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Solution of the Schr̈odinger equation making use of
time-dependent constants of motion
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It is shown that if a complete set of mutually commuting operators is formed by constants of motion, then, up to a factor that only depends
on the time, each common eigenfunction of such operators is a solution of the Schrödinger equation. In particular, the operators representing
the initial values of the Cartesian coordinates of a particle are constants of motion that commute with each other and from their common
eigenfunction one readily obtains the Green function.
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Se muestra que si un conjunto completo de operadores que conmutan entre sı́ est́a formado por constantes de movimiento, entonces, salvo
un factor que solo depende del tiempo, cada eigenfunción coḿun de tales operadores es una solución de la ecuación de Schr̈odinger. En
particular, los operadores que representan los valores iniciales de las coordenadas cartesianas de una partı́cula son constantes de movimiento
que conmutan entre sı́ y de sus eigenfunciones comunes uno obtiene fácilmente la funcíon de Green.

Descriptores: Constantes de movimiento; ecuación de Schr̈odinger; funciones de Green.

PACS: 03.65.-w

1. Introduction

In the standard procedure to solve the Schrödinger equation
for a time-independent Hamiltonian one makes use of the
method of separation of variables, or one starts looking for
a set of mutually commuting operators that also commute
with the Hamiltonian. In fact, the separable solutions of the
Schr̈odinger equation are common eigenfunctions of a set of
mutually commuting operators, with the separation constants
being the eigenvalues of such operators. Usually, these op-
erators do not depend explicitly on the time and, since they
commute with the Hamiltonian, are constants of motion.

As we shall show below, there is no reason to restrict our-
selves to time-independent operators; we can find solutions
of the Schr̈odinger equation that are common eigenfunctions
of a set of, possibly time-dependent, mutually commuting op-
erators that are constants of motion (and, therefore, may not
commute with the Hamiltonian). This method is analogous
to that given by the Liouville theorem on the solutions of the
Hamilton–Jacobi equation (see,e.g., Ref. [1]).

In Sec. 2 we establish the basic results of this paper and in
Sec. 3 we present several examples, exposing the advantages
of the method. We show that making use of the operators that
represent the initial position of a particle one readily obtains
the Green function of the corresponding Hamiltonian.

2. Basic results

Let A be a, possibly time-dependent, Hermitean operator that
is a constant of motion,i.e.,

i~
∂A

∂t
+ [A,H] = 0, (1)

whereH is the Hamiltonian of the system under considera-
tion. If ψ is an eigenfunction ofA with eigenvalueλ,

Aψ = λψ (2)

andψ satisfies the Schrödinger equation

i~
∂ψ

∂t
= Hψ, (3)

thenλ is a constant. Indeed, taking the derivative with respect
to the time of both sides of (2), we obtain

(
i~

∂A

∂t

)
ψ + A

(
i~

∂ψ

∂t

)
= i~

dλ

dt
ψ + λi~

∂ψ

∂t

and, making use of Eqs. (1) and (3),

−[A,H]ψ + AHψ = i~
dλ

dt
ψ + λHψ,

that is,

HAψ = i~
dλ

dt
ψ + λHψ

and using Eq. (2) again, it follows thatdλ/dt = 0.
Conversely, assuming thatA is a constant of motion and

that its eigenvalues are constant, from (2) we have
(

i~
∂A

∂t

)
ψ + A

(
i~

∂ψ

∂t

)
= λi~

∂ψ

∂t

or, by virtue of (1),

−[A,H]ψ + A

(
i~

∂ψ

∂t

)
= λi~

∂ψ

∂t
,

which amounts to

−AHψ + Hλψ + A

(
i~

∂ψ

∂t

)
= λi~

∂ψ

∂t
,
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or

A

(
i~

∂ψ

∂t
−Hψ

)
= λ

(
i~

∂ψ

∂t
−Hψ

)
.

If the spectrum ofA is non-degenerate, it follows that

i~
∂ψ

∂t
−Hψ = µψ,

whereµ is some complex-valued function oft only. Then, if
F (t) is a solution of

µF + i~
dF

dt
= 0, (4)

we find thatFψ satisfies the Schrödinger equation. In fact,

i~
∂(Fψ)

∂t
=F (Hψ + µψ) +

(
i~

dF

dt

)
ψ

=H(Fψ) +
(

µF + i~
dF

dt

)
ψ.

