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Recently, for high intensity electromagnetic waves, it has been proven that the solutions for the Eliezer-Ford-O’Connell equation and the
Landau-Lifshitz equation coincide within a physically detectable range. For large-scale temporal effects, similar results are obtained for the
central force problem. However, in the case of a constant magnetic field, the frequencies which describe the motion in both equations differ.
Nonetheless, quantum constraints avoid the measurement of such difference making both equations physically equivalent for all the scale o
energies and fields within Classical Mechanics regime.
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1. Introduction On the other hand, by considering a generalized quantum
Langevin equation and by giving a structure to the electron
with a factor form and a finite cut-off parameter, Ford and

O’Connell derived a non relativistic equation of motion for

For more than a c_entury, the knowledge of the reaction forc%harged particles. Generalizing this equation to Special Rel-
for a charged particle has represented an open problem dueé

. . . ; ﬂvity [17] they obtained an equation, that Eliezer derived
unphysical results derived from the different proposals Whlchﬁf,[y years before using distinct arguments. Both equations
depict this phenomenon. An interesting article which de- '

X . . : ; Landau-Lifshitz and Eliezer-Ford-O’Connell, are second or-
scribes the distinct equations and their own physical problemaer differential equations which do not present unphysical so-

atic was recently done by Hammond [.1]' Nowadays, amongutions, as preaccelerations and runaway solutions.
all the different approaches and despite of the new one pro-

posed by Hammond [2-4], the Landau-Lifshitz equation of However, even if these equations are considered _by many
motion is considered as the better option to describe the m@uthors as identical, they come from different physical as-
tion of a spinless charged point particle [5-12]. On the otheSUMPtions. Indeed, for Spohn [6] and Rohrlich [7,8], the
hand, in order to avoid Quantum effects [13], the charge musggk@ndau-Lifshitz equation is obtained if the Lorentz-Dirac
be constrained to the so-called Shen’s zone [14]. This zongguation is restricted to its critical surface. This indicates a
represents an area in an enexgysusfield diagram, where fu’ndamentally dl_stlnct origin from the one for Eliezer-Ford-
Relativistic and Non Relativistic Classical Mechanics drive© Connell equation, as we mentioned above. Also, for Par-
the motion of a charged particle, without being affected byt [19], the Eliezer equation and other equations, as Mo and
quantum aspects. Indeed, the energies and fields used fipPas equation [20], were derived as variants of Lorentz-
Plasma Physics belong to the Shen’s zone. Therefore, n(lﬁlrac equation b){ considering the acceleration to be propor-
only relativistic situations must be analyzed, but also non reitional to the applied force. Moreover, Landau and Lifshitz
ativistic cases must be investigated, since they are of majd}lerlved their equation by substituting the Lorentz equation
importance. An example of this is the case of the centraln the Lorentz-Dirac reaction term, and consequently it could
force which has been recently studied by Rajeev [15]. Sinc®€ also considereg as anggpproximation or a first order expan-
his objective was to calculate the line-widths of an hydrogenSion in7, (7o = 2¢°/3mc? is called the characteristic time)
like atom and also to understand by means of a simple mod&f the Lorentz-Dirac equation.

