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Anomalous photon emission from a solid
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The solution of the wave equation for electron in a solid can be formally singular on some line. The singularity is smeared out within the
distance~ 10~ *'cm due to electron “vibrations” caused by its interaction with photons. Because of this localization, the large momentum
uncertainty results in the local increase of the electron kinetic enerdyMeV. This energy enhancement is compensated by the local
reduction of zero point energy of photons which can be considered as a potential well producing anomalous electron binding. The electron
in this well gets to its bottom emitting photons of the total energy MeV (anomalous emission). These effects can occur in a solid when

its surface is bombarded by ions with the energy keV. Photons, produced inside the solid, escape from it and can be detected in addition

to the usual Bremsstrahlung of incident ions.
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1. Introduction increase £ 1 MeV) of the electron kinetic energy close to
the line (thread) of the initial singularity.

An electron beam, irradiating a surface of a solid, produces The enhancement of the kinetic energy is compensated by

Blrerrl;ss;trfhllun%_a?d th? traP3|t|onbrqd|at|on. See, fc;r €XaM 6 |ocal reduction of zero point energy of photons. The lat-
pe, Rel. 1. frradiation of surtaces by 1ons may Seve Ior varlyg - .5 e considered as the certain potential well producing

. . . L L
ous t?Cth.al purposes |nclud|n_g electron emission, ChemIC%Fnomalous electron binding. The electron in this well gets to
.reactlons, lithography, gnd ethlqhng [2,3]. Bremsstrahlunqts bottom emitting photons of the total energyl MeV. Be-
is also expected when lons collide the surface. It h_appensl‘, g escaped from the solid, those photons constitute anoma-
when charged particles bombard the surface of a solid an a

" . o . “tous emission. Formation of the well, due to the reduction
ditional (anomalous) mechanism of photons emission eX|stsof photon zero point energy, reminds the van der Waals phe-

This mechanism is related to the electron-photon interaction - \vhan such a well is also created [5,6]. The forma-
in a solid and the incident flux of charged particles just initi- tion of anomalous electron binding is detailed step by step in

ates it. Sec. 3
The interaction of electrons with photons is weak. For . _ _ i
There is an analogy with formation of hydrogen

example, the radiative correction to the ground state energy .
of electron in the Coulomb centéfe (the Lamb shift) is pro- molecule. Two hydrogen atoms, in the grounq state each, are
portional toZ2(¢2/hc)? [4]. In this case the electron is on acted by the attractive van der Waals force which brings them

the distancéi2/(me2Z) around the Coulomb center. Under together (until activation of covalent forces) from a large dis-

increase ofZ the electron wave function becomes more |o_tandce. In this process thfe shum of the atoms kgetlchenergy
calized in space and radiative corrections are enhanced. ~@nd Zero point energy of photons is conserved. Then the

One cat put a general question about the strength of radia?—'”niSSion of the energy of 4.72 e¥i{ binding energy) by

tive effects when the electron is strongly localized in spacep hoton§ transfers the sysFem to the ground state. As a result,
due to some reasons. For example, 8dimger equation zero point photon energy is reduced-byl eV. Analogously,

has the formal solution with the peainr on the = axis in anomalous electron binding it is reduced 4yl MeV. In

(2 = 22 + y?). This solution is not ph;/sical due to the the both cases “energy from nothing” is emitted.

singularity at — 0. The electron state with anomalous binding is character-

The simple question exists: what happens to that singuzed, in contrast to the usual state, by the short rarge
larity if to account for the electron interaction with photons? 10~ cm. Therefore the perturbation, producing the anoma-
Under this interaction the electron “vibrates”. Its mean dis-lous state, should be of the short spatial range. Otherwise the
p|acement<ﬁ> is Zero but the mean Squared disp|acemenpr0per matl’iX element iS Sma”. An inCident Charged pal’ticle
(u?) is finite. The finite(u2) provides the Lamb shift since With the de Broglie wave length of 107" cm, penetrated
the electron probes various parts of the Coulomb potential. inside the solid, produces the charge density of that spatial

It happens that the Singu|a|’ity gets smeared over the réﬁnge. This OCCUrS.due to interference of the |nC|dent and
gion with the size\/(u2) ~ 10~!* cm. Roughly speaking, reflected (from a lattice center) waves of the particle.

