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Use of the perfect electric conductor boundary conditions to discretize
a diffractor in FDTD/PML environment
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In this paper we present a computational electromagnetic simulation of a multiform diffractor placed at the center of an antenna array.
Our approach is to solve Maxwell’s differential equations with a discrete space-time formulation, using the Finite Difference Time Domain
(FDTD) method. The Perfectly Matched Layers (PML) method is used as an absorbing boundary condition, to prevent further spread of
the electromagnetic wave to the outside of the calculation region. The Perfect Electric Conductor (PEC) boundary conditions are used to
represent the periphery of the region and the diffractor. The system consists of an antenna array of 20 elements: a transmission antenna (TX1)
which feeds a Gaussian pulse with center frequency of 7.5 GHz, and 19 reception antennas (RX1 to RX19), which serve as sensors. The
diffractor is discretized for integration into the environment FDTD, and two case studies are presented according to their geometric shape:
square and circular diffractor. In this work, the goal is to determine the Maxwell's equations, analyze all the zones that form the diffractor
and plug them in the computational algorithm in Matlab. We show the equations for each case and obtain the electromagnetic parameters of
the system: electric fields, magnetic fields, and reflected power, sensed by the RX's.

Keywords: Conductor electric perfect conditions (PEC); finite difference time domain method (FDTD); perfectly matched layers (PML);
antenna array; diffractor.

En este aftulo se describe el uso de las condiciones de Conductetritio Perfecto (PEC), para modelar un difractor multiforme colocado

en el centro de un arreglo de antenas. La estrategia se basa en resolver las ecuaciones diferenciales de Maxwell con utia formulaci
discreta espacio-temporal, mediante étato de Diferencias Finitas en el Dominio del Tiempo (FDTD), etado de Capas Perfectamente
Acopladas (PML), se utiliza como condici de frontera absorbente al evitar que la onda electrogtisgncontirie propagndose hacia el

exterior de la redin de @lculo, las condiciones de frontera PEC son utilizadas para representar la periferia de darhg eddlifractor. El

sistema consiste en un arreglo de antenas, formado por 20 elementos: una antena de dngfTsfiisia cual alimenta un pulso gaussiano

a una frecuencia central de 7.5 GHz y 19 antenas Receptoras (RX1 a RX19), que funcionan como sensores. El difractor es discretizado para
su integraddn en el ambiente FDTD, se presentan dos casos de estudio, de acuerdo a su foratacgealifractor cuadrado y circular. Se
presentan las ecuaciones correspondientes para cada caso, como resultado obteneranetosspealectromag@ticos del sistema: campos

electrico, campos magiicos, potencia reflejada, sensados por las RX.

Descriptores: Conductor éctrico perfecto (PEC). Btodo de diferencias finitas en el dominio del tiempo (FDTD); capas perfectamente
acopladas (PML); arreglo de antenas; difractor.

PACS: 03.50.De; 02.70.Bf; 41.20.Jb; 07.05.Tp; 84.40.Ba

1. Introduction resulting fields it is only possible using computational meth-
ods.

Using Maxwell’s equations, we can in principle determine  The methods for numerically solving Maxwell's equa-
the exact value of the electric and / or magnetic fields at anyions using FDTD [1, 8,9, 11, 15] have been developed in the
point in space or vacuum, when an electromagnetic wave imlast decade. Determination of the required boundary condi-
pinges on an arbitrary structure. Analytical solutions of elections in FDTD can be done with the method of Finite Dif-
tromagnetic field scattering can be obtained using boundarferences of Mur [2, 12], the Perfectly Matched Layer (PML)
conditions and separation of variables to solve simple shapemethod of Berenger [4,16,17], or the model unidirectional
however, for arbitrary geometries, the determination of thevave equation of Engquist-Majda [3].
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The computational electromagnetic tools used in thisb) Ex component:
work are the FDTD and PML methods. Our system con-

sists of an electromagnetic wave in vacuum, propagating into ) (1 _ H*At)

a circular array of 20 antennas. In the center of the array thereExE””"‘+ )_Exé_;;) 73;

is a diffractor that meets the PEC boundary conditions, which It (14 )

are expressed by a set of equations to discretize it in square At N N

and circular geometries. The equations are inserted in the +m {HZ(LJH) —Hzg g

computational algorithm for electromagnetic analysis. The 2

emphasis of this article is the description of the PEC bound- At Jsr nt3 + Jsz 3

ary conditions implemented to discretize the diffractor. - YGitd) (4.3 +4) (5)
2¢ (1+ 22 2

2. FDTD/PML environment

¢) Ey component:
Formulation of the discrete Maxwell’'s equations is per-

formed using the FDTD method [10, 14]. In order to solve

them, an iterative process develops over time, this is well de- 1 1 (1 - ”;§t>
tailed in the literature as the PML [13] boundary conditions. Ey( 141 Ey(q;_;jﬂ)m
Absorption processes are not addressed in this work.

