
REVIEW Revista Mexicana de Fı́sica61 (2015) 363–371 SEPTEMBER-OCTOBER 2015

Mathematical differences and physical similarities between
Eliezer-Ford-O’connell equation and Landau-Lifshitz equation

J.F. Garćıa-Camachoa, E. Salinasb, A. Avalos-Vargasa and G. Ares de Pargaa

aDpto. de F́ısica, Escuela Superior de Fı́sica y Mateḿaticas, Instituto Polit́ecnico Nacional,
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bEscuela Superior de Ćomputo, Instituto Polit́ecnico Nacional,
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Recently, for high intensity electromagnetic waves, it has been proven that the solutions for the Eliezer-Ford-O’Connell equation and the
Landau-Lifshitz equation coincide within a physically detectable range. For large-scale temporal effects, similar results are obtained for the
central force problem. However, in the case of a constant magnetic field, the frequencies which describe the motion in both equations differ.
Nonetheless, quantum constraints avoid the measurement of such difference making both equations physically equivalent for all the scale of
energies and fields within Classical Mechanics regime.
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1. Introduction

For more than a century, the knowledge of the reaction force
for a charged particle has represented an open problem due to
unphysical results derived from the different proposals which
depict this phenomenon. An interesting article which de-
scribes the distinct equations and their own physical problem-
atic was recently done by Hammond [1]. Nowadays, among
all the different approaches and despite of the new one pro-
posed by Hammond [2-4], the Landau-Lifshitz equation of
motion is considered as the better option to describe the mo-
tion of a spinless charged point particle [5-12]. On the other
hand, in order to avoid Quantum effects [13], the charge must
be constrained to the so-called Shen’s zone [14]. This zone
represents an area in an energyversusfield diagram, where
Relativistic and Non Relativistic Classical Mechanics drive
the motion of a charged particle, without being affected by
quantum aspects. Indeed, the energies and fields used in
Plasma Physics belong to the Shen’s zone. Therefore, not
only relativistic situations must be analyzed, but also non rel-
ativistic cases must be investigated, since they are of major
importance. An example of this is the case of the central
force which has been recently studied by Rajeev [15]. Since
his objective was to calculate the line-widths of an hydrogen-
like atom and also to understand by means of a simple model
the capture of a star by a black hole, it was naturally neces-
sary to derive a non relativistic version of the Landau-Lifshitz
equation . The method seems to be simple, because it con-
sists in neglecting all the terms depending on(v/c)2 in the
Landau-Lifshitz equation. Alternatively, to find the non rel-
ativistic version, it is possible to solve the Landau-Lifshitz
equation and then make a first order expansion inv/c. Also,
another rough method would lead to the Ford Equation [16].

On the other hand, by considering a generalized quantum
Langevin equation and by giving a structure to the electron
with a factor form and a finite cut-off parameter, Ford and
O’Connell derived a non relativistic equation of motion for
charged particles. Generalizing this equation to Special Rel-
ativity [17] they obtained an equation, that Eliezer derived
fifty years before using distinct arguments. Both equations,
Landau-Lifshitz and Eliezer-Ford-O’Connell, are second or-
der differential equations which do not present unphysical so-
lutions, as preaccelerations and runaway solutions.

However, even if these equations are considered by many
authors as identical, they come from different physical as-
sumptions. Indeed, for Spohn [6] and Rohrlich [7,8], the
Landau-Lifshitz equation is obtained if the Lorentz-Dirac
equation is restricted to its critical surface. This indicates a
fundamentally distinct origin from the one for Eliezer-Ford-
O’Connell equation, as we mentioned above. Also, for Par-
rot [19], the Eliezer equation and other equations, as Mo and
Papas equation [20], were derived as variants of Lorentz-
Dirac equation by considering the acceleration to be propor-
tional to the applied force. Moreover, Landau and Lifshitz
derived their equation by substituting the Lorentz equation
in the Lorentz-Dirac reaction term, and consequently it could
be also considered as an approximation or a first order expan-
sion inτo (τo = 2q2/3mc3 is called the characteristic time)
of the Lorentz-Dirac equation.

As we will see in this paper, although Landau-Lifshitz
and Eliezer-Ford-O’Connell equations are mathematically
different, they physically coincide. Some authors have made
a comparison between the Lorentz-Abraham-Dirac equation
and the non relativistic Landau-Lifshitz equation. For exam-
ple Griffiths [12], and Rajeev [15] considered Ford equation
as the non-relativistic case of the Landau-Lifshitz equation,
which is true for the examples used by them. Although, com-
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parisons between the Landau-Lifshitz equation and Eliezer-
Ford-O’Connell equation have been done for high intense
pulses and high energies [21,22]; such a comparison between
Ford equation and the non-relativistic Landau-Lifshitz equa-
tion has not been done for large-scale temporal effects. In
fact, it seems that many authors consider that Ford equation
and the non relativistic Landau-Lifshitz equation are iden-
tical. Kravetset al [21] mentioned that the Eliezer-Ford-
O’Connell equation has received less attention than it per-
haps deserves, due in part to the confusion arising from its
apparent equivalence to the Landau-Lifshitz approximation
(for an intense laser pulse, Landau-Lifshitz and Eliezer-Ford-
O’Connell solutions are almost equal).