the capture of a star by a black hole, it was naturally neces- As we will see in this paper, although Landau-Lifshitz
sary to derive a non relativistic version of the Landau-Lifshitzand Eliezer-Ford-O’Connell equations are mathematically
equation . The method seems to be simple, because it codifferent, they physically coincide. Some authors have made
sists in neglecting all the terms depending(qmic)2 in the  a comparison between the Lorentz-Abraham-Dirac equation
Landau-Lifshitz equation. Alternatively, to find the non rel- and the non relativistic Landau-Lifshitz equation. For exam-
ativistic version, it is possible to solve the Landau-Lifshitz ple Griffiths [12], and Rajeev [15] considered Ford equation
equation and then make a first order expansion/in Also,  as the non-relativistic case of the Landau-Lifshitz equation,
another rough method would lead to the Ford Equation [16].which is true for the examples used by them. Although, com-
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parisons between the Landau-Lifshitz equation and Eliezercase and constant magnetic case are found. In Sec. 3, the
Ford-O’Connell equation have been done for high intensenon-relativistic Landau-Lifshitz equation is deduced. The
pulses and high energies [21,22]; such a comparison betwe@omparison with Ford equation shows that both equations
Ford equation and the non-relativistic Landau-Lifshitz equa-are mathematically different when the force depends on the
tion has not been done for large-scale temporal effects. Ispeed. In Sec. 4, Ford equation is solved for the constant
fact, it seems that many authors consider that Ford equatioglectric and the constant magnetic cases. An analysis be-
and the non relativistic Landau-Lifshitz equation are iden-tween both results, the non relativistic Landau-Lifshitz so-
tical. Kravetset al [21] mentioned that the Eliezer-Ford- lution and the Ford solution, is done. In Sec. 5, by using
O’Connell equation has received less attention than it pera special representation of Eliezer equation [19], the equiva-
haps deserves, due in part to the confusion arising from iteence between Eliezer equation and Ford-O’Connell equation
apparent equivalence to the Landau-Lifshitz approximatioris showed and at the same time the mathematical difference
(for an intense laser pulse, Landau-Lifshitz and Eliezer-Fordwith the Landau-Lifshitz equation is exposed. A simplified
O’Connell solutions are almost equal). representation of both equations is deduced. In Sec. 6, the
In recent years, due to the appearance of higher laser irexpression for the large distance radiated power is analyzed
tensities, the reaction force has been studied from the poirgiving the same result for both equations, even if the force de-
of view of the relativistic case [21,13,22,2]. In fact, since pends on the speed. However, since each equation has differ-
for the case of a constant electric field there is an apparer&nt solutions the corresponding radiated powers are distinct.
lack of energy balance in the solutions of the Lorentz-Diracin Sec. 7, in Concluding Remarks, the differences between
equation, of the Landau-Lifshitz equation and of the Eliezerboth equations are summarized. Also, numerical physical sit-
Ford-O’Connell equation, an interesting approach has beeuations are studied considering the quantum constraints.
developed by Hammond [4,3,2,1]. In particular, he found an
interesting solution, for low and high velocities, which ex-
plains the radiated energy and the motion of the charge for”

the electric constant field case. ~ In 1938, Dirac [25] proposed an equation of motion which
The radiation reaction force effects are very significantyetends to relativistically describe the motion of a spinless

in the regime of very high intensities since such fields Ieacj;oint-like charged particle including the reaction force; that
the particle to relativistic motion. Therefore, apparently tojg.

focus our interest on non-relativistic equations cannot be jus-
tified in first instance. However, non-relativistic effects can

be detected for large-scale time as it is proved in many ar- v .
ticles [15,23]. Moreover, in order to deal with trajectories,Whereq’ c and F* represent the charge of the particle, the

guantum restrictions indicate that for relativistic situationsSpeed of light and the field-strength tensor, respectively. The

the fields must be less intense and consequently the Iarggpt " means derivative with respect to the proper time of the

scale temporal effects are more easily detected in the non re?—art'de' Since many unphysical results can be derived from

ativistic cases [14,24]. this equation, as for example the runaway solutions and the

This paper consists in showing that Ford equationpregccelergtions, many others proposals a}ppgared in prder to
(Eliezer-Ford-O'Connell equation in the relativistic Case)av0|d such inconveniences. The Landau-Lifshitz equation [5]

and the non relativistic Landau-Lifshitz equation (Landau_represents the most acceptable model since it is a second or-

Lifshitz equation in the relativistic case) are not mathemati-der differential equation which does not possess any of the

. 4 . ._problems just cited [6-11].
cally equal but they are physically equivalent, Even if it is Let us deduce the equation in such a manner that it will
considered that both equations are equivalent to first orderII 10 obtai Dl tati First ider th
in 7, (the characteristic time of the particle) [1], the depen—a ow 10 oblain a simple representation. FIrst, consider the
dence on the velocity in the applied force is the source 0§_orentz equation
the difference. This will be twice shown by demonstrating
the difference between both equations, and also by giving a
counterexample (the constant magnetic case)Q. First, we dgghere o represents the particle’s acceleration when it is
duce the Landau-Lifshitz solution neglectifg'c)” and then 4 iged just by the Lorentz force and for this reason we use
we solve the problem by means of Ford equation. Since thge sybscript £”. Second, let us consider the trajectory of a
results are different, we will be able to understand the dif-charged particle which satisfies the Landau-Lifshitz equation.