(In |7+ |) becomes not singular as a functiorrofThat nar- For ions of light elements such de Broglie length corre-
row but smooth distribution of the electron density results insponds to the energy ef 1 keV. For electron it would be
a large momentum uncertainty. This corresponds to the locaif ~ 1 MeV. Using of ions is preferable. The ion of the en-
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ergy ~ 1 keV, colliding the surface of a solid, can initiate
the energy release{(1 MeV) in the form of emitted photons

due to the reduction of zero point electromagnetic energy.
The intensity and energy spectrum of this anomalous emis-
sion essentially differs from Bremsstrahlung. This is a pure

electron-photon phenomenon.

2. Two Coulomb centers

We need a solution of the wave equation which is singular on

some line. In the Scidinger formalism there is the obvi-
ous solution of that type which isir at all z. In reality one
should deal with a singular line of a finite length. For this

reason, we consider, as the first step, the artificial situation
when the electron is in the field of two positive charges fixed

in the space.

2.1. Formalism

To study the electron in the Coulomb field of two positive
point charges at the points= +o¢ it is convenient, instead
of cylindrical coordinates = +/x2 + 42, 2z, andyp, to use
the elliptic oneg, n, andy [7]

T9 + T1

§&n= 5 "

)

Herer; o = /(2 ¥ 0)2 + r2 are distances to the Coulomb
centers shown in Fig. 1. The surface of a constars the
ellipsoid

22 7“2

2
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with the focuses at = +o¢. The surface of a constantis
the hyperboloid

=1
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with the focuses at the same points. The coordigatekes

values froml to oo andn from —1 to 1. Intersections of the

surfaces (2) and (3) with the plape= 0 are shown in Fig. 1.
The Coulomb interaction potential is

®3)

22

o _Z¢_Ze
2

27Ze? ¢
o &2 —n?’

(4)

where Ze is the positive charge at each center.
Schibdinger equation for the electron

L
2m §R2

+ Uy = Ev, (5)

whereR? = r2 + 22, in elliptic coordinates takes the form

h2 0 9 aw b ) a¢
C 2mo?(&2 —p?) 875(5—1)8—5-1—87’(1_,])87”
27e%2 &€ B
B o €2 — an - E’(/}' (6)
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FIGURE 1. Intersections of surfaces of constant elliptic coordinates
& andn with the planey = 0 are shown. Two Coulomb centers are
at the points: = +o.

We consider an axially symmetric wave function.
Since the variables are separated it has the form
P(&,n) = ¥1(&)Y2(n). One can introduce dimensionless
parametersy = —2mo?E/h?> andp = 4Zo/rp where
rp = h?/(me?) is the Bohr radius.

After separation of variables the two Sodinger equa-
tions are

oY

_375( 2_1)87g = (p& + B — v€ )y (7)
0 0,
_875(1_772)377] = (vn? = By, (8)

whereg is some constant.
The variable) can be written ag = cos x. Then Eq. (8)
has the form

The solution, non-singular at = 0, should be also non-
singular after continuation t9 = «. This is the condition to
choose the parametérfor a givenv. When two Coulomb
centers coincides( = 0 and therefores = 0) that condition
turns tos = —I(I + 1) as for Legendre polynomials [8]. In
that case the variable coincides with the azimuthal angle

1L 9 sin y ——
sin x Ox X(‘)x

(B —veos® x)v2.  (9)

2.2. Close Coulomb centers

Below two close Coulomb centers are considered under the
conditionoc <« rp. We study the state which is isotropic
{/ 0) in the limit ¢ = 0. At a finite o there is the
small correction to the wave function which can be written
asys = 1 4 dh. Using the relation

051y
ox

(10)

sin y

= /dx(ﬁ — veos? x) sin x
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ANOMALOUS PHOTON EMISSION FROM A SOLID 289

one can obtain The wave function (17) is the solution of the homogeneous
Eq. (7).91 contains also the small corrections
Sihg = (— — ﬁ) In (2 cos? X) — Zsin? x-  (11) a-(7)-v1
2 6
The solution (11) is finite at = 0 (p = 1). In order to get Sipy = g [P
it finite at y = 7 (n = —1) it should be3 = /3. Note that 1= 77 2,V

v~ p?~c?/ry are small.