2e

We consider a two-dimensional system with a signal At [Hz N 1}

propagating in thed'y” plane, with a transverse component (i+1) ~ 7761+

Hz, therefore the fields propagate in the transverse magnetic eAx (1 + UTAEt) Az

mode. This implies that thé/z, Hy and £z components ntd ne1

are zero,Ex and Ey are different from zero and there are At sz(i—%,j-&-l) + Jsx(i—%,j-&-l) 5

no magnetic currents. The Maxwell’'s equations for the two- 92 ( UQAEt) 2 ©)

dimensional TM mode are:
QHZ - 1 <8Ey — 8Ex> — U—*HZ 1) In the PML implementation of the above FDTD equa-
ot O Ay H tions, we first need to decompose the transversal compo-
9 170 1 o nent Hz in the %" and “y” projections, in such a way that
b= (8y z) Jox — = E (@) H:z=Hze+ Hzy. In theHzx projections we consider the

variation of Ey with respect to %", and similarly in theH zy
QE _ 71 (3H ) . L] . EE 3) projection we consider the varlation @&fr with respect to
ot oz Y Y “y". Jsz and.Jsy are null since there are not electric charges
WhereH z is the transversal component of the magneticin the system, so they are not present in Eg. (5) and Eq. (6).
field A/m; Ex, Ey are the components of the electric field in The Hz components are:
VIm; i is the permeability in H/mg is the electric permitiv-
ity in F/m; o is the electric conductivity in S/m and" is the (1 _ U;‘At>
magnetic conductivity.
We use a finite differences method centered in space and 7) o
time. In the following equations, we can see that there is not (1 T )
explicit dependence on time, this is because the time domain

Hzx 5 = Hzz;

9)

is implicit in the evolution of the computer simulation. At [Ey("“’j) — By @)
In Eg. (2) and Eg. (3)/sx andJsy represent the com- “ <1 L% At) Az
ponents of the electric current density in A/m. 2u
The FDTD equations are: *At
a) Hz component: (1 )
( a*At) Hzy, *At AN P AYGL)
Heig) = ot i) (1 2 >
(1+=52)
_ At Eyisrn = Eyap | (g
B At |:Ey(i+1,j) - Ey(i,j):| < *At) Ay
Py (1 i U;ﬁt) Az
At Exg i) — Br ) 4 The complete PML implementation is done following the
- (1 N a*At) Ay 4) works in [5—7] where the Berenger method [4,17] with some
H 2p improvements are used.
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FIGURE 1. Calculation region in FDTD/PML environment.
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FIGURE 2. Array with one antenna TX and 19 antennas RX.

3. Calculation Region

The region is shown in Fig. 1, where we can see the free
space or vacuum part and the absorbing or PML region. Sev-
eral regions have been simulated, but in this work we show
two particular cases: one case of 1806 18003, equivalent

to 3,240,000 and the second of 400y 4000 equivalent to
16,000,000 Yee cells, respectively. This is show in Fig. 1,

where we see the absorbing or PML region, the Yee cells and _ ) _ o
FIGURE 4. Antenna array with a circular diffractor inside.

the region of free space or vacuum.

C. CALDERON-RAMON et al,,

)\:

The system parameters are:

c 3 x 108

F T T5x1

Where is the wavelength (mJ, is the frequency (Hz);
is the speed of light (m/s).
Each Yee cell is two-dimensional and each of the y
Ay are calculated from the Courant condition [1] and are
equivalent to:

Ai

A=Ar=Ay=—

200

G5 = 0.04m

0.04

—— = 0.0002m

200

©)

(10)

WhereA is the length of a Yee cell (m)At is the time
step (s), equal to:
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FIGURE 3. Antenna array with a square diffractor inside.
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(500,1500) Ex (1500’1500) 4. Perfect Electric Conductor (PEC) Bound-

ary Conditions

Some considerations to establish the boundary conditions of
a diffractor in vacuum are:

1. There are no charges or electric fields at any point
E within the conductor.
¥y

Ey 2. According to Gauss’s law, the electric flux density has
a direction normal to the surface and is equal to the
charge density, therDy = ps.