ference between both equations. However, the quantum Cofflj each point of such trajectory, we can define the following
straints prevent to measure the large-scale temporal effects yector fields:

and thereby both equations can be seen as physically equiva-

Landau-Lifshitz Equation

noa?
mat = (q/c)F* v, + 7,m [a + 21}“} , Q)
c

mal = (a/)F*,, 2

lent. o =k, ali = (¢/em)F" v,

The paper is organized as follows: in Sec. 2, the Landau- ,
Lifshitz equation is deduced and a simple representation and b = a |oF* v, + F*al | . (3)
is presented. Also, the solutions for the constant electric cm | Oz
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This could be done, since a Lorentz trajectory crossesntroducing this last result in Eq. (6), we obtain the Landau-
each point of the Landau-Lifshitz trajectory. Such LorentzLifshitz equation of motion,

trajectories can be described by a proper Lorentz time,

7, = T.(z*,v*). In other words, the particle’s proper time mat = (q/c)F* v,

when it is restricted to follow the Lorentz force. Therefore, it

i i w I ; _ v
is clear that the fle!dsL_ and_aL described by Egs. (3) cor tr, oF v, — (q/em) PP Fapo®
respond to the derivative with respect to the proper Lorentz ox®
time 7,
dx# dot q 2 /Ay 2ol 10
=l and =af = —F"v,. (4) +(¢°/c"m) ot |, (10)
dTL dTL cm
Also, it is observed that:
daet gk d i whereF? = F’“’v,,Fﬂw*. This last equation seems to be
E’LZ dr. _ 291 _ (q /cm)w very difficult to solve. However, Eq. (6) represents the same

dTL dTL dTL

equation as the Landau-Lifshitz equation, Eg. (10), but it

dF AUy is presented in such a form that it is easier to solve. More-
(a/cm) [ dr v T F } over, starting from Eq. (6), another representation of the
Landau-Lifshitz equation can be deduced in order to simplify

dTL

-4 {3;;: %vu + F*q #} the technigue to obtain its solutions.
L A 2.1. A simpl jon of the Landau-Lifshi
il ol v, + F™ak | = bt (5) A, simple representation of the Landau-Lifshitz

equation

Therefore, the proper Lorentz time and thevector fields in

Egs. (3) and (5) are well-defined along the Landau-LifshitzBy defining the constarit = ¢/cm, Eq. (6) can be rewritten

trajectory. as
If we substitute in the Lorentz-Dirac radiation term,

Tom[au +(a?/c?)vH], at anda” by the Lorentz acceleration

a’ , the result is

d k2
a = kF" v, + 1y— [kFM0,] + 20 F2ph (11)
drr, c?

1 2
mat = LFmy, 47 {daL L% u} In order to develop a technique to solve the Landau-Lifshitz
¢ dry ¢ equation of motion, the twé—vectorsa’; andda’; /d7;, can
q d 1q 2 be written as:
= dp, 41, |2 [P, | + P20 (6
P |:dTL PR e ] © af = kF"v,, (12)
whereF'# = Fibyg, F2 = FHF, = FPy4F,,v" andTy,
. . : ! / ; and
represents an invariant quantity defined in each point of the
real trajectory of the particle which coincides with the proper da* d
. . . . . L _ 7 [kF;u/U }
time of a virtual charged particle whose motion is in accor- dr,  drL v
dance with Lorentz equation and with the sa#revelocity ,
vH at the (_:rossi_ng point be_tween the Landau-Lifshitz and —k orr v, — kFM EL 0| | (13)
Lorentz trajectories. Then, since Ox®
%
e d [Q FILV,UV:| =72 [E)F v, + F'q f] . @ These vectors represent the acceleration and the rate of
dry Le c| dx® change of the acceleration with respect to the proper time of
By using Eq. (4), we obtain a charged particle that moves following the trajectory gen-
d 1q . erated by the Lorentz force in each point of the Landau-
dTL [ CF } Lifshitz trajectory of the charge. Substituting these vectors

in Eqg. (11), we obtain the following equation,
g {8FW g.(11) geq

- o
Finally, due to the antisymmetry property of the field-strength
tensorf'*, we arrive at
d 19w This last equation is also a representation of the Landau-
Todrs [EF ”v} Lifshitz equation and it is the desired equivalent form. It
has to be pointed out that Landau-Lifshitz equation has the
q {aFW v, — qF’”FMva} . (9) same form than the Lorentz-Dirac equation but withsub-
Oz cm stituted bya’ in the right member of the equation. In order

%,,+qFWqua] )
cm

d 2
a* =adf + 7, [daL + (Zg “} . (14)
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to obtain a solution for the Landau-Lifshitz equation, it is This means that the reaction term vanishes in this case.
necessary to firstly solve the Lorentz equation, which repreTherefore, when a constant electric field parallel to the mo-
sents a strong simplification. Indeed, it has to be noted thaton of a charge is applied, the solution of Landau-Lifshitz
Eq. (14) is a second order equation because thedefdr, equation coincides with the Lorentz one. It has to be noted
is just a4—vector which depends on the-vector position that for Lorentz-Dirac equation, the Lorentz-Dirac reaction
z* and thel—vector velocityv* of the charge (see Eq. (13)). term also vanishes in this case [26,27].

