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Anomalous photon emission from a solid
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The solution of the wave equation for electron in a solid can be formally singular on some line. The singularity is smeared out within the
distance∼ 10−11cm due to electron “vibrations” caused by its interaction with photons. Because of this localization, the large momentum
uncertainty results in the local increase of the electron kinetic energy∼ 1 MeV. This energy enhancement is compensated by the local
reduction of zero point energy of photons which can be considered as a potential well producing anomalous electron binding. The electron
in this well gets to its bottom emitting photons of the total energy∼ 1 MeV (anomalous emission). These effects can occur in a solid when
its surface is bombarded by ions with the energy∼ 1 keV. Photons, produced inside the solid, escape from it and can be detected in addition
to the usual Bremsstrahlung of incident ions.
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1. Introduction

An electron beam, irradiating a surface of a solid, produces
Bremsstrahlung and the transition radiation. See, for exam-
ple, Ref. 1. Irradiation of surfaces by ions may serve for vari-
ous technical purposes including electron emission, chemical
reactions, lithography, and ethichng [2, 3]. Bremsstrahlung
is also expected when ions collide the surface. It happens,
when charged particles bombard the surface of a solid an ad-
ditional (anomalous) mechanism of photons emission exists.
This mechanism is related to the electron-photon interaction
in a solid and the incident flux of charged particles just initi-
ates it.

The interaction of electrons with photons is weak. For
example, the radiative correction to the ground state energy
of electron in the Coulomb centerZe (the Lamb shift) is pro-
portional toZ2(e2/~c)3 [4]. In this case the electron is on
the distance~2/(me2Z) around the Coulomb center. Under
increase ofZ the electron wave function becomes more lo-
calized in space and radiative corrections are enhanced.

One cat put a general question about the strength of radia-
tive effects when the electron is strongly localized in space
due to some reasons. For example, Schrödinger equation
has the formal solution with the peak,ln r, on thez axis
(r2 = x2 + y2). This solution is not physical due to the
singularity atr → 0.

The simple question exists: what happens to that singu-
larity if to account for the electron interaction with photons?
Under this interaction the electron “vibrates”. Its mean dis-
placement〈~u〉 is zero but the mean squared displacement
〈u2〉 is finite. The finite〈u2〉 provides the Lamb shift since
the electron probes various parts of the Coulomb potential.

It happens that the singularity gets smeared over the re-
gion with the size

√
〈u2〉 ∼ 10−11 cm. Roughly speaking,

〈ln |~r+~u|〉 becomes not singular as a function ofr. That nar-
row but smooth distribution of the electron density results in
a large momentum uncertainty. This corresponds to the local

increase (∼ 1 MeV) of the electron kinetic energy close to
the line (thread) of the initial singularity.

The enhancement of the kinetic energy is compensated by
the local reduction of zero point energy of photons. The lat-
ter can be considered as the certain potential well producing
anomalous electron binding. The electron in this well gets to
its bottom emitting photons of the total energy∼ 1 MeV. Be-
ing escaped from the solid, those photons constitute anoma-
lous emission. Formation of the well, due to the reduction
of photon zero point energy, reminds the van der Waals phe-
nomenon when such a well is also created [5,6]. The forma-
tion of anomalous electron binding is detailed step by step in
Sec. 3.

There is an analogy with formation of hydrogen
molecule. Two hydrogen atoms, in the ground state each, are
acted by the attractive van der Waals force which brings them
together (until activation of covalent forces) from a large dis-
tance. In this process the sum of the atoms kinetic energy
and zero point energy of photons is conserved. Then the
emission of the energy of 4.72 eV (H2 binding energy) by
photons transfers the system to the ground state. As a result,
zero point photon energy is reduced by∼ 1 eV. Analogously,
in anomalous electron binding it is reduced by∼ 1 MeV. In
the both cases “energy from nothing” is emitted.

The electron state with anomalous binding is character-
ized, in contrast to the usual state, by the short range∼
10−11 cm. Therefore the perturbation, producing the anoma-
lous state, should be of the short spatial range. Otherwise the
proper matrix element is small. An incident charged particle
with the de Broglie wave length of∼ 10−11 cm, penetrated
inside the solid, produces the charge density of that spatial
range. This occurs due to interference of the incident and
reflected (from a lattice center) waves of the particle.