At 0 < rp there is a small region of the sizearound X [51 §+1 + 71 (€2 — 1)] (18)
the centers in Fig. 1. This region correspondg te n ~ 1. 4 &-1
The region of the order of the Bohr raditg is much larger

and relates to larggé. We consider first this regiom, < R. which is the solution of the inhomogeneous Eq. (7) where in
. the right-hand side one should keefa/;, only. Here instead
2.2.1. Regiow < R of ¢); one has to substitute the expression (17). One can eas-

il | th th iti
In Eq. (7) one can omiB. In the limit1 <« £ Eq. (7) takes lly conclude thavy, can be dropped under the condition

the form
2 B D

788521728871/275% i (12) 1<§<<0 1 Nk (19)
which coincides with the radial Sabulinger equation with
I = 0in the Coulomb field of the point char@Ze [8]. The
solution of (12), decaying on infinity and finite at small dis-
tances, corresponds to the eigenvatlue p?/4. This value
relates to the ground state energy in the Coulomb field of the The wave function along the line, connecting two
point charge2Ze. Coulomb centers in Fig. 1, now can be written at

For our purposes one needs a solution which also decays® — 02|, 7* < o2 in the form

on infinity but is singular at = 0 andz? < ¢2. To obtain
that one should write the solution of (12) in the known form

where the last part is supposed to be large. Eq. (17) goes over
into the form (16) when their applicability intervals, (16) and
(19), overlap.

i : B (4 E
the confluent hypergeometric function [8] U(r,z) =1 670 (1 Eo>
Y1 (€) = (26V)P BV  exp(—£ /) 802
) x In T T (20)
xG (1— NGL ﬁ —25[) (13)
where Equation (20) is also valid in the vicinity't < (02 — 2?))
1 1 of the entire line £2 < o02) between the centers, where
GlayBv) =1+ 28 4 et DB+ 1) (14)
1l 21p2
At large distancesg < R (rg/o < &), as follows from W) =1— 8 (1 _ E) I 2V o — 22 @
(13) - (14) and the definition (1), ’ 870 E,

4 AZR VIR (R F 15
Y(r,z)= . Eo P\ == 5 | (15)
whereEy = —m(27Z¢2)?/(2h?).

To get the solution at shorter distances one should use thene wave function of the electron in the Coulomb field of
asymptotics of the function (13) gt/v < 1[8]. Thus at  two positive point chargege exponentially decays at large
small[1 — p/(2/v)] one can obtain from Eg. (13) distances (15). But on the line, connecting two charges,

1 has the logarithmic singularity (21) if the energy does not co-
P1(&) =1+ <1 - M) w , 1< rp/o. (16) incide with the eigenvalu&,. The absence of singularities
is a usual condition to determine an eigenvalue. The eigen-
2.2.2. RegiomR < rp valueE, coincides with one in the Coulomb field of one point
charge2Ze. In the limit considereds < rpg, corrections to
On the other hand, at not largethe left-hand side of Eq. (7) that eigenvalue are small.
is the principal one and

2.2.3. Entire region

When the energy differs from, the singular wave func-
1 ( D > ) E+1 tion is not physical at the first sight. But the situation is more
“37

1) =1+ NG (7 complicated as described in Sec. 3.
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3. Anomalous electron binding electron energy

The electron wave function between two nuclei in a solid also
can be of the type considered in Sec. 2. In a solid close to a
lattice site the wave function is of the type (20). The same
is valid for the lattice partner site. Between the partner sites levels
the wave function is logarithmically singular, as (21), along

the connecting line-o < z < o. In areal solidc ~ rg. In X

a close vicinity ¢ <« o) of the line, connecting two partner (a)

sites, the wave function, with the logarithmic accuracy, can
be written in the form electrOIAenergy
A(o)In[\/(2—0)2+12+(2—0)], |z—0| K0