In recent years, due to the appearance of higher laser in-
tensities, the reaction force has been studied from the point
of view of the relativistic case [21,13,22,2]. In fact, since
for the case of a constant electric field there is an apparent
lack of energy balance in the solutions of the Lorentz-Dirac
equation, of the Landau-Lifshitz equation and of the Eliezer-
Ford-O’Connell equation, an interesting approach has been
developed by Hammond [4,3,2,1]. In particular, he found an
interesting solution, for low and high velocities, which ex-
plains the radiated energy and the motion of the charge for
the electric constant field case.

The radiation reaction force effects are very significant
in the regime of very high intensities since such fields lead
the particle to relativistic motion. Therefore, apparently to
focus our interest on non-relativistic equations cannot be jus-
tified in first instance. However, non-relativistic effects can
be detected for large-scale time as it is proved in many ar-
ticles [15,23]. Moreover, in order to deal with trajectories,
quantum restrictions indicate that for relativistic situations
the fields must be less intense and consequently the large-
scale temporal effects are more easily detected in the non rel-
ativistic cases [14,24].

This paper consists in showing that Ford equation
(Eliezer-Ford-O’Connell equation in the relativistic case)
and the non relativistic Landau-Lifshitz equation (Landau-
Lifshitz equation in the relativistic case) are not mathemati-
cally equal but they are physically equivalent. Even if it is
considered that both equations are equivalent to first order
in τo (the characteristic time of the particle) [1], the depen-
dence on the velocity in the applied force is the source of
the difference. This will be twice shown by demonstrating
the difference between both equations, and also by giving a
counterexample (the constant magnetic case). First, we de-
duce the Landau-Lifshitz solution neglecting(v/c)2 and then
we solve the problem by means of Ford equation. Since the
results are different, we will be able to understand the dif-
ference between both equations. However, the quantum con-
straints prevent to measure the large-scale temporal effects
and thereby both equations can be seen as physically equiva-
lent.

The paper is organized as follows: in Sec. 2, the Landau-
Lifshitz equation is deduced and a simple representation
is presented. Also, the solutions for the constant electric

case and constant magnetic case are found. In Sec. 3, the
non-relativistic Landau-Lifshitz equation is deduced. The
comparison with Ford equation shows that both equations
are mathematically different when the force depends on the
speed. In Sec. 4, Ford equation is solved for the constant
electric and the constant magnetic cases. An analysis be-
tween both results, the non relativistic Landau-Lifshitz so-
lution and the Ford solution, is done. In Sec. 5, by using
a special representation of Eliezer equation [19], the equiva-
lence between Eliezer equation and Ford-O’Connell equation
is showed and at the same time the mathematical difference
with the Landau-Lifshitz equation is exposed. A simplified
representation of both equations is deduced. In Sec. 6, the
expression for the large distance radiated power is analyzed
giving the same result for both equations, even if the force de-
pends on the speed. However, since each equation has differ-
ent solutions the corresponding radiated powers are distinct.
In Sec. 7, in Concluding Remarks, the differences between
both equations are summarized. Also, numerical physical sit-
uations are studied considering the quantum constraints.

2. Landau-Lifshitz Equation

In 1938, Dirac [25] proposed an equation of motion which
pretends to relativistically describe the motion of a spinless
point-like charged particle including the reaction force; that
is:

maµ = (q/c)Fµνvν + τom

[
·
a

µ
+

a2

c2
vµ

]
, (1)

whereq, c andFµν represent the charge of the particle, the
speed of light and the field-strength tensor, respectively. The
dot “·” means derivative with respect to the proper time of the
particle. Since many unphysical results can be derived from
this equation, as for example the runaway solutions and the
preaccelerations, many others proposals appeared in order to
avoid such inconveniences. The Landau-Lifshitz equation [5]
represents the most acceptable model since it is a second or-
der differential equation which does not possess any of the
problems just cited [6-11].