For ions of light elements such de Broglie length corre-
sponds to the energy of∼ 1 keV. For electron it would be
of ∼ 1 MeV. Using of ions is preferable. The ion of the en-
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ergy∼ 1 keV, colliding the surface of a solid, can initiate
the energy release (∼ 1 MeV) in the form of emitted photons
due to the reduction of zero point electromagnetic energy.
The intensity and energy spectrum of this anomalous emis-
sion essentially differs from Bremsstrahlung. This is a pure
electron-photon phenomenon.

2. Two Coulomb centers

We need a solution of the wave equation which is singular on
some line. In the Schrödinger formalism there is the obvi-
ous solution of that type which isln r at all z. In reality one
should deal with a singular line of a finite length. For this
reason, we consider, as the first step, the artificial situation
when the electron is in the field of two positive charges fixed
in the space.

2.1. Formalism

To study the electron in the Coulomb field of two positive
point charges at the pointsz = ±σ it is convenient, instead
of cylindrical coordinatesr =

√
x2 + y2, z, andϕ, to use

the elliptic onesξ, η, andϕ [7]

ξ, η =
r2 ± r1

2σ
. (1)

Herer1,2 =
√

(z ∓ σ)2 + r2 are distances to the Coulomb
centers shown in Fig. 1. The surface of a constantξ is the
ellipsoid

z2

σ2ξ2
+

r2

σ2(ξ2 − 1)
= 1 (2)

with the focuses atz = ±σ. The surface of a constantη is
the hyperboloid

z2

σ2η2
− r2

σ2(1− η2)
= 1 (3)

with the focuses at the same points. The coordinateξ takes
values from1 to∞ andη from−1 to 1. Intersections of the
surfaces (2) and (3) with the planey = 0 are shown in Fig. 1.

The Coulomb interaction potential is

U = −Ze2

r1
− Ze2

r2
= −2Ze2

σ

ξ

ξ2 − η2
, (4)

where Ze is the positive charge at each center. The
Schr̈odinger equation for the electron

− ~
2

2m

∂2ψ

∂ ~R2
+ Uψ = Eψ, (5)

whereR2 = r2 + z2, in elliptic coordinates takes the form

− ~2

2mσ2(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂ψ

∂ξ
+

∂

∂η
(1− η2)

∂ψ

∂η

]

− 2Ze2

σ

ξ

ξ2 − η2
ψ = Eψ. (6)

FIGURE 1. Intersections of surfaces of constant elliptic coordinates
ξ andη with the planey = 0 are shown. Two Coulomb centers are
at the pointsz = ±σ.

We consider an axially symmetric wave function.
Since the variables are separated it has the form
ψ(ξ, η) = ψ1(ξ)ψ2(η). One can introduce dimensionless
parametersν = −2mσ2E/~2 and p = 4Zσ/rB where
rB = ~2/(me2) is the Bohr radius.

After separation of variables the two Schrödinger equa-
tions are

− ∂

∂ξ
(ξ2 − 1)

∂ψ1

∂ξ
= (pξ + β − νξ2)ψ1 (7)

− ∂

∂ξ
(1− η2)

∂ψ2

∂η
= (νη2 − β)ψ2 , (8)

whereβ is some constant.
The variableη can be written asη = cos χ. Then Eq. (8)

has the form

1
sin χ

∂

∂χ

(
sin χ

∂ψ2

∂χ

)
= (β − ν cos2 χ)ψ2. (9)

The solution, non-singular atχ = 0, should be also non-
singular after continuation toχ = π. This is the condition to
choose the parameterβ for a givenν. When two Coulomb
centers coincide (σ = 0 and thereforeν = 0) that condition
turns toβ = −l(l + 1) as for Legendre polynomials [8]. In
that case the variableχ coincides with the azimuthal angleθ.

2.2. Close Coulomb centers

Below two close Coulomb centers are considered under the
condition σ ¿ rB . We study the state which is isotropic
(l = 0) in the limit σ = 0. At a finite σ there is the
small correction to the wave function which can be written
asψ2 = 1 + δψ2. Using the relation

sinχ
∂δψ2

∂χ
=

∫
dχ(β − ν cos2 χ) sin χ (10)
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one can obtain

δψ2 =
(ν

3
− β

)
ln

(
2 cos2

χ

2

)
− ν

6
sin2 χ. (11)

The solution (11) is finite atχ = 0 (η = 1). In order to get
it finite at χ = π (η = −1) it should beβ = ν/3. Note that
ν ∼ p2 ∼ σ2/r2

B are small.
At σ ¿ rB there is a small region of the sizeσ around

the centers in Fig. 1. This region corresponds toξ ∼ η ∼ 1.
The region of the order of the Bohr radiusrB is much larger
and relates to largeξ. We consider first this region,σ ¿ R.