=1 2A(2)Inr, Vo2 =22 ~0 (22) E

A(=o)In[/(z+0)2+12—(24+0), |z+0| < o

photon

Here A(z) is the certain function accounting for exact forces X

on the electron. The exact form of this function is not crucial (b) 0

for our purposes. Properties of the singularity line (thread)

between two nuclei are considered below. FIGURE 2. (a) The standard situation of a smooth electron wave

; iy function. The total energy is the sum of electron dnhand the in-
Equation (22) corresponds to the Satlinger formal- Qo
ism which is applicable at, < r wherer, — h/(mc) ~ finite photon contributiory hw/2. (b) The thread state of the same

. . Th h t of the elect inside the thread
3.86 x 10~cm is the electron Compton length [4]. At energy. 1he enfancemen o fne Eiection energy insige the mrea

- . . _is compensated by the reduction of the zero point electromagnetic
r < r. one should use Dirac equations (Appendix A). In this energy at the same region.
case, besides the termr, the wave function also contains
the termyr. /r which is small at. < r (A.6). So the expres-
sion (22) corresponds to distanceand |02 — 22|'/? larger

3.2. No electron-photon interaction
thanr..

One can apply the quantum mechanical description to the
3.1. Usual radiative effects electron-photons system since photons are an infinite set of
harmonic oscillators. This method was proposed in Ref. 10

Usually the wave function, as a solution of quantum mechaniand developed in Ref. 11 and further publications.

cal equation, is smooth and does not have singularities. Since Let us formally suppose the electron-photon interaction

electron-photon interactiofl, ,, is weak radiative effects to be zero,H._,, = 0. Then the total energy is the sum of

are also weak. the electron energy (5) and the zero point photon energy
Due to the interaction with electromagnetic zero point os-2_ /2. This is shown schematically in Fig. 2(a). The sta-

cillations the electron “vibrates” with the amplitudeand be- ~ tionary state of the system with that total energy is described

comes spatially smeared [4]. The mean displacentgnis Py the wave function

zero and the mean squared displacemént= (u?) is finite. &

The evaluation of is done in Appendix B. WPy = < o ) Yph (24)
Radiative corrections to electron energy levels in atom

are small. The electron, due to the uncertainty in its posiyyhere the electron bispinor is multiplied by the multi-
tion, probes various parts of the electrostatic poteffiak)  gimensional photon function. With spinors of Appendix A
and therefore electron energy levels becomes shifted (Lamfp,is is a formally correct solution of the problem at all
shift [4]). Besides the rigorous calculations of the Lamb Shiﬁexceptingr — 0 which corresponds to the singularity line
one can use the approximate method [9]. In this approach th&hread).

electron moves in the effective potent{® (R+«)) averaged

on fast electron motiong. Expansion up to the second order

in & results in 3.3. Far from the thread

. R N The finite H._,, turns the wave function (24) into exact one,
(V(E+a) = V(E) + ==V V(R). (23) 4. Inthis case) (asyy) also corresponds to a stationary state
of the total Hamiltonian with the certain total energy. The
The second term in (23) produces the Lamb shift of the elecrole of H,._,, is minor far from the thread. In that region the
tron energy level. difference betweerh andi)y is not significant.

Rev. Mex. Fis61(2015) 287-295
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\ electron wave function in Fig. 3(a), should not be interpreted
literally in the thread region. In that region single particle
quantum mechanics is not applicable even approximately.