Let us deduce the equation in such a manner that it will
allow to obtain a simple representation. First, consider the
Lorentz equation

maµ
L = (q/c)Fµνvν , (2)

where aµ
L represents the particle’s acceleration when it is

guided just by the Lorentz force and for this reason we use
the subscript “L”. Second, let us consider the trajectory of a
charged particle which satisfies the Landau-Lifshitz equation.
In each point of such trajectory, we can define the following
4−vector fields:

vµ
L = vµ, aµ

L = (q/cm)Fµνvν

and bµ
L =

q

cm

[
∂Fµν

∂xα
vαvν + Fµνaµ

L

]
. (3)
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This could be done, since a Lorentz trajectory crosses
each point of the Landau-Lifshitz trajectory. Such Lorentz
trajectories can be described by a proper Lorentz time,
τL = τL(xµ, vµ). In other words, the particle’s proper time
when it is restricted to follow the Lorentz force. Therefore, it
is clear that the fieldsvµ

L andaµ
L described by Eqs. (3) cor-

respond to the derivative with respect to the proper Lorentz
time τL,

dxµ

dτL
= vµ

L and
dvµ

dτL
= aµ

L =
q

cm
Fµνvν . (4)

Also, it is observed that:

◦
a

µ

L =
ddvµ

dτL

dτL
=

daµ
L

dτL
= (q/cm)

d [Fµνvν ]
dτL

= (q/cm)
[
dFµν

dτL
vν + Fµν dvν

dτL

]

=
q

cm

[
∂Fµν

∂xα

dxα

dτL
vν + Fµνaµ

L

]

=
q

cm

[
∂Fµν

∂xα
vαvν + Fµνaµ

L

]
= bµ

L (5)

Therefore, the proper Lorentz time and the4−vector fields in
Eqs. (3) and (5) are well-defined along the Landau-Lifshitz
trajectory.

If we substitute in the Lorentz-Dirac radiation term,
τom[

◦
a

µ
+(a2/c2)vµ], aµ and

·
a

µ
by the Lorentz acceleration

aµ
L, the result is

maµ =
q

c
Fµνvν + τo

[
daµ

L

dτL
+

a2
L

c2
vµ

]

=
q

c
Fµνvν + τo

[
d

dτL

[q

c
Fµνvν

]
+

q2

c4m
F 2vµ

]
(6)

whereFµ = Fµβvβ , F 2 = FµFµ = FαβvβFαηvη andτL

represents an invariant quantity defined in each point of the
real trajectory of the particle which coincides with the proper
time of a virtual charged particle whose motion is in accor-
dance with Lorentz equation and with the same4−velocity
vµ at the crossing point between the Landau-Lifshitz and
Lorentz trajectories. Then, since

τo
d

dτL

[q

c
Fµνvν

]
= τo

q

c

[
∂Fµν

∂xα
vαvν + Fµνaµ

L

]
. (7)

By using Eq. (4), we obtain

τo
d

dτL

[q

c
Fµνvν

]

= τo
q

c

[
∂Fµν

∂xα
vαvν+

q

cm
FµνFναvα

]
. (8)

Finally, due to the antisymmetry property of the field-strength
tensorFµν , we arrive at

τo
d

dτL

[q

c
Fµνvν

]

= τo
q

c

[
∂Fµν

∂xα
vαvν − q

cm
FµνFαvvα

]
. (9)

Introducing this last result in Eq. (6), we obtain the Landau-
Lifshitz equation of motion,

maµ = (q/c)Fµνvν

+ τo

[
q

c

[
∂Fµν

∂xα
vαvν − (q/cm)FµνFαvvα

]

+ (q2/c4m)F 2vµ

]
, (10)

whereF 2 = FµνvνFµλvλ. This last equation seems to be
very difficult to solve. However, Eq. (6) represents the same
equation as the Landau-Lifshitz equation, Eq. (10), but it
is presented in such a form that it is easier to solve. More-
over, starting from Eq. (6), another representation of the
Landau-Lifshitz equation can be deduced in order to simplify
the technique to obtain its solutions.

2.1. A simple representation of the Landau-Lifshitz
equation

By defining the constantk = q/cm, Eq. (6) can be rewritten
as

aµ = kFµνvv + τo
d

dτL
[kFµνvν ] +

τok
2

c2
F 2vµ. (11)

In order to develop a technique to solve the Landau-Lifshitz
equation of motion, the two4−vectorsaµ

L anddaµ
L/dτL can

be written as:

aµ
L = kFµνvν , (12)

and

daµ
L

dτL
=

d

dτL
[kFµνvν ]

= k

[
∂Fµν

∂xα
vαvν − kFµνFαvvα

]
. (13)

These vectors represent the acceleration and the rate of
change of the acceleration with respect to the proper time of
a charged particle that moves following the trajectory gen-
erated by the Lorentz force in each point of the Landau-
Lifshitz trajectory of the charge. Substituting these vectors
in Eq. (11), we obtain the following equation,

aµ = aµ
L + τo

[
daµ

L

dτL
+

a2
L

c2
vµ

]
. (14)

This last equation is also a representation of the Landau-
Lifshitz equation and it is the desired equivalent form. It
has to be pointed out that Landau-Lifshitz equation has the
same form than the Lorentz-Dirac equation but withaµ sub-
stituted byaµ

L in the right member of the equation. In order
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to obtain a solution for the Landau-Lifshitz equation, it is
necessary to firstly solve the Lorentz equation, which repre-
sents a strong simplification. Indeed, it has to be noted that
Eq. (14) is a second order equation because the termdaµ

L/dτL

is just a4−vector which depends on the4−vector position
xµ and the4−vector velocityvµ of the charge (see Eq. (13)).
Consequently, since we have noticed its equivalence with the
Landau-Lifshitz equation, runaway solutions and preacceler-
ations are avoided. The interesting property of this represen-
tation consists of not having to calculate all the terms that
appear in the regular expression of Landau-Lifshitz equation.
This point will be shown in the next subsections.