2.2.1. Regionσ ¿ R

In Eq. (7) one can omitβ. In the limit 1 ¿ ξ Eq. (7) takes
the form

−∂2ψ1

∂ξ2
− 2

ξ

∂ψ1

∂ξ
− p

ξ
ψ1 = −νψ1, (12)

which coincides with the radial Schrödinger equation with
l = 0 in the Coulomb field of the point charge2Ze [8]. The
solution of (12), decaying on infinity and finite at small dis-
tances, corresponds to the eigenvalueν = p2/4. This value
relates to the ground state energy in the Coulomb field of the
point charge2Ze.

For our purposes one needs a solution which also decays
on infinity but is singular atr = 0 andz2 < σ2. To obtain
that one should write the solution of (12) in the known form
the confluent hypergeometric function [8]

ψ1(ξ) = (2ξ
√

ν)p/(2
√

ν)−1 exp(−ξ
√

ν)

×G

(
1− p

2
√

ν
,− p

2
√

ν
,−2ξ

√
ν

)
, (13)

where

G(α, β, v) = 1 +
αβ

1!v
+

α(α + 1)β(β + 1)
2!v2

+ ... (14)

At large distancesrB ¿ R (rB/σ ¿ ξ), as follows from
(13) - (14) and the definition (1),

ψ(r, z)=

(
4ZR

rB

√
E

E0

)√E/E0−1

exp

(
−2RZ

rB

√
E

E0

)
, (15)

whereE0 = −m(2Ze2)2/(2~2).
To get the solution at shorter distances one should use the

asymptotics of the function (13) atξ
√

ν ¿ 1 [8]. Thus at
small[1− p/(2

√
ν)] one can obtain from Eq. (13)

ψ1(ξ) = 1 +
(

1− p

2
√

ν

)
1

2ξ
√

ν
, 1 ¿ ξ ¿ rB/σ. (16)

2.2.2. RegionR ¿ rB

On the other hand, at not largeξ the left-hand side of Eq. (7)
is the principal one and

ψ1(ξ) = 1 +
1

4
√

ν

(
1− p

2
√

ν

)
ln

ξ + 1
ξ − 1

. (17)

The wave function (17) is the solution of the homogeneous
Eq. (7).ψ1 contains also the small corrections

δψ1 = −pξ

2
−

(
1− p

2
√

ν

)

×
[
ξ

4
ln

ξ + 1
ξ − 1

+
1
2

ln(ξ2 − 1)
]

(18)

which is the solution of the inhomogeneous Eq. (7) where in
the right-hand side one should keeppξψ1 only. Here instead
of ψ1 one has to substitute the expression (17). One can eas-
ily conclude thatδψ1 can be dropped under the condition

1 < ξ ¿ rB

σ

√
1− p

2
√

ν
, (19)

where the last part is supposed to be large. Eq. (17) goes over
into the form (16) when their applicability intervals, (16) and
(19), overlap.

The wave function along the line, connecting two
Coulomb centers in Fig. 1, now can be written at
|z2 − σ2|, r2 ¿ σ2 in the form

ψ(r, z) = 1− rB

16Zσ

(
1− E

E0

)

× ln
8σ2

z2 − σ2 +
√

(z2 − σ2)2 + 4σ2r2
. (20)

Equation (20) is also valid in the vicinity (r2 ¿ (σ2 − z2))
of the entire line (z2 < σ2) between the centers, where

ψ(r, z) = 1− rB

8Zσ

(
1− E

E0

)
ln

2
√

σ2 − z2

r
. (21)

2.2.3. Entire region

The wave function of the electron in the Coulomb field of
two positive point chargesZe exponentially decays at large
distances (15). But on the line, connecting two charges,ψ
has the logarithmic singularity (21) if the energy does not co-
incide with the eigenvalueE0. The absence of singularities
is a usual condition to determine an eigenvalue. The eigen-
valueE0 coincides with one in the Coulomb field of one point
charge2Ze. In the limit considered,σ ¿ rB , corrections to
that eigenvalue are small.