-- 3.6.1. Analogy with the van der Waals phenomenon

Analogous reduction of zero point photon energy occurs in
° formation of van der Waals forces [5, 6]. The essence of the
van der Waals phenomenon is a spatial dependence of zero
(a) . : .
point energy analogously to Fig. 2(b). It is mostly clear from
U the simplest example of two parallel plates when the pho-
R ton spectrum becomes discrete= c¢(k? + w2n2/R?)'/2.
(') Here R is the distance between two plates ani the two-
(b) R T S dimensional wave vector parallel to them. The zero point en-
ergy > hw/2 is decreased compared to the cas®of oo.
So the spatial restriction locally reduces the zero point
7 electromagnetic energy. In this manner one can also explain
the reduction of zero point energy of photons near the thread.
Within rr smearing of the singularity is a strong electron-
photon effect when the perturbation theory is not applica-
ble. It is clear from the simple argument that an expansion
FIGURE 3. Features of the thread statesat= 0 and constany.  Of (7" + @) on is impossible in the singular case.
Dashed curves correspond to the absence of thread. Thin vertical Due to that, there is a geometrical restriction for pho-
lines restrict the thread region where the wave function and the potons. This is roughly a tube of the radiug. Inside this
tential should not be interpreted literally. (a) Thread wave function. tube the zero point energy is reduced. This reduction, which
(b) Potential well. Energy levels in the potential well in the absence should locally compensate the kinetic energy 1.97 MeV, is
of thread are shown by dashed horizontal lines. roughly estimated ashc/rr ~ —2.43 Mev. This value can
be treated as a depth of the potential well in Fig. 3(b).

>

>

3.4. Close to the thread 3.7. Anomalous electron binding

One can follow the exact wave functiafh approaching the Generally, a discrete energy spectrum in a well is a conse-
liner = 0. Due to the average on photon coordinates [10,11]quence of the absence of a singularity in a solution of wave
the wave function, as a function of becomes smeared equations at small distances. In our case such condition is
around the singularity line. This phenomenon is generic witmot imposed. According to Egs. (20) and (21), the singular
the Lamb shift. In the both cases the electron “vibrates” besolution of the wave equation exists at any non-zero prelog-

cause of the interaction with photons. arithmic factor(1 — E/Ey). HereEj is the discrete energy
eigenvalue. For this reason the energy spectrum of the thread
3.5. Density peak at the thread is continuous. This is not surprising since a discrete spec-

trum of a particle turns into a continuous one under interac-
The smeared singularity relates to a narrow but smooth peakion with a bath.
shown in Fig. 3(a), of the electron density around the thread  Qualitatively Fig. 3 reminds a wave function (a) of a par-
line where the density would be singularfét_,, = 0. This ticle localized in the potential well (b). Usually the electron
corresponds to the local enhancement of the electron kinetignergyE has a typical value of (1-10) eV in solids. This cor-
energy/(mc?)? + (he/rr)? — mc® ~ 1.97 MeV in the  responds to the top of the well. The electron emits photons

thread region. The estimate of in Appendix B is used. to get to the bottom of the well. The emitted energy is on the
order of 2 MeV and the electron binding energy
3.6. Thread well e
Ep ~— (25)
Since the state is stationary (with the certain total energy) the T

total electron-photon energy far from the thread is approxiis on the same order.

mately the sum of electron one and zero point energy of pho- Besides that general estimate, the coordinate dependence
tons as in Fig. 2(a). Close to the thread the same energy o FEp is significant. The mean squared displacement of
redistributed between the locally enhanced kinetic energy othe electronu?) is determined by the logarithmic cut dff

the electron and the local reduction of zero point energy ofit low frequencies (B.9). The meaning Qfis clear from
photons Fig. 2(b). The latter can be considered as the certalbg. (B.1). This frequency increases with increasing of the
potential well sketched in Fig. 3(b). This well, as well as theexternal potential. In other words, “vibration” amplitude of

Rev. Mex. Fis61(2015) 287-295
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the electron depends on the local strength of the Coulomd. Description of anomalous binding in quan-
potential at each point of the space. Therefore one can ap- tum electrodynamics
proximately ascribe the coordinate dependencg&.toThis
is qualitatively confirmed by the exact results for the Lamb
shift [4] if to extract(u?) using Eq. (23). The low frequency
logarithmic cut off becomes smaller for higher atomic levels
that is for larger distances.