Consequently, since we have noticed its equivalence with the

Landau-Lifshitz equation, runaway solutions and preacceler2.3. The constant magnetic field

ations are avoided. The interesting property of this represen- o

tation consists of not having to calculate all the terms thafh Order to also show the simplicity of the method, let us con-

appear in the regular expression of Landau-Lifshitz equations'd€r @ constant magnetic fielélin the z axis. Without loos-
This point will be shown in the next subsections. ing generality, we can constrain the problem to two dimen-
sions, and by writingy = ¢B/em, the three components of

2.2. The constant electric field the Lorentz equation of motion are
2 2
As we have mentioned before, the solutions for the constant d—2ct =0 %x = wy
electric field case have already been found by many authors drp dry
for the Lorentz-Dirac equation and the Landau-Lifshitz equa- 2 ,
tion. For both equations, the motion of the charged particle g2y = Twr. (20)

is not affected by the reaction force, which vanishes. This

has led to a series of discussions of the interpretation of th&herefore, s 9
principle of equivalence [3] and of the role of the attached a2 = —wiz +vy). (21)
fields [9]. Due to this reason, a new proposal has been don§0
by Hammond [2,3,4,1]. However, in order to apply our new
representation of the Landau-Lifshitz equation, we want to
discuss the simple case of one charged particle in a constant = 21 (.2 .2 "

electric field whose intensity is given bfy. Let us constrain cb="Tow G \* Y )c

the motion and the field to the axis. We begin by solving 1 ) )

the Lorentz equation for this case. We obtain the two Lorentz T =wy — Tow’x (1 + = (([j +y )) ,
coordinate equations, ¢

the Landau-Lifshitz equation of motion can be expressed

dzct d o . 9- 1 L2 .2
0 _ _ = —wr—T, 1+ — . 22
QL—W—U)EE‘T Y wx Twy<+02(x +y ( )
( a2 d As we can notice these equations do not depend on the posi-
aj = -1 = wEec——1, (15)  tion, z andy. Therefore, we can define the vectors,
d
T dry,
By using the last resulti? is T =21 + 9 = v(cosbi + sin67),
d2 2 d2 2 — =1 A= R R
a2 = [cdﬁ%t} — Lh_%x} = —w?E%*32.  (16) €y = 88—2 aa—z = cos i + sin 67, (23)
Then, a? e ov | o sin i + cos 65
€y = |—— ——— — —SInvo1 .
Ciél _ *w2E2. (17) 0 90 90 J -
On the other hand, noticing that in order to calcutéte/dr? wherev represzents ;the magnitude of the relativistic velocity,
andd?ct/dr{, Egs. (15) must be used, we have thatis:v = (z + g )2, andd is the angle of the vector
d2 . with thex axis. Therefore, Eq. (22) can be written as
—al = whE——r = w?Ect
dry, dry _ . 02
) [v} €y + [1}9} €y = —Towv (1 + 02> e, —wvey. (24)
—aj = wE—ct = w?E’z, (18)
drr, drp Consequently, we can assure that
where it is necessary to remember that the dbtrépre- .
sents the real proper time derivative/dr) and by definition 6 = —w = constant
dx* /dry, coincides with the 4-velocity” at each point of the 1
real trajectory. Therefore, we obtain 72dv = —Tow?dr. (25)
da" 2 vl 1+
To [GL + “gw] 0. (19) ( 2)
drp, c
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By integrating the last equation, we arrive at However, this is not true due the presence of the Lorentz-time
tr. Indeed, when the force only depends on the time and the

(26)  coordinates, or in other words # F(v), and considering
thatdz’/dt;, = dx*/dt, we have

VoC EXP —ToW3T

V=
[¢2 +v2[1 —exp —27,,w27']}%
It is observed that similar results for the Lorentz-Dirac equa- gF  9F dx OF OF dot OF dF
tion have been found [24,28]. d. - o diy + O o di + o ar (32)
Finally, the speed of the charge is