When the energy differs fromE0 the singular wave func-
tion is not physical at the first sight. But the situation is more
complicated as described in Sec. 3.
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3. Anomalous electron binding

The electron wave function between two nuclei in a solid also
can be of the type considered in Sec. 2. In a solid close to a
lattice site the wave function is of the type (20). The same
is valid for the lattice partner site. Between the partner sites
the wave function is logarithmically singular, as (21), along
the connecting line−σ < z < σ. In a real solidσ ∼ rB . In
a close vicinity (r ¿ σ) of the line, connecting two partner
sites, the wave function, with the logarithmic accuracy, can
be written in the form

ψ=





A(σ) ln[
√

(z−σ)2+r2+(z−σ)], |z − σ| ¿ σ

2A(z) ln r ,
√

σ2 − z2 ∼ σ

A(−σ) ln[
√

(z+σ)2+r2−(z+σ), |z+σ| ¿ σ

(22)

HereA(z) is the certain function accounting for exact forces
on the electron. The exact form of this function is not crucial
for our purposes. Properties of the singularity line (thread)
between two nuclei are considered below.

Equation (22) corresponds to the Schrödinger formal-
ism which is applicable atrc < r whererc = ~/(mc) '
3.86 × 10−11cm is the electron Compton length [4]. At
r < rc one should use Dirac equations (Appendix A). In this
case, besides the termln r, the wave function also contains
the termrc/r which is small atrc ¿ r (A.6). So the expres-
sion (22) corresponds to distancesr and|σ2 − z2|1/2 larger
thanrc.

3.1. Usual radiative effects

Usually the wave function, as a solution of quantum mechani-
cal equation, is smooth and does not have singularities. Since
electron-photon interactionHe−ph is weak radiative effects
are also weak.

Due to the interaction with electromagnetic zero point os-
cillations the electron “vibrates” with the amplitude~u and be-
comes spatially smeared [4]. The mean displacement〈~u〉 is
zero and the mean squared displacementr2

T = 〈u2〉 is finite.
The evaluation ofrT is done in Appendix B.

Radiative corrections to electron energy levels in atom
are small. The electron, due to the uncertainty in its posi-
tion, probes various parts of the electrostatic potentialV (~R)
and therefore electron energy levels becomes shifted (Lamb
shift [4]). Besides the rigorous calculations of the Lamb shift
one can use the approximate method [9]. In this approach the
electron moves in the effective potential〈V (~R+~u)〉 averaged
on fast electron motions~u. Expansion up to the second order
in ~u results in

〈V (~R + ~u)〉 ' V (~R) +
〈u2〉
6
∇2V (~R). (23)

The second term in (23) produces the Lamb shift of the elec-
tron energy level.

FIGURE 2. (a) The standard situation of a smooth electron wave
function. The total energy is the sum of electron oneE and the in-
finite photon contribution

∑
~ω/2. (b) The thread state of the same

energy. The enhancement of the electron energy inside the thread
is compensated by the reduction of the zero point electromagnetic
energy at the same region.

3.2. No electron-photon interaction

One can apply the quantum mechanical description to the
electron-photons system since photons are an infinite set of
harmonic oscillators. This method was proposed in Ref. 10
and developed in Ref. 11 and further publications.

Let us formally suppose the electron-photon interaction
to be zero,He−ph = 0. Then the total energy is the sum of
the electron energyE (5) and the zero point photon energy∑
~ω/2. This is shown schematically in Fig. 2(a). The sta-

tionary state of the system with that total energy is described
by the wave function

ψ0 =
(

Φ
Θ

)
ψph , (24)

where the electron bispinor is multiplied by the multi-
dimensional photon function. With spinors of Appendix A
this is a formally correct solution of the problem at allr
exceptingr = 0 which corresponds to the singularity line
(thread).

3.3. Far from the thread

The finiteHe−ph turns the wave function (24) into exact one,
ψ. In this caseψ (asψ0) also corresponds to a stationary state
of the total Hamiltonian with the certain total energy. The
role ofHe−ph is minor far from the thread. In that region the
difference betweenψ andψ0 is not significant.
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FIGURE 3. Features of the thread state aty = 0 and constantη.
Dashed curves correspond to the absence of thread. Thin vertical
lines restrict the thread region where the wave function and the po-
tential should not be interpreted literally. (a) Thread wave function.
(b) Potential well. Energy levels in the potential well in the absence
of thread are shown by dashed horizontal lines.