Then, according to (25) and (B.11), the potential, probed

The link from phenomena considered to the standard formal-
ism of quantum electrodynamics is in the form of the exact
'electron propagator [4]

by the electron, is Gl B R =Y (O (R)[v) (v|$(R')[0)
It 2 1-1/2 o v €—& +i0
—Ep(R) ~ —mc?\| =% |1n — . (26
5(R) me 2e2 . hQ(R) (26) =Gy +Gp. (28)
The rough approach (26) provides just the tendency of the
spatial dependence éfp. In this equatiore,, is the set of exact (with all radiative cor-

The binding energy s increases upon approaching eachrections) electron energy levels in the external field. In (28)
of two nuclei in Fig. 1. Therefore the energy emitted in thethe analogous positron part and bispinor indices are dropped.
form of photons is expected to be more than 2 MeV follow- The propagator (28) can be a basis, for example, for calcula-
ing from the simple estimate. As a result, the ground statéions of small radiative corrections to discrete energy levels.

corresponds to the electron localized in the yicinity ofanu- pesidesthe parf, related to the usual energy levels, the
cleus. The radius of such anomalous atom is no larger thag,n, (28) contains also the paitz due to the energy spec-
rr ~ 107 em. trum in the deep well in Fig. 3(b). So the electron density,
corresponding to the propagator (28), has the peak of the type
shown in Fig. 3(a).

The typical range of the electron state in solils 3cm Unlike the Lamb shift, it is impossible to apply the pertur-
is comparable with the Bohr radius;. The range of the bation theory to study smearing of the singularity. This phe-
anomalous bound state is on the orderef~ 10~'cm.  nomenon, with an essential electron-photon influence, corre-
This estimate also relates to the diameter of the thread stagponds to the non-perturbative patg in the electron propa-

of the electron. This thread state, before photon emissiorgator. So the thread state does not follow from the usual one,
corresponds to the usual electron energy in solids. Thereforef the same energy, through perturbation theory with respect
the perturbation, producing the thread from the usual statdp the electron-photon interaction.

should be varied on the dista.ncequf. _ _ If to increaseH,_,;,, formally starting with the usual
The charge density, varying in space on the typical disstate of free electron, the state of this type continuously exists

tancery, can be created by an incident charged particleat smallH, . This means that the usual state is separated
which is reflected by lattice sites of the solid. The result-

ing density, related to such particle, is due to interference of

3.8. How to create anomalous photon emission

its incident and reflected waves. Omitting details, this charge emltted
density is approximately proportional¢os(2R/2M E,, / k)
where) is the particle mass anfd, is its energy. For exam- phOtOIlS
ple, if to use deuterons as light ion&] ~ 3.346 x 10~ **g,
one can estimate | PR p— -
. R
charge density ~ cos {1'9677 Ep(keV)} , (27) N B -+—0 >

wherery is taken to bel0~!lcm. If to use electrons, the | E———— ,OM)
same wave length corresponds to high electron energy on the 3 -0 —
order of 1 MeV. = === G

We see that one can bombard the surface of the solid 8 - o
by ions with the energy of approximately 1 keV to produce -F===-> 2]
anomalous electron binding and photon emission within the g
depth of ions penetration. “r---" -0 . —

The charge density of the anomalous atom (Sec. 3.7),

; ; —11 = ===
varying on the distance di0~""cm, can also serve as a per-
turbation for formation of anomalous state of other electrons.

One can consider a possibility when anomalous atoms remain
the only source for the photon emission after stopping surfaceicure 4. Scheme of the experimental setup for observation of
irradiation by incident ions. anomalous photon emission.
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by a barrier from the thread one whose fraction is exponenemitted photons depends on processes inside the solid includ-
tially small. Analogously the exact thread state contains théng energy losses. The energy of incident ions around 1 keV
exponentially small part of usual one. is optimal for the creation of electron binding. At much lower
In the absence of an external field the propagatoand much higher energies the effect is reduced.
G(e, R, R) does not depend off and the electron density After the photon emission the electron gets to the bottom
is homogeneous. This corresponds to the spectral repref the deep well and remains on the distancel@f!!cm
sentation of the exact electron propagator (with no externadlrom the nucleus. The charge density of such anomalous
fields) in quantum electrodynamics. Without an external fieldatom (Sec. 3.7), varying on the distance 0f ''cm, can also
(€2 = 0, Appendix B) the mean squared displacement (B.9)serve as a perturbation for formation of anomalous state of
becomes infinite. In this approach, according to the generaither electrons. One can consider a possibility when anoma-
theory, the state is homogeneous since the singular solutidnus atoms remain the only source for the photon emission
of the wave equation is smeared over the entire space. after stopping surface irradiation by incident ions.
High energy photons, generated inside the solid, can
cause nuclear transmutations of lattice nuclei. Misinterpreta-
tion of such experiments is possible by ascribing the energy