3. The external electric field is decomposed into two com-
ponents: a tangentialEf) and a normal oneHy),
E=F,+ Ey.

(500,500) FEx (1500,500)

FIGURE 5. Discretization of square diffractor, zone 1.

N

. The normal component of the magnetic field is zero,
Hy=0.

5. The tangential component of the electric field is zero,
Et = 0

A 0.0002 19
At= 2c 2(3x10%) 0.33 10 (11) 6. Knowing thatD = ¢E and if Et = 0, then the tangen-
T is the period (s) : tial flux density is also zerd); = 0.
1 1 1o 7. In relation to the external electric field with electric
T= F T T x100 1.33 < 10 (12) flux density we have:
Dy = egEn = ps, then the electric field is normal to
The antenna array diameter is equal to 1000 cells (Fig. 2), the surface of the conductor.

where the TX antenna transmits a Gaussian pulse of 7.5 GHz

with a 6 to 9 GHz band width. The remaining reception an-4.1. Square Diffractor

tennas RX1 - RX19 are spaced 18 degrees and they are used

as sensors to measure the electromagnetic parameters of theese equations are implemented in the computational algo-

system. rithm in Matlab. The Fig. 5 shows the coordinates used for
The diffractor is placed in the center of the array, anddiscretization.

we consider two geometries: square (Fig. 3) and circular The Table | shows the discretization equations of zone 1

(Fig. 4). of the square diffractor, where:
/.—-r"_‘—l'f e e Bottom: The tangential component of the electric field
(994.994) P 6 “«. (1006,1006) Ex is zero, from500i cell to 1500 cell, in 500.
/ / X Y e Top: The tangential component of the electric fiebd
S — is zero, from500: to 1500 cell in 1500j.
/ \
'/ \‘ e Left: The tangential component of the electric fi€ly
) is zero, from5005 to 15007, in 5004.
\
I 1
; \ . . D
i H e Right: The tangential component of the electric field
| 2|3 Y 1 415 E Eyis zero, fromb0075 to 15005 in 1500.
\ f
\ 1
\‘ :', TABLE |. Boundary Condition Equations for a square diffractor,
\ /! zone 1.
Y ’
N / J ZONE 1: PEC EQUATIONS
N 4
(994,994) | 3 [ /'1 . Square diffractor (Yee Cell)
> A | 9 | - ) Bottom Side E2(500:1500,500)=0
- -~ Top Side E(500:1500,1500)=0
FIGURE 6. Discretization of a circular diffractor with 9 zones. Left Side FEy(500,500:1500)=0
Rigth Side FEy(1500,500:1500)=0
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e ~ 5. Implement these equations in the computational algo-
/,h’ 19) ‘—I~13 = o rithm.
(994,1006) ¢ 11 9, (1006,1006)
/ ExX A
4 \\ TABLE II. Boundary Condition Equations for a circular diffractor,
," 2 > ‘\ zone 1.
H 7 k ZONE 1: PEC EQUATIONS
1 1
1 1 i i
I 3 Ey 1 Ey| 6 [ Circular diffractor Yee Cell
'.‘ ,.' Bottom Side Ex(994:1006, 994 )=0
| ! Top Side FE(994:1006,1006)=0
‘\ 4 7 ,/' Left Side Ey(994,994:1006)=0
A - i Rigth Side FEy(1006,994:1006)=0
N\ x ’l
(994,994) e —(1006,994
N | 8 9 10 |/ ( ) Example: Discretization of zone 1 (Fig. 6), where the po-
™ L sition of the Yee cells can be seen. The total circle consists
""" of 9 zones and the PEC Boundary Condition equations are
FIGURE 7. Discretization of a circular diffractor with 13 zones. ~ given in Table II.