3.4. Close to the thread

One can follow the exact wave functionψ approaching the
line r = 0. Due to the average on photon coordinates [10,11],
the wave function, as a function ofr, becomes smeared
around the singularity line. This phenomenon is generic with
the Lamb shift. In the both cases the electron “vibrates” be-
cause of the interaction with photons.

3.5. Density peak at the thread

The smeared singularity relates to a narrow but smooth peak,
shown in Fig. 3(a), of the electron density around the thread
line where the density would be singular atHe−ph = 0. This
corresponds to the local enhancement of the electron kinetic
energy

√
(mc2)2 + (~c/rT )2 − mc2 ' 1.97 MeV in the

thread region. The estimate ofrT in Appendix B is used.

3.6. Thread well

Since the state is stationary (with the certain total energy) the
total electron-photon energy far from the thread is approxi-
mately the sum of electron one and zero point energy of pho-
tons as in Fig. 2(a). Close to the thread the same energy is
redistributed between the locally enhanced kinetic energy of
the electron and the local reduction of zero point energy of
photons Fig. 2(b). The latter can be considered as the certain
potential well sketched in Fig. 3(b). This well, as well as the

electron wave function in Fig. 3(a), should not be interpreted
literally in the thread region. In that region single particle
quantum mechanics is not applicable even approximately.

3.6.1. Analogy with the van der Waals phenomenon

Analogous reduction of zero point photon energy occurs in
formation of van der Waals forces [5, 6]. The essence of the
van der Waals phenomenon is a spatial dependence of zero
point energy analogously to Fig. 2(b). It is mostly clear from
the simplest example of two parallel plates when the pho-
ton spectrum becomes discreteω = c(k2 + π2n2/R2)1/2.
HereR is the distance between two plates and~k is the two-
dimensional wave vector parallel to them. The zero point en-
ergy

∑
~ω/2 is decreased compared to the case ofR →∞.

So the spatial restriction locally reduces the zero point
electromagnetic energy. In this manner one can also explain
the reduction of zero point energy of photons near the thread.
Within rT smearing of the singularity is a strong electron-
photon effect when the perturbation theory is not applica-
ble. It is clear from the simple argument that an expansion
of ψ(~r + ~u) on~u is impossible in the singular case.

Due to that, there is a geometrical restriction for pho-
tons. This is roughly a tube of the radiusrT . Inside this
tube the zero point energy is reduced. This reduction, which
should locally compensate the kinetic energy 1.97 MeV, is
roughly estimated as−~c/rT ∼ −2.43 Mev. This value can
be treated as a depth of the potential well in Fig. 3(b).

3.7. Anomalous electron binding

Generally, a discrete energy spectrum in a well is a conse-
quence of the absence of a singularity in a solution of wave
equations at small distances. In our case such condition is
not imposed. According to Eqs. (20) and (21), the singular
solution of the wave equation exists at any non-zero prelog-
arithmic factor(1 − E/E0). HereE0 is the discrete energy
eigenvalue. For this reason the energy spectrum of the thread
is continuous. This is not surprising since a discrete spec-
trum of a particle turns into a continuous one under interac-
tion with a bath.

Qualitatively Fig. 3 reminds a wave function (a) of a par-
ticle localized in the potential well (b). Usually the electron
energyE has a typical value of (1-10) eV in solids. This cor-
responds to the top of the well. The electron emits photons
to get to the bottom of the well. The emitted energy is on the
order of 2 MeV and the electron binding energy

EB ' ~c
rT

(25)

is on the same order.
Besides that general estimate, the coordinate dependence

of EB is significant. The mean squared displacement of
the electron〈u2〉 is determined by the logarithmic cut offΩ
at low frequencies (B.9). The meaning ofΩ is clear from
Eq. (B.1). This frequency increases with increasing of the
external potential. In other words, “vibration” amplitude of
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the electron depends on the local strength of the Coulomb
potential at each point of the space. Therefore one can ap-
proximately ascribe the coordinate dependence toΩ. This
is qualitatively confirmed by the exact results for the Lamb
shift [4] if to extract〈u2〉 using Eq. (23). The low frequency
logarithmic cut off becomes smaller for higher atomic levels,
that is for larger distances.

Then, according to (25) and (B.11), the potential, probed
by the electron, is

−EB(R) ' −mc2

√
π~c
2e2

[
ln

mc2

~Ω(R)

]−1/2

. (26)

The rough approach (26) provides just the tendency of the
spatial dependence ofEB .