2.2. The constant electric field

As we have mentioned before, the solutions for the constant
electric field case have already been found by many authors
for the Lorentz-Dirac equation and the Landau-Lifshitz equa-
tion. For both equations, the motion of the charged particle
is not affected by the reaction force, which vanishes. This
has led to a series of discussions of the interpretation of the
principle of equivalence [3] and of the role of the attached
fields [9]. Due to this reason, a new proposal has been done
by Hammond [2,3,4,1]. However, in order to apply our new
representation of the Landau-Lifshitz equation, we want to
discuss the simple case of one charged particle in a constant
electric field whose intensity is given byE. Let us constrain
the motion and the field to thex axis. We begin by solving
the Lorentz equation for this case. We obtain the two Lorentz
coordinate equations,

a0
L =

d2ct

dτ2
L

= wE
d

dτL
x

ax
L =

d2

dτ2
L

x = wEc
d

dτL
t, (15)

By using the last result,a2
L is

a2
L =

[
c

d2

dτ2
L

t

]2

−
[

d2

dτ2
L

x

]2

= −w2E2c2. (16)

Then,
a2

L

c2
= −w2E2. (17)

On the other hand, noticing that in order to calculated2x/dτ2
L

andd2ct/dτ2
L, Eqs. (15) must be used, we have

d

dτL
a0

L = wE
d2

dτ2
L

x = w2E2c
·
t

d

dτL
ax

L = wE
d2

dτ2
L

ct = w2E2 ·x, (18)

where it is necessary to remember that the dot “·” repre-
sents the real proper time derivative (d /dτ ) and by definition
dxµ/dτL coincides with the 4-velocityvµ at each point of the
real trajectory. Therefore, we obtain

τo

[
daµ

L

dτL
+

a2
L

c2
vµ

]
= 0. (19)

This means that the reaction term vanishes in this case.
Therefore, when a constant electric field parallel to the mo-
tion of a charge is applied, the solution of Landau-Lifshitz
equation coincides with the Lorentz one. It has to be noted
that for Lorentz-Dirac equation, the Lorentz-Dirac reaction
term also vanishes in this case [26,27].

2.3. The constant magnetic field

In order to also show the simplicity of the method, let us con-
sider a constant magnetic fieldB in thez axis. Without loos-
ing generality, we can constrain the problem to two dimen-
sions, and by writingw = qB/cm, the three components of
the Lorentz equation of motion are

d2

dτ2
L

ct = 0
d2

dτ2
L

x = w
·
y

d2

dτ2
L

y = −w
·
x. (20)

Therefore,

a2
L = −w2(

·
x

2
+

·
y
2
). (21)

So the Landau-Lifshitz equation of motion can be expressed
as

c
··
t = −τow

2 1
c2

(
·
x

2
+

·
y
2
)

c
·
t

··
x = w

·
y − τow

2 ·x
(

1 +
1
c2

(
·
x

2
+

·
y
2
))

,

··
y = −w

·
x− τow

2 ·y
(

1 +
1
c2

(
·
x

2
+

·
y
2
))

. (22)

As we can notice these equations do not depend on the posi-
tion, x andy. Therefore, we can define the vectors,

−→v =
·
x̂i +

·
yĵ = v(cos θ̂i + sin θĵ),

êv =
∣∣∣∣
∂−→v
∂v

∣∣∣∣
−1

∂−→v
∂v

= cos θ̂i + sin θĵ, (23)

êθ =
∣∣∣∣
∂−→v
∂θ

∣∣∣∣
−1

∂−→v
∂θ

= − sin θ̂i + cos θĵ.,

wherev represents the magnitude of the relativistic velocity,

that is: v = (
·
x

2
+

·
y
2
)

1
2 , andθ is the angle of the vector−→v

with thex axis. Therefore, Eq. (22) can be written as

[ ·
v
]
êv +

[
v
·
θ

]
êθ = −τow

2v

(
1 +

v2

c2

)
êv − wvêθ. (24)

Consequently, we can assure that

·
θ = −w = constant

1

v

(
1 +

v2

c2

)dv = −τow
2dτ. (25)
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By integrating the last equation, we arrive at

v =
voc exp−τow

2τ

[c2 + v2
o [1− exp−2τow2τ ]]

1
2
. (26)

It is observed that similar results for the Lorentz-Dirac equa-
tion have been found [24,28].