(Note that, ifψ is an eigenfunction ofA with eigenvalueλ,
then, if F (t) is a function oft only, F (t)ψ is also an eigen-
function of A with eigenvalueλ.) When the spectrum is
degenerate, the proof is similar, considering linear combina-
tions of the eigenfunctions ofA with the same eigenvalueλ
and, in place of (4), one would have to solve a linear system
of first-order differential equations, which may be as compli-
cated as the original Schrödinger equation. However, if we
find a complete set of mutually commuting operators that are
constants of motion (complete in the sense that, up to a factor,
there is only one common eigenvector of these operators for
a given set of the eigenvalues), the common eigenfunctions
of such a set of operators can be chosen in such a way that
they are solutions of the Schrödinger equation (assuming that
the eigenvalues are constant).

This result is analogous to the Liouville theorem of the
Hamiltonian mechanics, according to which if we have a set
of constants of motion such that their Poisson brackets are
equal to zero, they can be used to find complete solutions of
the Hamilton–Jacobi equation.

3. Examples

In this section we give several examples, finding solutions of
the Schr̈odinger equation starting from the eigenfunctions of
constants of motion that depend explicitly on the time.

3.1. The one-dimensional harmonic oscillator

One can readily verify that the operator

X0 ≡ x cos ωt− p

mω
sinωt (5)

is a constant of motion if the Hamiltonian is given by

H =
p2

2m
+

mω2

2
x2. (6)

The eigenvalue equationX0ψ = x0ψ amounts to thefirst-
order differential equation

(
x cosωt− ~ sinωt

imω

∂

∂x

)
ψ = x0ψ

whose solution is readily found to be

ψ = F (t) exp
[

imω

2~ sin ωt

(
x2 cosωt− 2x0x

)]
, (7)

whereF (t) is a function oft only.
Assuming that x0 is a constant, one finds that

the wavefunction (7) satisfies the Schrödinger equation,
i~∂ψ/∂t = Hψ, if and only if [cf. Eq. (4)]

d ln F

dt
= −ω cosωt

2 sin ωt
+

mω2x0
2

2i~ sin2 ωt
,

hence

F =
C√

sin ωt
exp

(
imωx0

2 cosωt

2~ sin ωt

)
,

where C is a constant, and substituting this expression
into (7) we obtain

ψx0(x, t) =
C√

sinωt

× exp
{

imω

2~ sin ωt

[
(x2 + x0

2) cos ωt− 2x0x
]}

. (8)

As usual, the wavefunctionsψx0 are orthogonal for different
values of the eigenvaluex0. Note also that the functions (8)
are not separable.

In the present example,H is time-independent and, there-
fore, there is a set of stationary states,φn(x) exp(−iEnt/~),
where theEn are the eigenvalues ofH. Hence, the wave-
function (8) must be expressible in the form

ψx0(x, t) =
∑

n

cn(x0)φn(x) exp
(
− iEnt

~

)

and the symmetry of the right-hand side of (8) under the in-
terchange ofx andx0 implies that

ψx0(x, t) =
∑

n

φn(x0)φn(x) exp
(
− iEnt

~

)

i.e., with the appropriate value of the constantC, ψx0(x, t)
is the time-dependentGreen functionof the one-dimensional
harmonic oscillator (cf., for instance, Refs. 2 to 4). This was
to be expected since the operatorX0 is, in the Heisenberg
picture, the position operator att = 0 and, therefore,ψx0

corresponds to the state of the particle with a well defined
value (equal tox0) of the position att = 0. The value of the
normalization constantC can be determined by the condition

lim
t→0

∞∫

−∞
ψ0(x, t) dx = 1, (9)
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which gives

C =
√

mω

2πi~
.

As is well known [3], from the Green function (8)
one can obtain the expression of the stationary states
φn(x) exp(−iEnt/~) in terms of the Hermite polynomials.

3.2. A time-dependent Hamiltonian

Now we shall consider the time-dependent Hamiltonian

H =
p2

2m
− ktx, (10)

wherek is a constant. The operator

X0 ≡ x− tp

m
+

kt3

3m
(11)

is a constant of motion and, in the Heisenberg picture, cor-
responds to the position of the particle att = 0. The eigen-
functions of this operator are determined by the first-order
differential equation

(
x− ~t

im
∂

∂x
+

kt3

3m

)
ψ = x0ψ,

wherex0 is the eigenvalue ofX0. The solutions of this equa-
tion have the form

ψ = F (t) exp
[
im
~t

(
x2

2
− x0x +

kt3x

3m

)]
,

whereF (t) is a function oft only. Substituting this expres-
sion into the Schr̈odinger equation, assuming thatx0 is con-
stant, we obtain the equation

d ln F

dt
= − 1

2t
+

m

2i~t2

(
x0

2 +
4kt3x0

3m
+

4k2t6

9m2

)
,

thus,

ψx0(x, t) =
C√
t

× exp
{

im
2~t

[
(x−x0)2 +

2kt3(x−x0)
3m

−4k2t6

45m2

]}
, (12)

where C is a constant. With the appropriate value ofC
(C =

√
m/2πi~), (12) is the Green function for the Hamil-

tonian (10).
It may be remarked that, since the Hamiltonian (10) de-

pends explicitly on the time, the corresponding Schrödinger
equation cannot be solved by separation of variables.

