 + coswt)p, — 5Py sin wt

Note that, in this casel is also a constant of motion
and, as pointed out above, the equation that determines the
eigenfunctions off is just the time-independent HJ equa-
tion. However, the constant of motion (6) leads to simpler
expressions. Since in this example (and the following) th@yherew = eB/me, are constants of motion in involution,
number of degrees of freedom, is equal to one, conditions which correspond to the values of the canonical momgpta
(2) and (3) are satisfied bgny constant of motionF', de- andp,, respectively, at = 0.
pending onp, and any of these constants of motion can be  From (13) and (14) one finds that the common eigenfunc-

1 1
F, = 5(1 + coswt)py + SPe sin wt

+ %y sinwt + %(1 — coswt)z, (14)

used in the application of the Liouville theorem. tions of F; andF,, with eigenvalues\; and\,, respectively,
are
3.2. Particle in a time-dependent force field S = Mz + Aoy
. . - 1
Asgsecond example we consider the time-dependent Hamil 4 tan ~wt [Nz — Ay — y(xg " y2)} +é(b),
tonian 2 4
H— ﬁ — ktq whereg(t) is an arbitrary function of only. Substituting this
2m ’ expression into the HJ equation one finds thids a solution
wherek is a constant. One can readily verify that of this equation if and only if
M2+ L1
2 _ —wt+¢'(t) =0
. e et £ 4/(1) =0,
hence,
is a con;tant of motion and that the eigenfunctiong'pof.e., S = Mz + Aoy
the solutions of
oS kt? mw \?2 mw \2] tan 1wt
T [ ey
9q 2 { Lt 2 ¥ T 2 " mw
are given by is a complete solution of the HJ equation.
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It should be clear that, in place of the constants of mo-ployed in the standard formalism of quantum mechanics, thus
tion F} and F», defined by (13) and (14), any other pair of providing another example of the parallelism between both
constants of motion in involution satisfying (3) can be em-theories. Another advantage of the version of the Liouville
ployed. The expression for the Hamiltonian (12) involves atheorem given above is that its proof is shorter than those
specific choice for the vector potential of the magnetic field;usually presented in the textbooks.
this choice affects the form of the Hamilton—Jacobi equation
and |_ts solutlon_s, vv_h|ch, in turn, yield the solution of the Acknowledgement
Hamilton equations in the gauge chosen.
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