Finally, the speed of the charge is

−→v =
voc exp−τow

2τ

[c2 + v2
o [1− exp−2τow2τ ]]

1
2

×
[
cos(wτ + δ)̂i + sin(wτ + δ)ĵ

]
, (27)

wherevo andδ represent the initial speed of the particle (with
respect to the proper time) and the phase of the trigonomet-
ric functions atτ = 0, respectively. It has to be noted that
this last solution implies that a drift of the center of motion
of the charged particle appears [24]. Moreover, in a typi-
cal TOKAMAK environment, the magnetic field is around
105G (10T ) [29], the decay time is around10−1 sec for the
electrons (ted ' 1/τeow

2, with τeo = 2e2/3mec
3 andme

the electron mass) and the electrons will lose all the energy.
Consequently, the confinement of the plasma could be af-
fected due to the fact that the electron energy will decay faster
than the energy of a proton (or a similar ion) around109 sec
(tpd ' 1/τpow

2 with τpo = 2e2/3mpc
3 andmp the proton

mass).

3. Deduction of the Non Relativistic Landau-
Lifshitz Equation

If we consider the reaction term in the new form of the
Landau-Lifshitz equation,

τo

[
daµ

L

dτL
+

a2
L

c2
vµ

]
. (28)

First, it has to be noted that the Lorentz-Dirac reaction term
transforms asτoda/dt, when it is considered the non rela-
tivistic case [30]. Then, it is clear that the Landau-Lifshitz
reaction term in the non-relativistic case can be expressed as

τo
daL

dtL
=

τo

m

dF
dtL

, (29)

wheretL represents the Lorentz time, and therefore,

dvi

dtL
=

F i

m
. (30)

Here the Lorentz time has a similar role to the Lorentz proper
time, but in the non relativistic case. This gives the following
non relativistic equation for a charged particle,

ma = F + τo
dF
dtL

. (31)

This equation can be called the non-relativistic Landau-
Lifshitz equation. Apparently, this is the Ford equation.

However, this is not true due the presence of the Lorentz-time
tL. Indeed, when the force only depends on the time and the
coordinates, or in other wordsF 6= F(v), and considering
thatdxi/dtL = dxi/dt, we have

dF
dtL

=
∂F
∂xi

dxi

dtL
+

∂F
∂t

=
∂F
∂xi

dxi

dt
+

∂F
∂t

=
dF
dt

. (32)

In this case Eq. (31) coincides with Ford equation. It has
to be noted that in their first articles, Ford and O’Connell
just considered forces depending on the time [16], but later
they generalized their proposal to the relativistic case obtain-
ing the Eliezer equation of motion [18], where no constraint
about the force dependence appears [17]. Therefore, the gen-
eralization of Ford equation including forces depending on
the coordinates is natural. However, when the force depends
on the velocity, things are different. For such a dependence
in the velocity, the non relativistic Landau-Lifshitz equation,
Eq. (31), must be expressed as

ma = F + τo
dF
dtL

= F + τo

[
∂F
∂xi

dxi

dt
+

∂F
∂t

+
∂F
∂vi

dvi

dtL

]
. (33)

Using Eq. (30), it is obtained:

ma = F + τo

[
∂F
∂xi

dxi

dt
+

∂F
∂t

+
∂F
∂vi

F i

m

]
. (34)

On the other side, Ford equation will be represented by:

ma = F +
τo

m

[
∂F
∂xi

dxi

dt
+

∂F
∂t

+
∂F
∂vi

dvi

dt

]
. (35)

Therefore, the difference between both equations consists in
noticing that

∂F
∂vi

dvi

dtL
=

∂F
∂vi

F i

m
6= ∂F

∂vi

dvi

dt
, (36)

because
dvi

dtL
=

F i

m
6= dvi

dt
= ai. (37)

The reason of the difference is that the acceleration of the
trajectories are driven by the Landau-Lifshitz equation or by
Ford equation, depending on which equation has been cho-
sen, and not by the Lorentz equation. In the following sec-
tion, some examples of this nature will be exposed.

4. Ford Equation vs Non Relativistic Landau-
Lifshitz Equation in Typical Cases

In this section the difference between the non-relativistic
Landau-Lifshitz equation and Ford equation is going to be
analyzed through a pair of typical physical situations. Specif-
ically, the cases of a particle under a constant electric field or
a constant magnetic field are studied.
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4.1. Ford equation with a constant electric field

Let us consider a non relativistic charged particle submitted
to a constant electric field in thex−axis, which motion is
described by Ford equation.

ma = qEî + τo
d (qE)

dt
î. (38)

SinceE is constant, the solution is the regular constant accel-
eration that comes from the corresponding Lorentz equation,

ma = qEî. (39)

Even if the reaction force vanishes there is some radiated
power, as we will see in the next section.