Irradiation of the surface of a solid by ions results first in SOUrce to nuclear re_:ac_tlons. Th_ese reactlo_ns are impossible
since the energy of incident particles (keV) is too low.

Bremsstrahlung due to ion braking by the surface. In addition

to this, there is a more delicate phenomenon of anomalous

photon emission. The underlying mechanism is of electrong. Conclusions

photon nature. The point is that the electron density can

be formally singular on some line if to ignore the electron-The ion of the energy- 1 keV, colliding the surface of a

photon interaction. This interaction leads to smearing of thesolid, can initiate the energy release { MeV) in the form

singularity within the narrow cylinder (thread). The resulting of emitted photons (anomalous emission) due to the reduc-

state is physical. tion of zero point electromagnetic energy. The intensity and
The narrow but smooth peak of the electron density on théhe energy spectrum of anomalous emission essentially dif-

thread is associated with the narréw 10~ ''cm) and deep  fers from Bremsstrahlung. This is a pure electron-photon

(~ 1MeV) potential well in the thread region. That well is phenomenon.

formed by the spatial redistribution of zero point electromag-

netic energy. The electron state of a usual energy inside thﬁ«ppendix

solid corresponds to upper states in the well. The electro

can emit energy in the form of photons getting to the bottomA

of the well. The total energy emitted is in the range of MeV." ™

This is anomalous photon emission from the solid which canre static Sctirdinger equation formally has the solution-

5. Discussions

Singular solution of Dirac equations

be detected outside it. _ in cylindrical coordinates. Below we establish the continua-
The source of high-energy photons is of the electronyign of this singular solution to the region< . where one
photon origin should use the Dirac formalism. In this case the wave func-
h . . . . . . . .
me? /720 ~6 MeV. (29) tion is plsp|nor conS|st|ng. of two splnopsan(_jx [4]. Smcg .
e we are interested by the singular wave functions (large kinetic

The energy generation occurs due to the reduction of zerNerdy part) one can ignore, as the first step, the potential en-
point photon energy (from the photon vacuum of the infinite€rgy and consider free electron Dirac equations
energyy  fiw/2).

The direct way to form the thread state from the usual one

is to use an external perturbation rapidly varying in space (OI’|]_| rec is the total relativistic ener rdlare the Pauli m
the distance of0~'cm). In this case its matrix element be- | ' c¢ IS (N€ tolal relativistic energy andare the Faull ma-

tween those states is not small, Sec. 3.7. The role of such petlr—iceS [4]. We consid_er f_or simplicity two dimen_sional case
turbation can be played by the incident flux of ions directed. — ¥} Whenz derivatives are zero. The solution of equa-

(e +ihcoV)p = mcPy, (e —ihcdV)x = mce. (A1)

to the surface of a solid as shown in Fig. 4. tions (A.1) is
The spatially oscillating charge density is produced in- — 2 oSV F
side the solid by a superposition of the incident and reflected #(7) = (e +me” = ihedV)F(7)
(by a lattice site ) waves of the incident ion. The matrix el- X(7) = (e + mc* + ihcé’v)F(f')’ (A.2)

ement of that perturbation provides thread formation with a

not small probability. The process in Fig. 4 is characterizedyhere one accounts for the relati(ﬁ‘uv)(f?v) = V2 and the
by the generation of photons of the energy up to a few MeVspinor functionF () satisfies the equation