) In this case Eq. (31) coincides with Ford equation. It has

7 = VoCEXP —ToW T i to be noted that in their first articles, Ford and O’Connell
[¢2 4+ v2 [1 — exp —2T,w?2T]]2 just considered forces depending on the time [16], but later
R R they generalized their proposal to the relativistic case obtain-

x |cos(wT + 6)i + sin(wT + 5)]} ; (27)  ing the Eliezer equation of motion [18], where no constraint

o . _about the force dependence appears [17]. Therefore, the gen-
wherev, ando represent the initial speed of the particle (with erajization of Ford equation including forces depending on
respect to the proper time) and the phase of the trigonomefne coordinates is natural. However, when the force depends
ric functions atr = 0, respectively. It has to be noted that 4, the velocity, things are different. For such a dependence

this last solution implies that a drift of the center of motion j, the velocity, the non relativistic Landau-Lifshitz equation,
of the charged particle appears [24]. Moreover, in a typi-gq. (31), must be expressed as
cal TOKAMAK environment, the magnetic field is around

10°G (107) [29], the decay time is arount) ! sec for the ma—TF 4+ 7 dF
electrons {.q ~ 1/7.,w?, with 7., = 2¢2/3m.c® andm, °dtr,
the electron mass) and the electrons will lose all the energy. OF dei OF OF dv
Consequently, the confinement of the plasma could be af- =F+7, Wd%‘ + o + 8%5} . (33)
fected due to the fact that the electron energy will decay faster t vt atL
than the energy of a proton (or a similar ion) aroufd sec Using Eq. (30), it is obtained:
(tpa =~ 1/Tpow? With 7,, = 2¢?/3m,c® andm,, the proton _ '
mass). [OF dz* OF OF F*
=F+1, , — -— . 34
ma N | Oxt dt + ot +8v1m (34)

3. Deduction of the Non Relativistic Landau-  on the other side, Ford equation will be represented by:

Lifshitz Equation ] _ ,
7o | OF dz* OF  OF dv*
ma=F+ —

If we consider the reaction term in the new form of the m | Ozt dt + ot + vt dt} ) (35)
Landau-Lifshitz equation, )

p ) Therefore, the difference between both equations consists in
d . .
- aay, 4 @Uu . (28) noticing that
dri, = c2 , ) )
OF dv* OF F* | OF dv*
First, it has to be noted that the Lorentz-Dirac reaction term vt diy “avim v dl’ (36)
transforms as,da/dt, when it is considered the non rela-

tivistic case [30]. Then, it is clear that the Landau-Lifshitz because

reaction term in the non-relativistic case can be expressed as dv* = £ £ dv* = a. (37)
dtL m dt
Todﬂ = EE7 (29) The reason of the difference is that the acceleration of the
dtp,  mdtr trajectories are driven by the Landau-Lifshitz equation or by
wheret ;. represents the Lorentz time, and therefore, Ford equation, depending on which equation has been cho-
‘ ‘ sen, and not by the Lorentz equation. In the following sec-
dv' _ F* tion, some examples of this nature will be exposed.
il (30)
L m

Here the Lorentz time has a similar role to the Lorentz prope®. Ford Equation vs Non Relativistic Landau-

time, but in the non relativistic case. This gives the following Lifshitz Equation in Typical Cases
non relativistic equation for a charged patrticle,

dF In this section the difference between the non-relativistic

ma=F+71,—. (31) Landau-Lifshitz equation and Ford equation is going to be

dir analyzed through a pair of typical physical situations. Specif-

This equation can be called the non-relativistic Landau-cally, the cases of a particle under a constant electric field or
Lifshitz equation. Apparently, this is the Ford equation. a constant magnetic field are studied.
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4.1. Ford equation with a constant electric field where A andJ are real constants determined by the initial
conditions. The interesting fact is that the oscillating term
Let us consider a non relativistic charged particle submittethas a frequency given by

to a constant electric field in the—axis, which motion is w

described by Ford equation. QF = T 202 (45)
ma = qFi + T(,d (;E)g_ (38) and a decay time of the form:
1+ 7'021112
SinceF is constant, the solution is the regular constant accel- tra = Tow? (46)

eration that comes from the corresponding Lorentz equation i S _
If we analyze the expression of the relativistic case using