The binding energyEB increases upon approaching each
of two nuclei in Fig. 1. Therefore the energy emitted in the
form of photons is expected to be more than 2 MeV follow-
ing from the simple estimate. As a result, the ground state
corresponds to the electron localized in the vicinity of a nu-
cleus. The radius of such anomalous atom is no larger than
rT ' 10−11cm.

3.8. How to create anomalous photon emission

The typical range of the electron state in solids10−8cm
is comparable with the Bohr radiusrB . The range of the
anomalous bound state is on the order ofrT ∼ 10−11cm.
This estimate also relates to the diameter of the thread state
of the electron. This thread state, before photon emission,
corresponds to the usual electron energy in solids. Therefore
the perturbation, producing the thread from the usual state,
should be varied on the distance ofrT .

The charge density, varying in space on the typical dis-
tance rT , can be created by an incident charged particle
which is reflected by lattice sites of the solid. The result-
ing density, related to such particle, is due to interference of
its incident and reflected waves. Omitting details, this charge
density is approximately proportional tocos(2R

√
2MEp/~)

whereM is the particle mass andEp is its energy. For exam-
ple, if to use deuterons as light ions,M ' 3.346 × 10−24g,
one can estimate

charge density ∼ cos
[
1.96

R

rT

√
Ep(keV)

]
, (27)

whererT is taken to be10−11cm. If to use electrons, the
same wave length corresponds to high electron energy on the
order of 1 MeV.

We see that one can bombard the surface of the solid
by ions with the energy of approximately 1 keV to produce
anomalous electron binding and photon emission within the
depth of ions penetration.

The charge density of the anomalous atom (Sec. 3.7),
varying on the distance of10−11cm, can also serve as a per-
turbation for formation of anomalous state of other electrons.
One can consider a possibility when anomalous atoms remain
the only source for the photon emission after stopping surface
irradiation by incident ions.

4. Description of anomalous binding in quan-
tum electrodynamics

The link from phenomena considered to the standard formal-
ism of quantum electrodynamics is in the form of the exact
electron propagator [4]

G(ε, ~R, ~R′) =
∑

ν

〈0|ψ(~R)|ν〉〈ν|ψ̄(~R′)|0〉
ε− εν + i0

= G0 + GB . (28)

In this equationεν is the set of exact (with all radiative cor-
rections) electron energy levels in the external field. In (28)
the analogous positron part and bispinor indices are dropped.
The propagator (28) can be a basis, for example, for calcula-
tions of small radiative corrections to discrete energy levels.

Besides the partG0, related to the usual energy levels, the
sum (28) contains also the partGB due to the energy spec-
trum in the deep well in Fig. 3(b). So the electron density,
corresponding to the propagator (28), has the peak of the type
shown in Fig. 3(a).

Unlike the Lamb shift, it is impossible to apply the pertur-
bation theory to study smearing of the singularity. This phe-
nomenon, with an essential electron-photon influence, corre-
sponds to the non-perturbative partGB in the electron propa-
gator. So the thread state does not follow from the usual one,
of the same energy, through perturbation theory with respect
to the electron-photon interaction.

If to increaseHe−ph, formally starting with the usual
state of free electron, the state of this type continuously exists
at smallHe−ph. This means that the usual state is separated

FIGURE 4. Scheme of the experimental setup for observation of
anomalous photon emission.
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by a barrier from the thread one whose fraction is exponen-
tially small. Analogously the exact thread state contains the
exponentially small part of usual one.

In the absence of an external field the propagator
G(ε, ~R, ~R) does not depend on~R and the electron density
is homogeneous. This corresponds to the spectral repre-
sentation of the exact electron propagator (with no external
fields) in quantum electrodynamics. Without an external field
(Ω = 0, Appendix B) the mean squared displacement (B.9)
becomes infinite. In this approach, according to the general
theory, the state is homogeneous since the singular solution
of the wave equation is smeared over the entire space.

5. Discussions

Irradiation of the surface of a solid by ions results first in
Bremsstrahlung due to ion braking by the surface. In addition
to this, there is a more delicate phenomenon of anomalous
photon emission. The underlying mechanism is of electron-
photon nature. The point is that the electron density can
be formally singular on some line if to ignore the electron-
photon interaction. This interaction leads to smearing of the
singularity within the narrow cylinder (thread). The resulting
state is physical.

