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The Liouville theorem as a problem of common eigenfunctions
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It is shown that, by appropriately defining the eigenfunctions of a function defined on the extended phase space, the Liouville theorem on
solutions of the Hamilton–Jacobi equation can be formulated as the problem of finding common eigenfunctions ofn constants of motion in
involution, wheren is the number of degrees of freedom of the system.
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Se muestra que, definiendo apropiadamente las eigenfunciones de una función definida en el espacio fase extendido, el teorema de Liou-
ville sobre las soluciones de la ecuación de Hamilton–Jacobi puede formularse como el problema de hallar eigenfunciones comunes den
constantes de movimiento en involución, donden es el ńumero de grados de libertad del sistema.
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1. Introduction

In the framework of the Hamiltonian formulation of classical
mechanics, the Liouville theorem asserts that, for a mechani-
cal system withn degrees of freedom, if we haven constants
of motion in involution,F1, F2, . . . , Fn (that is,{Fi, Fj} = 0
for i, j = 1, 2, . . . , n, where{ , } is the Poisson bracket),
then a complete solution of the Hamilton–Jacobi (HJ) equa-
tion can be found by quadrature [1–6].

More precisely, ifF1(qi, pi, t), . . . , Fn(qi, pi, t) are n
constants of motion in involution, that is,

∂Fi

∂t
+ {Fi,H} = 0, i = 1, 2, . . . , n (1)

and
{Fi, Fj} = 0, i, j = 1, 2, . . . , n, (2)

where{ , } denotes the Poisson bracket (with the convention
{qi, pj} = δij), then, assuming that

det
(

∂Fi

∂pj

)
6= 0, (3)

so that, locally at least, we can express thepi as functions of
qj , Fj , andt, the differential form

pi(qj , Fj , t) dqi −H
(
qi, pi(qj , Fj , t), t

)
dt (4)

is the differential of some function,S(qi, t), which is a com-
plete solution of the HJ equation (here and in what follows,
there is summation over repeated indices).

The aim of this paper is to show that the Liouville the-
orem can be formulated in another form, closer to the stan-
dard formalism of quantum mechanics. Specifically, we shall
show that ifS(qi, t) is a common eigenfunction of the func-
tionsF1, F2, . . . , Fn (a concept to be defined below) then, by
adding toS an appropriate function oft only, one obtains a
complete solution of the HJ equation.

In Sec. 2 we present the definition of the eigenfunctions
of a functionf(qi, pi, t) and we show that two functions,
f(qi, pi, t) and g(qi, pi, t), have common eigenfunctions if
and only if their Poisson bracket vanishes. Then, we prove
that, if conditions (1)–(3) hold, a common eigenfunction of
F1, F2, . . . , Fn is, up to an additive function oft only, a com-
plete solution of the HJ equation. In Sec. 3 we give some
illustrative examples, emphasizing the fact that we can make
use of constants of motion that depend explicitly on the time.

The statement of the Liouville theorem presented here al-
lows us to see that the Liouville theorem is analogous to one
of the methods employed to solve the Schrödinger equation,
where we look for the common eigenfunctions of a complete
set of mutually commuting operators that also commute with
the Hamiltonian (e.g., for a spherically symmetric Hamilto-
nian we consider the common eigenfunctions ofL2, Lz and
H).

2. Eigenfunctions of a function and complete
solutions of the Hamilton–Jacobi equation

We start by giving the definition of the eigenfunctions of a
real-valued functionf(qi, pi, t): We shall say thatS(qi, t) is
an eigenfunction off(qi, pi, t), with eigenvalueλ, if S is a
solution of the first-order partial differential equation

f(qi,
∂S

∂qi
, t) = λ. (5)

(It may be noticed that iff is a time-independent Hamil-
tonian, then Eq. (5) is the corresponding time-independent
HJ equation.) We note that ifS(qi, t) is an eigenfunction of
f(qi, pi, t) with eigenvalueλ, then so it isS(qi, t)+φ(t), for
any functionφ(t) of t only, and that the solutions of (5) will
depend parametrically onλ. Of course, in order for (5) to
be a differential equation,f must depend on one of thepi, at
least.
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For instance, according to this definition, the eigenfunc-
tions of the function

F (q, p, t) = mωq sinωt + p cos ωt, (6)

wherem andω are constants, are the solutions of the differ-
ential equation

mωq sin ωt +
∂S

∂q
cosωt = λ,

which can be readily integrated giving

S = λq sec ωt− mω

2
q2 tan ωt + φ(t), (7)

whereφ(t) is an arbitrary function oft only. Note that the
eigenvalueλ may be a function oft.