(39) Landau-Lifshitz equation, Eq. (27), and we take the non rel-
ativistic limit, the frequency and the decay time are written
Even if the reaction force vanishes there is some radiate@s:
power, as we will see in the next section. Qrp =w (47)
On the other hand, if it is considered that the equation oind

ma = qE?.

motion is the non relativistic Landau-Lifshitz equation, then: trrg = 1 (48)
Tow?
ma = gEi 4+ 7, E)7 (40)  which differ by the factor?uw?. o
dir Our principal purpose is to compare Ford equation with

Since the Lorentz force is constant and consequently it doe}ge non relatiyistic Landau-Lifshiiz equation. In order t_o con-
not depend on the velocity, Eq. (40) also coincides in thigh M our.solut|on, letus solve Eq. (34) and check that it comn-
case with the Lorentz equation, as it happens when ForEIdes with th? re_sult of Eqs. (47) _and (48.)' The non relativis-
equation is used. Therefore, as we have predicted, in thi ¢ Landau-Lifshitz equation in this case is

case since the force does not depend on the velocity, then the

solution coincides for both equations, Ford equation and the mr =wy+ Toijy and

non relativistic Landau-Lifshitz equation. In fact, the solu- o

tion coincides with four equations,because it is also solution . : dx

for the Lorentz and the Lorentz-Abraham equations. Y= T Tow (49)

It has to be noted that in this cade/dt; anddy/dtr, must
be replaced by the Lorentz force, that is:

Consider now a non relativistic charged particle submitted to : :
o ~ . : dx . dy
a constant magnetic field®® = Bk. By using Ford equation, — = wy and —
we obtain: dtr
Therefore,

4.2. Ford equation with a constant magnetic field

= —wa 50
el (50)

mx = wg)—!—row% and y = —wd:—row%. (42)

me =wy —ow’x and my =wz —rowly (51)
It has to be observed thgt= dy/dt cannot be identified with FTOM Where a secular equation is obtained:
—wz, since this would imply that the particle’s motion will w2+ 2w, row? + w(1 — r2w?) =0, (52)
be Lorentz-like. Then, Eq. (41) can be solved by putting
which implies
T = aexp —iwmt and y = bexp —iw,,t. (42) W = w + iT,w? (53)
L . ... Thus, the solution is of the form
Therefore, a secular equation is obtained, from where it is
obtained: z = Aexp [—mow?t] cos (wt + §)
w2 — w?(1 — itowp,)? = 0. (43)

m

y = Aexp [—Towgt] sin (wt — 9) , (54)
Finally, the motion can be described by
where A and§ are also constants given by the initial con-

. w . w ditions. The frequency and the decay time coincide, as we
T = Aexp [_TO 1+ 7202 t} sin L T Tngt + 5} expected, with Egs. (47) and (48).
Finally, it has been highlighted that the Ford solution and
t} S {wt _ 5] . (44) the non relativistic Landau-Lifshitz solution differ as it is
1+ 7Zw? proved in Eq. (36).

2

w?

= A O
Yy EXp|: Tol—‘,—Tng
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5. Equivalence between Eliezer and Ford- Analyzing the second part of the radiation term, we have

O’Connell Equation ydal  dvab
=——aa
) o ] dr dr v
In 1948, by making an approximation of the Lorentz-Dirac 5 N
equation, Eliezer [18] deduced a second order equation which — id (U Foav ) _ a”af — —a”af (59)
dr g a

does not present unphysical solutions. On the other hand, by cm
using a generalized quantum Langevin equation, and giving/here the antisymmetry of, \ has been used. Therefore, a
a structure to the electron with a factor form and a finite cut-better representation of the Eliezer-Ford-O’Connell equation
off parameter, Ford and O’Connell obtained a non relativistids: da” u

equation, the so-called Ford equation. Also, by generaliz- at =ad} + 1, [aL + %avaf] . (60)

ing Ford equation to Special Relativity a relativistic equation dr ¢

was deduced, the Ford-O’Connell equation [17,16]. AlbeitThis representation of the Eliezer-Ford-O’Connell equation
Ford and O’'Connell obtained the same equation as Eliezel$ very similar to the expression of the Landau-Lifshitz equa-
they claimed that their deduction was much physical becauséon in Eq. (14), but it differs in the following points: first,

it is based on quantum principles and not in an approximaln Eq. (60) the derivative with respect to the Lorentz-proper
tion. The reason why Eliezer equation and Ford-O’Oconnelfime does not appear; secondly, in Eq. (14) is substituted
equation are frequently not recognized as equivalent is b2y @”a; in Eq. (60). These differences show that there is
cause they are sometimes differently expressed. Let us proP equivalence between the Landau-Lifshitz and the Eliezer-
that both equation are the same starting by using Parrot [1djord-O’Connell equations.