On the other hand, if it is considered that the equation of
motion is the non relativistic Landau-Lifshitz equation, then:

ma = qEî + τo
d (qE)
dtL

î. (40)

Since the Lorentz force is constant and consequently it does
not depend on the velocity, Eq. (40) also coincides in this
case with the Lorentz equation, as it happens when Ford
equation is used. Therefore, as we have predicted, in this
case since the force does not depend on the velocity, then the
solution coincides for both equations, Ford equation and the
non relativistic Landau-Lifshitz equation. In fact, the solu-
tion coincides with four equations,because it is also solution
for the Lorentz and the Lorentz-Abraham equations.

4.2. Ford equation with a constant magnetic field

Consider now a non relativistic charged particle submitted to
a constant magnetic field,B = Bk̂. By using Ford equation,
we obtain:

m
··
x = w

·
y+τow

d
·
y

dt
and

··
y = −w

·
x−τow

d
·
x

dt
. (41)

It has to be observed that
··
y = d

·
y/dt cannot be identified with

−w
·
x, since this would imply that the particle’s motion will

be Lorentz-like. Then, Eq. (41) can be solved by putting

·
x = a exp−iwmt and

·
y = b exp−iwmt. (42)

Therefore, a secular equation is obtained, from where it is
obtained:

w2
m − w2(1− iτowm)2 = 0. (43)

Finally, the motion can be described by

·
x = A exp

[
−τo

w2

1 + τ2
o w2

t

]
sin

[
w

1 + τ2
o w2

t + δ

]

·
y = A exp

[
−τo

w2

1 + τ2
o w2

t

]
cos

[
w

1 + τ2
o w2

t− δ

]
, (44)

whereA and δ are real constants determined by the initial
conditions. The interesting fact is that the oscillating term
has a frequency given by

ΩF =
w

1 + τ2
o w2

(45)

and a decay time of the form:

tFd =
1 + τ2

o w2

τow2
(46)

If we analyze the expression of the relativistic case using
Landau-Lifshitz equation, Eq. (27), and we take the non rel-
ativistic limit, the frequency and the decay time are written
as:

ΩLL = w (47)

and
tLLd =

1
τow2

(48)

which differ by the factorτ2
o w2.

Our principal purpose is to compare Ford equation with
the non relativistic Landau-Lifshitz equation. In order to con-
firm our solution, let us solve Eq. (34) and check that it coin-
cides with the result of Eqs. (47) and (48). The non relativis-
tic Landau-Lifshitz equation in this case is

m
··
x = w

·
y + τow

d
·
y

dtL
and

··
y = −w

·
x− τow

d
·
x

dtL
. (49)

It has to be noted that in this cased
·
x/dtL andd

·
y/dtL must

be replaced by the Lorentz force, that is:

d
·
x

dtL
= w

·
y and

d
·
y

dtL
= −w

·
x (50)

Therefore,

m
··
x = w

·
y − τow

2 ·x and m
··
y = w

·
x− τow

2 ·y (51)

From where a secular equation is obtained:

w2
m + 2iwmτow

2 + w2(1− τ2
o w2) = 0, (52)

which implies
wm = w + iτow

2 (53)

Thus, the solution is of the form

·
x = A exp

[−τow
2t

]
cos (wt + δ)

·
y = A exp

[−τow
2t

]
sin (wt− δ) , (54)

whereA and δ are also constants given by the initial con-
ditions. The frequency and the decay time coincide, as we
expected, with Eqs. (47) and (48).

Finally, it has been highlighted that the Ford solution and
the non relativistic Landau-Lifshitz solution differ as it is
proved in Eq. (36).
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5. Equivalence between Eliezer and Ford-
O’Connell Equation

In 1948, by making an approximation of the Lorentz-Dirac
equation, Eliezer [18] deduced a second order equation which
does not present unphysical solutions. On the other hand, by
using a generalized quantum Langevin equation, and giving
a structure to the electron with a factor form and a finite cut-
off parameter, Ford and O’Connell obtained a non relativistic
equation, the so-called Ford equation. Also, by generaliz-
ing Ford equation to Special Relativity a relativistic equation
was deduced, the Ford-O’Connell equation [17,16]. Albeit
Ford and O’Connell obtained the same equation as Eliezer,
they claimed that their deduction was much physical because
it is based on quantum principles and not in an approxima-
tion. The reason why Eliezer equation and Ford-O’Oconnell
equation are frequently not recognized as equivalent is be-
cause they are sometimes differently expressed. Let us proof
that both equation are the same starting by using Parrot [19]
expression of the Eliezer equation,

maµ =
q

c
Fµνvν

+ τo

[
q

c

d (Fµνvν)
dτ

+
q

c

(
F νλvλaν

) vµ

c2

]
. (55)

If we develop the second part of the radiation term,(
q/c3

) (
F νλvλaν

)
vµ, and noticing thatvνvλdF νλ/dτ van-

ishes due to the antisymmetry of the Strength Tensor,F νλ,
we obtain:

q

c

(
F νλvλaν

) vµ

c2
=

q

c

(
F νλvλaν

) vµ

c2
− vµ

c2

[
vν

dF νλ

dτ
vλ

]