If S(qi, t) is a common eigenfunction off(qi, pi, t) and
g(qi, pi, t), with eigenvaluesλ andµ, respectively, that is,S
satisfies (5) and

g(qi,
∂S

∂qi
, t) = µ,

then, differentiating with respect toqi, making use of the
chain rule, we obtain

∂f

∂qi
+

∂f

∂pj

∂2S

∂qj∂qi
= 0 and

∂g

∂qi
+

∂g

∂pj

∂2S

∂qj∂qi
= 0,

hence,

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
= − ∂f

∂pj

∂2S

∂qj∂qi

∂g

∂pi

+
∂g

∂pj

∂2S

∂qj∂qi

∂f

∂pi
=

(
∂2S

∂qj∂qi
− ∂2S

∂qi∂qj

)
∂f

∂pi

∂g

∂pj
= 0.

Thus, if f(qi, pi, t) andg(qi, pi, t) possess common eigen-
functions, then{f, g} = 0.

In order to see that the converse is also true, we now
assume that{f, g} = 0. If f andg are functionally inde-
pendent, then there exists, locally at least, a set of canon-
ical coordinates,Qi, Pi, such that,P1 = f and P2 = g.
Then, the eigenvalue equations forf andg are∂S/∂Q1 = λ
and∂S/∂Q2 = µ, which have the simultaneous solutions
S = λQ1 +µQ2 +φ(Q3, . . . , Qn, t), whereφ is an arbitrary
function ofn − 1 variables, thus showing thatf andg have
common eigenfunctions. (Note that this does not mean that
every eigenfunction off is an eigenfunction ofg (cf. Ref. 7,
Sec. 2.9).) The expression forS in terms of the original coor-
dinates,(qi, t), is not given by the simple substitution of the
Qi as functions of(qi, pi, t) [8]; what is relevant here is the
existence of common eigenfunctions forf andg.

In the case wheref andg are functionally dependent, the
eigenvalue equations forf andg are equivalent to each other
and, trivially, possess common solutions.

2.1. Alternative formulation of the Liouville theorem

We now assume thatF1, . . . , Fn aren functions satisfying
(1)–(3), and we consider a common eigenfunctionS(qi, t) of

F1, . . . , Fn, with eigenvaluesλ1, . . . , λn, respectively, then,
assuming that the eigenvalues are constant, differentiating
with respect tot both sides of the equation

Fi(qj ,
∂S

∂qj
, t) = λi, (8)

making use of the chain rule, the Hamilton equations and (1),
we have

0 =
∂Fi

∂qj
q̇j +

∂Fi

∂pj

d
dt

∂S

∂qj
+

∂Fi

∂t

=
∂Fi

∂qj

∂H

∂pj
+

∂Fi

∂pj

(
∂2S

∂t∂qj
+

∂2S

∂qk∂qj
q̇k

)

− ∂Fi

∂qj

∂H

∂pj
+

∂Fi

∂pj

∂H

∂qj

=
∂Fi

∂pj

(
∂2S

∂t∂qj
+

∂2S

∂qk∂qj

∂H

∂pk
+

∂H

∂qj

)
,

i = 1, . . . , n.

By virtue of (3), the last equations are equivalent to

0 =
∂2S

∂t∂qj
+

∂2S

∂qk∂qj

∂H

∂pk
+

∂H

∂qj

=
∂

∂qj

[
∂S

∂t
+ H(qk,

∂S

∂qk
, t)

]
, j = 1, . . . , n,

which implies that the expression inside the brackets is a
function oft only,

∂S

∂t
+ H(qk,

∂S

∂qk
, t) = χ(t).

Thus,

S̃ = S −
t∫
χ(u) du

is a solution of the HJ equation. We can verify that this so-
lution is complete by differentiating (8) with respect toλj ,
which gives

∂Fi

∂pk

∂2S

∂λj∂qk
= δij .

Taking into account (3), this last equation shows that
det(∂2S/∂λj∂qk) 6= 0.