expression of the Eliezer equation,

6. Expressions for the Radiated Power

mat = L prvy
v . .
c Let us analyze the physical consequences of the reaction

term in each equation. Some authors have proposed a new
radiation rate of energy (or a radiated power expression)
for the Landau-Lifshitz equation, [9,31,10,11] which dif-

If we develop the second part of the radiation term,fers from the classical relativistic Larmor formula. Indeed,

(F”)‘w\al,) ﬂ

d(F* v,
gd(F™v,) | g )
C &

To
c dr

(q/c2) (F**vaay) v*, and noticing that, vydF** /dr van-
ishes due to the antisymmetry of the Strength TenBér,
we obtain:

oI

N v g N vk dFv>
(FV U)\al,) 072 = E (FV 'U)\(Iu) 072 — 072 UV?'L))\

when the Lorentz-Dirac equation is considered, the time co-
ordinate of the reaction term corresponds to the radiated
power. However, it is composed of two terms, as Rohrlich

has irgterpreted [30], one corresponds to the attached fields,

T,ma , which follows the charge, and other one that can be
measured experimentally, the large distance radiated power
T,m(a?/c?)v°. Following Rohrlich ideas and taking into ac-
count thed—component of the Landau-Lifshitz reaction term,

c 2 cc? dr ,
d q q
A GU =7, 7*F0V ¥ 7F2 0
c dr da )
- dar  4L,0
Therefore, we arrive at = To™ l:dTL v } ’ (61)
v D we can propose the large distance radiated power as:
ma" = EF Uy 2 o2
Par = —To5—F?0° = —1,m—%4°, (62)
gd(F*v,)  qutv”d(Favd) c'm ¢
+7o o dr T 2 dr » (37)  and the attached radiated power like:
d da$
. . Py = —Toc— [gFO”vV} = —T7,mc L (63)
which represents the Ford-O’Connell equation. Therefore, drp Le drp,

since both representations of the same equation were deducgfle new expressions for the large distance and the attached
by using different physical arguments, the equation may beadiated powers were introduced to show that there is a con-

called the Eliezer-Ford-O’Connell equation.

sistence between the radiated power and the Landau-Lifshitz

By using the same method of Subsec. 2.1, we can expreggjuation [9,10]. When the constant electric field case is an-

the Eliezer-Ford-O’Connell equation as

H oV L
day — v'v"” day

dr c2 dr

(58)

a' =adf +1,

alyzed, since the reaction term vanishes, it can be thought
that there is no radiation. Nevertheless, the large distance ra-
diated power does not vanishes. In fact, the attached energy
provides the energy to the large distance radiated power. This
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means that there is an arrangement of the energy [9]. The eblowever, as we will see in Sec. 7, Concluding Remarks,

sential idea consists of proposing that the radiation emitteduantum constraints prevent any comparison.

by a point charge is due exclusively to the external exerted By reviewing Eq. (62), it is easy to deduce that the non

electromagnetic forces on the charge. relativistic case of the Landau-Lifshitz equation will lead us
On the other hand, based on energy conservation, Forb a non relativistic radiated power equal to the expression de-

and O’Connell have proposed a radiated power for their equascribed in Eq. (64), but looking at Eq. (70) the corresponding

tion [32], and it is expressed as radiated power for Ford equation must be expressed as
F? PF =1,a-F, 72
P=r—. (64) T (72)

m

and not by using Eq. (26) as Ford claimed [32].

If we take the limit of Eq. (62) whelw/c)” tends toD, the

corresponding radiated power for the non relativistic Landau7 Concluding Remarks

Lifshitz case coincides with Ford proposal, Eq. (64). There-

fore, even if Ford equation and the non relativistic Landaudt has been demonstrated that Ford equation coincides with

Lifshitz equation are different, they have in common the radi-the non-relativistic Landau-Lifshitz equation just in the case

ated power. For example, in the case of the constant magnetighen the force acting on the particle does not depend on its

case, in the Ford case, the force must be considered as  the velocity. In the case of velocity dependent forces, the tra-
jectories predicted by Ford equation or by the non relativistic