These photons are emitted from the surface of the solid and

can be registered. The intensity and the energy spectrum of (e2 + h2AV?)F = m2cF. (A.3)
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The solution of (A.3) is the Neumann function [12] where V' is the volume of the system. Since in our case
F(F) = %No (hL 5 m264> (A4) ng; = 0, the mean squared displacement has the form
C
: . (1€
with the asymptoticsVy (z) ~ (2/7)In = at small argument. (u? 4 = Z {2 I (B.6)
o IS some constant spinor. Accordingly, at short distances m i (loon] +
two spinors are The energy of zero point oscillations is
€+ mc? ihe 3
= lnr — —&7 d’°R 14 - hlw
<,0(F) ( 5 nr 2r20T> ®o, /?<52>:EZ<|5]€|2>:Z |2 | (B.7)
k k

. g4+ mc ihe o .
X(F) = 9 Inr+ o5 027" | PO (A-5) It follows from here that(|€),|2) = 2rhjws|/V. Using the

In the standard representati®n= ¢ + y and®© = ¢ — x summation rule

47rk2de

O(7) = (e + mc)poInr, OF) = f?ar vo. (A.6) Z / (B.8)
At distances~. < r (non-relativistic limi)© is small com-  (the coefficient 2 accounts for two photon polarizations) and
pared to® and the wave function is the usual spidar the relationw;, = ck, one can obtain from Eq. (B.6) [9]

If the electron is not free but is acted by some potential "

V (), one should substituteby ¢ — V() in Egs. (A.1). In s 15 (N T wdw
this case the parts at short distances remains of the same type (Wh=5" (hc) (w+ Q)2
as (A.5) and (A.6) with the substitutian— ¢ — V(0).

_Te g, me (B.9)

B. Estimate of the thread radius o1 he” hQ '

wherer, = h/(mec) ~ 3.86 x 10~ !tem is the electron

e hean s mber oA GO ength. The upper .. s determined by e
Py P y y ing ing condltlon of non- relat|V|st|c motlon that i8,.x ~ mc?/h.

wave function of the electron. For this reason, we use belo
n the relativistic regioni, decreases due to the enhance-
the approximate method just to estimate the electron mean
ment of the relativistic mass. The exact cut 6ffis not

squared displacement [9]. The method is successfully ap—
plied for study of the Lamb shift. In this method the electron aru?sgéﬁr JZZ desu)mate Th<e a>p /pllca<b<|llt1y |(;0\r/lgll|%02|:(f:;he
motion under the action of zero point oscillations can be de- pp ) Kinax re

scribed by the equation (u?)fr ~ €/ (he).
” The mean squared electron displacement can be also eval-
d +mO%i = —ef (B.1) uated from the known expression for the Lamb shift;, [4].
"z ’ As follows from Eq. (23),
wherem is the electron mass ati~ me* /2 is the electron B
rotation frequency in the atom. /¢ )’(/}(R)dBR. (B.10)
One can use the Fourier expansion
i(R,1) = Zﬁk exp(iER — iwyt) (B.2) SinchQV(q ) = 4me25(R) the result depends on the wave
function atR = 0. For the ground state of the hydrogen atom

|¥(0)]? = 1/(7r%). Using (B.10) and the exact value of the

and analogous one for the fluctuating electric fild?,t). | amb shift [4], one can obtain

Sinceii(R, t) is real it should bei;, = @_j, andw_j, = —wy,
. . e 2 2 2
in the expansion (B.2). The conditiark < 1 has to be held =T =7, e me

in this method. The solution of Eq. (B.1) is of the form whe RS
. e 1 1 4e?  hc
e = 2m|wg| <|Wk; +Q + |wie| — Q) ' 83 — e %lneﬁ' (B.11)
According to the quantum mechanical approach, Eq. (B.3)Yhe expression (B.9) is four times less than the more exact
should be modified as estimate following from (B.11). We use (B.11) for the mean
. e VI+ng N squared electron displacement. As follows from Eq. (B.11),
Uk = 2m|wi] (|Wk 1O o = ) ) (B.4) rp~0.21r, ~0.81 x 107" cm

wheren,, is the number of quanta, the first term relates to the
quanta emission, and the second one to the absorption. ~ Acknowledgments
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