3. Examples

In this section we give some examples of the method pre-
sented above.
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3.1. One-dimensional harmonic oscillator

The function

F (q, p, t) = mωq sinωt + p cos ωt

already considered above [see (6)], is a constant of motion if
the Hamiltonian is given by

H =
p2

2m
+

mω2

2
q2, (9)

whereω is a constant. According to the results of the preced-
ing section, ifλ is a constant,

S = λq sec ωt− mω

2
q2 tan ωt + φ(t) (10)

must be a solution of the HJ equation for the Hamiltonian (9),
if the functionφ is appropriately chosen. A direct computa-
tion yields

1
2m

(
∂S

∂q

)2

+
mω2

2
q2 +

∂S

∂t
=

λ2

2m
sec2 ωt + φ′(t),

and, therefore, choosingφ(t) = −λ2 tan ωt/2mω, we obtain
the complete solution of the HJ equation

S = λq sec ωt−
(

λ2

2m
+

mω2

2
q2

)
tan ωt

ω
.

Note that, in this case,H is also a constant of motion
and, as pointed out above, the equation that determines the
eigenfunctions ofH is just the time-independent HJ equa-
tion. However, the constant of motion (6) leads to simpler
expressions. Since in this example (and the following) the
number of degrees of freedom,n, is equal to one, conditions
(2) and (3) are satisfied byany constant of motion,F , de-
pending onp, and any of these constants of motion can be
used in the application of the Liouville theorem.

3.2. Particle in a time-dependent force field

As a second example we consider the time-dependent Hamil-
tonian

H =
p2

2m
− ktq,

wherek is a constant. One can readily verify that

F = p− kt2

2

is a constant of motion and that the eigenfunctions ofF , i.e.,
the solutions of

∂S

∂q
− kt2

2
= λ,

are given by

S = λq +
kt2

2
q + φ(t), (11)

whereφ(t) is an arbitrary function oft only. Then

1
2m

(
∂S

∂q

)2

− kt2

2
+

∂S

∂t

=
λ2

2m
+

λkt2

2m
+

k2t4

8m
+ φ′(t),

hence, choosing

φ(t) = −λ2t

2m
− λkt3

6m
− k2t5

40m
,

(11) is a complete solution of the HJ equation (which is not
separable). (Incidentally, this solution coincides with the one
given by Eq. (18) of Ref. 8.)

3.3. Particle in two dimensions

As a final example we consider the Hamiltonian

H =
1

2m

[(
px +

eB

2c
y

)2

+
(

py − eB

2c
x

)2
]

, (12)

which corresponds to a charged particle of massm and elec-
tric chargee in a uniform magnetic fieldB. The functions

F1 =
1
2
(1 + cos ωt)px − 1

2
py sinωt

+
mω

4
x sin ωt− mω

4
(1− cos ωt)y, (13)

F2 =
1
2
(1 + cos ωt)py +

1
2
px sinωt

+
mω

4
y sinωt +

mω

4
(1− cosωt)x, (14)

whereω ≡ eB/mc, are constants of motion in involution,
which correspond to the values of the canonical momentapx

andpy, respectively, att = 0.
From (13) and (14) one finds that the common eigenfunc-

tions ofF1 andF2, with eigenvaluesλ1 andλ2, respectively,
are

S = λ1x + λ2y

+ tan
1
2
ωt

[
λ2x− λ1y − mω

4
(x2 + y2)

]
+ φ(t),

whereφ(t) is an arbitrary function oft only. Substituting this
expression into the HJ equation one finds thatS is a solution
of this equation if and only if

λ1
2 + λ2

2

2m
sec2 1

2
ωt + φ′(t) = 0,

hence,

S = λ1x + λ2y

−
[(

λ1 +
mω

2
y
)2

+
(
λ2 − mω

2
x
)2

]
tan 1

2ωt

mω

is a complete solution of the HJ equation.
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It should be clear that, in place of the constants of mo-
tion F1 andF2, defined by (13) and (14), any other pair of
constants of motion in involution satisfying (3) can be em-
ployed. The expression for the Hamiltonian (12) involves a
specific choice for the vector potential of the magnetic field;
this choice affects the form of the Hamilton–Jacobi equation
and its solutions, which, in turn, yield the solution of the
Hamilton equations in the gauge chosen.

4. Concluding remarks

As pointed out above, the formulation of the Liouville the-
orem given here makes use of terms analogous to those em-

ployed in the standard formalism of quantum mechanics, thus
providing another example of the parallelism between both
theories. Another advantage of the version of the Liouville
theorem given above is that its proof is shorter than those
usually presented in the textbooks.
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