F? = w0® (65)  Landau-Lifshitz equation are distinct. However, at the mo-
o ment of measuring such differences, physical constraints pre-
For Landau-Lifshitz case, vent to detect them. Indeed, trying to measure the decay time,

the frequency, the radiated power or the critical frequency

of each solution, in the proportional differencAsgec/tdec
w/wrr, AP/Prr, Aw./w.rr, the termr2w? makes the
Ifference; that is:

F? = w? (66)

In both cases, the expression is the same as it has been
pected, but since the trajectories differ the power will be dif-

ferent. Indeed, the Ford power will be w
9 Aw_wLL—wF_w_1+T(?w2_ 1
Aexp | —27,——t wLL wLL w 1+ 72w?
F2 1+ 72w? .
Pr=1,— =1, , (67)  In order to detect the difference?w? must be at least0—3.
m m This identity also holds for relativistic motion. This implies
while the Landau-Lifshitz power will be that
2w? ~ 1071, (73)

F? ~Aexp [—270w2t]

Prrrp=1,— =1, (68) Thatis,
m

m 2q3B _2

. . Tow = ———— ~ 107~, (74)
Even if both expression are not equal, they must be evalu- 3m2ct
ated in physical situations. This will be done, among oth-Since for electrons,, ~ 6.26 x 10~2* sec, we have to deal
ers remarks, in the following section. However, for the with magnetic fields of the order of
0—component of the Eliezer-Ford-O’Connell radiation term,

B ~ 104G (75)
dad 0
G%ro = Tom {dL + 2a”a£‘] , (69)  and for protons,
T B ~ 10%G. (76)
we can propose the large distance radiated power as: Nevertheless, in order to be able of dealing with a trajectory,
0 quantum effects must be negligible. This is accomplished if
PEFO — —Tom%a”af, (70)  the magnetic field satisfies the following requirements [24]:

and the attached radiated power like: 1- De Broglie wavelengtk Characteristic length

B
0 — <~ 77
daj, . (71) B, 8 (77)

with B, ~ 4.4 x 103G

PEFO — _7om
att o dr

It is obvious that for the relativistic case the difference be-
tween both proposals are bigger than in the non relativistic 2- Radiation effects

case. A fine experimental measurement of the large distance B <
radiated power will select which one is the better equation. By

1 (78)
v
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For the relativistic case the second identity outweighs, Finally, after 100 hundred years of discussion about the
Eq. (78). This means that more energy requires less fielcdcorrect equation of motion for a charged particle, the Landau-
This is the reason why it is better to analyze the non relaLifshitz equation (or the equivalent Eliezer-Ford-O’Connell)
tivistic case. Therefore, it is necessary to deal with magneticepresents the most acceptable approach. Even more, Quinn
fields smaller thaB,; that is: and Wald [34] proposed a general relativistic equation includ-

B < 10%G ing the reaction force with the tail term which coincides with
' Landau-Lifshitz equation for Minkowski space. However,
For protons the situation is worst and it will not be possi-Hammond’s method [1-4] which appeared in order to discuss
ble to experimentally differentiate both solutions. Even if in the balance of energy of the electric constant case, represents
some astrophysical situations some magnetic fields have bean interesting alternative to be discussed. For the followers
found to be of the order af0'3G (see for example, Camilo of Landau-Lifshitz equation, there exists a rearrangement of
et al[33]), quantum effects will dominate the behavior of the the radiated energy between the large distance radiation and
charge and it will not make sense to analyze the trajectoriesthe radiation term due to the attached fields. While for Ham-

Finally, the purpose of the article was to check that,mond, the energy loss comes from Larmor formula and this
even if the two equations were different to first orderrin ~ leads to another representation of the equation. However,
the large-scale temporal behavior of the solutions were ablan equivalent method for Hammond proposal for the gen-
to differentiate between both of them. For high relativis- eral relativistic case has to be improved and compared with
tic motion, the electric constant case, high intense planeklobbs [35] and Quinn and Wald approaches [34,36].
waves, and crossed electric fields do not present such dif-
ferences [21,22]. For central forces, the equations coin-
cide even if the large-scale temporal effects are studied [15]Acknowledgments
For low energy motion in electric or magnetic fields, quan-
tum restrictions prohibit to find experimentally a differ- This work was partially supported by C.O.F.A.A and
ence. We can conclude Eliezer-Ford-O’Connell and Landauk.D.I.,I.P.N, and CONACYT.

Lifshitz equations are physically equivalent within the Shen’s
Zone [14,24].
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