3.3. Another standard example

Another example usually considered in connection with the
Green functions is that of a particle in a uniform field. If

H =
p2

2m
− eEx, (13)

wheree andE are constants, one readily finds that

X0 ≡ x− tp

m
+

eEt2

2m
(14)

is a constant of motion that corresponds to the position of the
particle att = 0. Thus, the eigenvalue equationX0ψ = x0ψ
is equivalent to

(
x− ~t

im
∂

∂x
+

eEt2

2m

)
ψ = x0ψ,

with the solution

ψ = F (t) exp
[

im
2~t

(
x2 − 2x0x +

eEt2x

m

)]
,

whereF (t) is a function oft only. Substituting this last ex-
pression into the Schrödinger equation one obtains the con-
dition

d ln F

dt
= − 1

2t
+

m

2i~t2

(
x0

2 − eEt2x0

m
+

e2E2t4

4m2

)

and, therefore,

ψx0(x, t) =
C√
t

× exp
{

im
2~t

[
(x− x0)2 +

eEt2(x + x0)
m

− e2E2t4

12m2

]}
,

whereC is a constant.

3.4. A two-dimensional system

The Hamiltonian

H =
1

2m

[(
px +

eB

2c
y

)2

+
(

py − eB

2c
x

)2
]

(15)

corresponds to a charged particle of massm and electric
chargee in a uniform magnetic fieldB. The operators

X0 ≡ 1
2
(1 + cos ωt)x− 1

2
y sin ωt

− 1
mω

px sin ωt +
1

mω
(1− cos ωt)py, (16)

Y0 ≡ 1
2
(1 + cos ωt)y +

1
2
x sin ωt

− 1
mω

py sin ωt− 1
mω

(1− cosωt)px, (17)

whereω ≡ eB/mc, are two constants of motion that com-
mute with each other. The operators (16) and (17) correspond
to the Cartesian coordinates of the particle att = 0. (It may
be remarked that, for any system, the operators that represent
the initial values of the Cartesian coordinates, or of the Carte-
sian components of the momentum, are constants of motion
that commute with each other.)
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Since the operators (16) and (17) are linear in the momenta, one readily finds their eigenfunctions. In fact, the eigenfunc-
tions ofX0 andY0 with eigenvaluesx0 andy0, respectively, are

ψ = F (t) exp
{

imω

4~(1− cosωt)
[
(x2 + y2 − 2x0x− 2y0y) sin ωt + 2(x0y − y0x)(1− cosωt)

] }

= F (t) exp
{

imω

4~

[
(x2 + y2 − 2x0x− 2y0y) cot

1
2
ωt + 2(x0y − y0x)

]}
, (18)

whereF (t) is a function oft only. Substituting (18) into the Schrödinger equation we obtain the single condition

d ln F

dt
= −ω

2
cot

1
2
ωt− imω2

8~
(x0

2 + y0
2) csc2 1

2
ωt,

therefore,

ψ = C csc
1
2
ωt exp

[
imω

4~

{
[(x− x0)2 + (y − y0)2] cot

1
2
ωt + 2(x0y − y0x)

}]
, (19)

whereC is a constant.

4. Concluding remarks

The procedure followed here to find the Green functions
highly contrasts with the methods usually employed in the
literature (see,e.g., Refs. 2 to 4). For instance, the fact that
the operatorsX0, defined by Eqs. (5), (11), and (14), are lin-
ear inp implies that, in order to find the Green functions, one
only has to solve two first-order ordinary differential equa-
tions. Even though the results presented in Sec. 2 also apply
in the usual case of time-independent operators that commute

with the Hamiltonian, the difference is that there are not many
useful time-independent constants of motion linear in the mo-
mentum.

After the submission of this work, Ref. 5 was brought
to the attention of the present author. In that article, the
constants of motion that represent the initial conditions are
specifically employed to find the Green functions. Further-
more, in Ref. 5 such constants of motion are obtained for the
most general Hamiltonian quadratic in the coordinates and
momenta with coefficients that may depend on the time.
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