The narrow but smooth peak of the electron density on the
thread is associated with the narrow(∼ 10−11cm) and deep
(∼ 1MeV) potential well in the thread region. That well is
formed by the spatial redistribution of zero point electromag-
netic energy. The electron state of a usual energy inside the
solid corresponds to upper states in the well. The electron
can emit energy in the form of photons getting to the bottom
of the well. The total energy emitted is in the range of MeV.
This is anomalous photon emission from the solid which can
be detected outside it.

The source of high-energy photons is of the electron-
photon origin

mc2

√
~c
e2
' 6 MeV. (29)

The energy generation occurs due to the reduction of zero
point photon energy (from the photon vacuum of the infinite
energy

∑
~ω/2).

The direct way to form the thread state from the usual one
is to use an external perturbation rapidly varying in space (on
the distance of10−11cm). In this case its matrix element be-
tween those states is not small, Sec. 3.7. The role of such per-
turbation can be played by the incident flux of ions directed
to the surface of a solid as shown in Fig. 4.

The spatially oscillating charge density is produced in-
side the solid by a superposition of the incident and reflected
(by a lattice site ) waves of the incident ion. The matrix el-
ement of that perturbation provides thread formation with a
not small probability. The process in Fig. 4 is characterized
by the generation of photons of the energy up to a few MeV.
These photons are emitted from the surface of the solid and
can be registered. The intensity and the energy spectrum of

emitted photons depends on processes inside the solid includ-
ing energy losses. The energy of incident ions around 1 keV
is optimal for the creation of electron binding. At much lower
and much higher energies the effect is reduced.

After the photon emission the electron gets to the bottom
of the deep well and remains on the distance of10−11cm
from the nucleus. The charge density of such anomalous
atom (Sec. 3.7), varying on the distance of10−11cm, can also
serve as a perturbation for formation of anomalous state of
other electrons. One can consider a possibility when anoma-
lous atoms remain the only source for the photon emission
after stopping surface irradiation by incident ions.

High energy photons, generated inside the solid, can
cause nuclear transmutations of lattice nuclei. Misinterpreta-
tion of such experiments is possible by ascribing the energy
source to nuclear reactions. These reactions are impossible
since the energy of incident particles (∼ 1keV) is too low.

6. Conclusions

The ion of the energy∼ 1 keV, colliding the surface of a
solid, can initiate the energy release (∼ 1 MeV) in the form
of emitted photons (anomalous emission) due to the reduc-
tion of zero point electromagnetic energy. The intensity and
the energy spectrum of anomalous emission essentially dif-
fers from Bremsstrahlung. This is a pure electron-photon
phenomenon.

Appendix

A. Singular solution of Dirac equations

The static Schr̈odinger equation formally has the solutionln r
in cylindrical coordinates. Below we establish the continua-
tion of this singular solution to the regionr < rc where one
should use the Dirac formalism. In this case the wave func-
tion is bispinor consisting of two spinorsϕ andχ [4]. Since
we are interested by the singular wave functions (large kinetic
energy part) one can ignore, as the first step, the potential en-
ergy and consider free electron Dirac equations

(ε + i~c~̂σ∇)ϕ = mc2χ, (ε− i~c~̂σ∇)χ = mc2ϕ. (A.1)

Hereε is the total relativistic energy and̂~σ are the Pauli ma-
trices [4]. We consider for simplicity two dimensional case
~r = {x, y}whenz derivatives are zero. The solution of equa-
tions (A.1) is

ϕ(~r) = (ε + mc2 − i~c~̂σ∇)F (~r)

χ(~r) = (ε + mc2 + i~c~̂σ∇)F (~r), (A.2)

where one accounts for the relation(~̂σ∇)(~̂σ∇) = ∇2 and the
spinor functionF (~r) satisfies the equation

(ε2 + ~2c2∇2)F = m2c4F. (A.3)
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The solution of (A.3) is the Neumann function [12]

F (~r) =
πϕ0

4
N0

( r

~c
√

ε2 −m2c4
)

(A.4)

with the asymptoticsN0(z) ' (2/π) ln z at small argument.
ϕ0 is some constant spinor. Accordingly, at short distances
two spinors are

ϕ(~r) =
(

ε + mc2

2
ln r − i~c

2r2
~̂σ~r

)
ϕ0,

χ(~r) =
(

ε + mc2

2
ln r +

i~c
2r2

~̂σ~r

)
ϕ0. (A.5)

In the standard representationΦ = ϕ + χ andΘ = ϕ− χ

Φ(~r) = (ε + mc2)ϕ0 ln r , Θ(~r) = − i~c
r2

~̂σ~r ϕ0. (A.6)

At distancesrc < r (non-relativistic limit)Θ is small com-
pared toΦ and the wave function is the usual spinorΦ.