With the use of more zones, the circular region can be
better defined, as in Fig. 7, where the discretization is rep-
resented by 13 zones. However, there is an increase in com-
plexity obtaining the equations and their implementation in
the algorithm. When done manually, this involves a lot of

T ol patience and care to avoid errors in the simulation.
— | Example: Discretization of zone 1 of the Fig. 7 shows
Ey Calculation Facimm: the exact position in terms of Yee cells, where the total circle
—— | consists of 13 zones.
Hzx Calculation For iI:imax The flow chart of the whole computational implementa-
rorim tion of the FDTD/PML algorithm used in this work is shown
For ot in Fig. 8:

Hzy Calculation

For j=1:Jmax

| Power: Gaussian Pulse H it 5. Numerical Results

The results obtained from the program runs can be seen di-

n=Nmax rectly in the Matlab graphical interface. The initial calcula-
@ tion region is composed of 1800 by 1800 Yee cells. We must
ensure the robustness of the algorithm, first of all, that there

FIGURE 8. Flow chart of the FDTD/ PML.

1800 |
4.2. Circular Diffractor 1600: 4
For our next case of study, the diffractor is discretized in cir- 44, ! 3
cular form. The FDTD method needs the regions to be repre- ‘ ‘ ‘
sented in a simple geometric form. This is done with a set of 1200 \ {2
9 zones or with a set of 13 zones. ; i
The steps for obtaining the relevant PEC equations are: 1000 X | 1
1. Define the geometric zones needed to form the circle, 800 f 0
this is based on squares or rectangles. G /
400 | ‘ = : 4 -1
2. Define theEx and Ey components for each zone. : ‘\ :
200 [ = -2

3. Define the start and end cells of each zone. 200 400 800 1000 1200 1400 1600 1800

4. Setthe equations that meet the boundary conditions aficure 9. Periphery without spurious reflections, Electric field in
the perfect electrical conductor. Vim.

Rev. Mex. Fis61(2015) 344-350
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FIGURE 10. Gaussian pulse signal propagation.
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FIGURE 11. Magnetic field resulting from the square diffractor, in

A/m.
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FIGURE 12. Three collinear diffractors in vertical position.

6. Conclusions

In this paper we have seen one of the significant advantages
of the FDTD method, which is its flexibility to perform elec-
tromagnetic simulations. The PML was implemented to pre-
vent, the propagation of the Gaussian pulse out of the region
of calculation and therefore avoid spurious reflections at the
periphery of the system. Using the perfect electrical conduc-
tor boundary conditions it is possible to simulate microwave
devices, antennas, metals, dielectrics, etc.

We have presented a simple implementation of the FDTD
and PML methods to simulate a circular array of “20” anten-
nas with diffractors inside. To model them, it was necessary
to discretize the diffractor by means of equations that meet
the PEC boundary conditions for inclusion in the Matlab
computational algorithm. The discretization of the diffrac-
tors was successfully realized as the numerical results show.
The receiving antennas allows the measuring of the electro-

are not spurious reflections at the boundaries of the Calcu'%agnetic parameters, such as electric and magnetic fields, re-
tion region, that the implementation of the PML is correct, fjocted power, among others.

and the absorbing boundary conditions work correctly. As

The results obtained in this work show that we have a ro-

an example, in Fig. 9 we show the resulting electric field af-y st ajgorithm that permits the modelisation of an antenna
ter the Gaussian pulse has been applied. Note that there afgay with diffractor inside in two geometric shapes, square
not spurious reflections at the boundaries, indicating that oug, circular, also this technique was tested with three square

algorithm is working correctly.

diffractors. The calculation region was increased from 1800

In Fig. 10 we can see the propagation of the Gaussiangog; to 4000 to 4000, Yee cells.

pulse signal, centered at 7.5 GHz.

This study was motivated because of its possible appli-

In Fig. 11 we can see the magnetic field after the pulseation in the timely detection of breast cancer, in which the

signal has incided on the square diffractor. The values of thigliffractors are replaced by a phantom (an object used as a
magnetic field are small compared with those in Fig. 9. substitute for malign tissue) that meets the electrical parame-
We now increase the region of calculation to 4000 byters of a breast tumor.
4000 Yee cells and three diffractors have been placed in the
array, as seen in Fig. 12. Here the electric field is in V/m. Acknowledgements
Finally, we show the implementation of a circular diffrac-
tor in the center of the system. In Fig. 14 we show the electridéVe want to thank the financial support of PROMEP through
field in V/m. grant No. 1D10605, UV-CA-339.
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