=
q

c

(
Fνλvλaν

) vµ

c2
− q

c

vµ

c2

[
vν dFνλ

dτ
vλ

]

= − q

c3
vµvν d

(
Fνλvλ

)

dτ
. (56)

Therefore, we arrive at

maµ =
q

c
Fµνvν

+ τo

[
q

c

d (Fµνvν)
dτ

− q

c

vµvν

c2

d
(
Fvλvλ

)

dτ

]
, (57)

which represents the Ford-O’Connell equation. Therefore,
since both representations of the same equation were deduced
by using different physical arguments, the equation may be
called the Eliezer-Ford-O’Connell equation.

By using the same method of Subsec. 2.1, we can express
the Eliezer-Ford-O’Connell equation as

aµ = aµ
L + τo

[
daµ

L

dτ
− vµvν

c2

daL
ν

dτ

]
. (58)

Analyzing the second part of the radiation term, we have

vν daL
ν

dτ
=

dvνaL
ν

dτ
− aνaL

v

=
q

cm

d
(
vνFνλvλ

)

dτ
− aνaL

v = −aνaL
v , (59)

where the antisymmetry ofFνλ has been used. Therefore, a
better representation of the Eliezer-Ford-O’Connell equation
is:

aµ = aµ
L + τo

[
daµ

L

dτ
+

vµ

c2
aνaL

ν

]
. (60)

This representation of the Eliezer-Ford-O’Connell equation
is very similar to the expression of the Landau-Lifshitz equa-
tion in Eq. (14), but it differs in the following points: first,
in Eq. (60) the derivative with respect to the Lorentz-proper
time does not appear; secondly,a2

L in Eq. (14) is substituted
by aνaL

ν in Eq. (60). These differences show that there is
no equivalence between the Landau-Lifshitz and the Eliezer-
Ford-O’Connell equations.

6. Expressions for the Radiated Power

Let us analyze the physical consequences of the reaction
term in each equation. Some authors have proposed a new
radiation rate of energy (or a radiated power expression)
for the Landau-Lifshitz equation, [9,31,10,11] which dif-
fers from the classical relativistic Larmor formula. Indeed,
when the Lorentz-Dirac equation is considered, the time co-
ordinate of the reaction term corresponds to the radiated
power. However, it is composed of two terms, as Rohrlich
has interpreted [30], one corresponds to the attached fields,

τom
·
a
0
, which follows the charge, and other one that can be

measured experimentally, the large distance radiated power
τom(a2/c2)vo. Following Rohrlich ideas and taking into ac-
count the0−component of the Landau-Lifshitz reaction term,

G0 = τo

[
d

dτL

q

c
F 0νvν +

q2

c4m
F 2v0

]

= τom

[
da0

L

dτL
+

a2
L

c2
v0

]
, (61)

we can propose the large distance radiated power as:

Plar = −τo
q2

c3m
F 2v0 = −τom

a2
L

c
v0, (62)

and the attached radiated power like:

Patt = −τoc
d

dτL

[q

c
F 0νvν

]
= −τomc

dao
L

dτL
(63)

The new expressions for the large distance and the attached
radiated powers were introduced to show that there is a con-
sistence between the radiated power and the Landau-Lifshitz
equation [9,10]. When the constant electric field case is an-
alyzed, since the reaction term vanishes, it can be thought
that there is no radiation. Nevertheless, the large distance ra-
diated power does not vanishes. In fact, the attached energy
provides the energy to the large distance radiated power. This
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means that there is an arrangement of the energy [9]. The es-
sential idea consists of proposing that the radiation emitted
by a point charge is due exclusively to the external exerted
electromagnetic forces on the charge.

On the other hand, based on energy conservation, Ford
and O’Connell have proposed a radiated power for their equa-
tion [32], and it is expressed as

P = τo
F 2

m
. (64)

If we take the limit of Eq. (62) when(v/c)2 tends to0, the
corresponding radiated power for the non relativistic Landau-
Lifshitz case coincides with Ford proposal, Eq. (64). There-
fore, even if Ford equation and the non relativistic Landau-
Lifshitz equation are different, they have in common the radi-
ated power. For example, in the case of the constant magnetic
case, in the Ford case, the force must be considered as

F 2 = w2v2. (65)

For Landau-Lifshitz case,

F 2 = w2v2. (66)

In both cases, the expression is the same as it has been ex-
pected, but since the trajectories differ the power will be dif-
ferent. Indeed, the Ford power will be

PF = τo
F 2

m
= τo

A exp

[
−2τo

w2

1 + τ2
o w2

t

]

m
, (67)

while the Landau-Lifshitz power will be

PLLF = τo
F 2

m
= τo

A exp
[−2τow

2t
]

m
. (68)

Even if both expression are not equal, they must be evalu-
ated in physical situations. This will be done, among oth-
ers remarks, in the following section. However, for the
0−component of the Eliezer-Ford-O’Connell radiation term,

G0
EFO = τom

[
da0

L

dτ
+

v0

c2
aνaL

ν

]
, (69)

we can propose the large distance radiated power as:

PEFO
lar = −τom

v0

c2
aνaL

ν , (70)

and the attached radiated power like:

PEFO
att = −τom

da0
L

dτ
. (71)

It is obvious that for the relativistic case the difference be-
tween both proposals are bigger than in the non relativistic
case. A fine experimental measurement of the large distance
radiated power will select which one is the better equation.