If the electron is not free but is acted by some potential
V (~r), one should substituteε by ε − V (~r) in Eqs. (A.1). In
this case the parts at short distances remains of the same type
as (A.5) and (A.6) with the substitutionε → ε− V (0).

B. Estimate of the thread radius

Unlike the Lamb shift calculations, it is impossible to ap-
ply the perturbation theory to study smearing of a singular
wave function of the electron. For this reason, we use below
the approximate method just to estimate the electron mean
squared displacement [9]. The method is successfully ap-
plied for study of the Lamb shift. In this method the electron
motion under the action of zero point oscillations can be de-
scribed by the equation

m
d2~u

dt2
+ mΩ2~u = −e~E , (B.1)

wherem is the electron mass andΩ ∼ me4/~3 is the electron
rotation frequency in the atom.

One can use the Fourier expansion

~u(~R, t) =
∑

k

~uk exp(i~k ~R− iωkt) (B.2)

and analogous one for the fluctuating electric field~E(~R, t).
Since~u(~R, t) is real it should be~u∗k = ~u−k andω−k = −ωk

in the expansion (B.2). The conditionuk ¿ 1 has to be held
in this method. The solution of Eq. (B.1) is of the form

~uk =
e~Ek

2m|ωk|
(

1
|ωk|+ Ω

+
1

|ωk| − Ω

)
. (B.3)

According to the quantum mechanical approach, Eq. (B.3)
should be modified as

~uk =
e~Ek

2m|ωk|
(√

1 + nk

|ωk|+ Ω
+

√
nk

|ωk| − Ω

)
, (B.4)

wherenk is the number of quanta, the first term relates to the
quanta emission, and the second one to the absorption.

The mean squared displacement is

〈u2〉 =
∫

d3R

V
〈u2〉 =

∑

k

〈|~uk|2〉, (B.5)

whereV is the volume of the system. Since in our case
nk = 0, the mean squared displacement has the form

〈u2〉 =
e2

4m2

∑

k

〈|~Ek|2〉
ω2

k(|ωk|+ Ω)2
. (B.6)

The energy of zero point oscillations is
∫

d3R

4π
〈E2〉 =

V

4π

∑

k

〈|~Ek|2〉 =
∑

k

~|ωk|
2

. (B.7)

It follows from here that〈|~Ek|2〉 = 2π~|ωk|/V . Using the
summation rule

∑

k

= 2
∫

4πk2dkV

(2π)3
(B.8)

(the coefficient 2 accounts for two photon polarizations) and
the relationωk = ck, one can obtain from Eq. (B.6) [9]

〈u2〉 =
r2
B

2π

(
e2

~c

)3 ωmax∫

0

ωdω

(ω + Ω)2

=
r2
c

2π

e2

~c
ln

mc2

~Ω
, (B.9)

where rc = ~/(mc) ' 3.86 × 10−11cm is the electron
Compton length. The upper limitωmax is determined by the
condition of non-relativistic motion, that isωmax ' mc2/~.
In the relativistic region~uk decreases due to the enhance-
ment of the relativistic mass. The exact cut offΩ is not
crucial for the estimate. The applicability condition of the
approach used〈u 2〉k2

max ∼ 〈u 2〉/r2
c ¿ 1 is valid since

〈u 2〉/r2
c ∼ e2/(~c).

The mean squared electron displacement can be also eval-
uated from the known expression for the Lamb shiftδEL [4].
As follows from Eq. (23),

δEL =
〈u2〉
6

∫
ψ∗(~R)∇2V (~R)ψ(~R)d3R. (B.10)

Since∇2V (~R) = 4πe2δ(~R) the result depends on the wave
function at~R = 0. For the ground state of the hydrogen atom
|ψ(0)|2 = 1/(πr3

B). Using (B.10) and the exact value of the
Lamb shift [4], one can obtain

rT =
√
〈u2〉 = rc

√
2e2

π~c
ln

mc2

~Ω

= rc

√
4e2

π~c
ln
~c
e2

. (B.11)

The expression (B.9) is four times less than the more exact
estimate following from (B.11). We use (B.11) for the mean
squared electron displacement. As follows from Eq. (B.11),
rT ' 0.21 rc ' 0.81× 10−11 cm.
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