However, as we will see in Sec. 7, Concluding Remarks,
quantum constraints prevent any comparison.

By reviewing Eq. (62), it is easy to deduce that the non
relativistic case of the Landau-Lifshitz equation will lead us
to a non relativistic radiated power equal to the expression de-
scribed in Eq. (64), but looking at Eq. (70) the corresponding
radiated power for Ford equation must be expressed as

PF = τoa · F, (72)

and not by using Eq. (26) as Ford claimed [32].

7. Concluding Remarks

It has been demonstrated that Ford equation coincides with
the non-relativistic Landau-Lifshitz equation just in the case
when the force acting on the particle does not depend on its
the velocity. In the case of velocity dependent forces, the tra-
jectories predicted by Ford equation or by the non relativistic
Landau-Lifshitz equation are distinct. However, at the mo-
ment of measuring such differences, physical constraints pre-
vent to detect them. Indeed, trying to measure the decay time,
the frequency, the radiated power or the critical frequency
of each solution, in the proportional differences∆tdec/tdec,
∆w/wLL, ∆P/PLL, ∆wc/wcLL, the termτ2

o w2 makes the
difference; that is:

∆w

wLL
=

wLL − wF

wLL
=

w − w

1 + τ2
o w2

w
=

1
1 + τ2

o w2
.

In order to detect the difference,τ2
o w2 must be at least10−3.

This identity also holds for relativistic motion. This implies
that

τ2
o w2 ' 10−4. (73)

That is,

τow =
2q3B

3m2c4
' 10−2. (74)

Since for electronsτeo ' 6.26 × 10−24 sec, we have to deal
with magnetic fields of the order of

B ' 1014G (75)

and for protons,
B ' 1020G. (76)

Nevertheless, in order to be able of dealing with a trajectory,
quantum effects must be negligible. This is accomplished if
the magnetic field satisfies the following requirements [24]:

1- De Broglie wavelength¿ Characteristic length

B

Bq
¿ γ2 (77)

with Bq ' 4.4× 1013G

2- Radiation effects
B

Bq
¿ 1

γ
(78)
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For the relativistic case the second identity outweighs,
Eq. (78). This means that more energy requires less field.
This is the reason why it is better to analyze the non rela-
tivistic case. Therefore, it is necessary to deal with magnetic
fields smaller thanBq; that is:

B ¿ 1013G.

For protons the situation is worst and it will not be possi-
ble to experimentally differentiate both solutions. Even if in
some astrophysical situations some magnetic fields have been
found to be of the order of1013G (see for example, Camilo
et al [33]), quantum effects will dominate the behavior of the
charge and it will not make sense to analyze the trajectories.

Finally, the purpose of the article was to check that,
even if the two equations were different to first order inτo,
the large-scale temporal behavior of the solutions were able
to differentiate between both of them. For high relativis-
tic motion, the electric constant case, high intense planes
waves, and crossed electric fields do not present such dif-
ferences [21,22]. For central forces, the equations coin-
cide even if the large-scale temporal effects are studied [15].
For low energy motion in electric or magnetic fields, quan-
tum restrictions prohibit to find experimentally a differ-
ence. We can conclude Eliezer-Ford-O’Connell and Landau-
Lifshitz equations are physically equivalent within the Shen’s
Zone [14,24].

Finally, after 100 hundred years of discussion about the
correct equation of motion for a charged particle, the Landau-
Lifshitz equation (or the equivalent Eliezer-Ford-O’Connell)
represents the most acceptable approach. Even more, Quinn
and Wald [34] proposed a general relativistic equation includ-
ing the reaction force with the tail term which coincides with
Landau-Lifshitz equation for Minkowski space. However,
Hammond’s method [1-4] which appeared in order to discuss
the balance of energy of the electric constant case, represents
an interesting alternative to be discussed. For the followers
of Landau-Lifshitz equation, there exists a rearrangement of
the radiated energy between the large distance radiation and
the radiation term due to the attached fields. While for Ham-
mond, the energy loss comes from Larmor formula and this
leads to another representation of the equation. However,
an equivalent method for Hammond proposal for the gen-
eral relativistic case has to be improved and compared with
Hobbs [35] and Quinn and Wald approaches [34,36].
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