RESEARCH Revista Mexicana dédica61 (2015) 376-379 SEPTEMBER-OCTOBER 2015

Solution of the Schiddinger equation making use of
time-dependent constants of motion

G.F. Torres del Castillo
Departamento de iSica Matenatica, Instituto de Ciencias Universidad Amoma de Puebla,
72570 Puebla, Pue., &kico.

Received 18 March 2015; accepted 1 July 2015

It is shown that if a complete set of mutually commuting operators is formed by constants of motion, then, up to a factor that only depends
on the time, each common eigenfunction of such operators is a solution of thi®wjar equation. In particular, the operators representing

the initial values of the Cartesian coordinates of a particle are constants of motion that commute with each other and from their common
eigenfunction one readily obtains the Green function.
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Se muestra que si un conjunto completo de operadores que conmutari estif@mado por constantes de movimiento, entonces, salvo
un factor que solo depende del tiempo, cada eigenbinconun de tales operadores es una sdlnaie la ecuadn de Schidinger. En
particular, los operadores que representan los valores iniciales de las coordenadas cartesianas idelarsoparbnstantes de movimiento
gue conmutan entré g de sus eigenfunciones comunes uno obti@eédrhente la fund@n de Green.

Descriptores: Constantes de movimiento; ecuacide Schidinger; funciones de Green.

PACS: 03.65.-w

1. Introduction where H is the Hamiltonian of the system under considera-
tion. If ¢ is an eigenfunction oft with eigenvalue\,

In the standard procedure to solve the ®dimger equation
for a time-independent Hamiltonian one makes use of the Ap = M )
method of separation of vqnables, or one starts looking fo%mdz/} satisfies the Scbdinger equation
a set of mutually commuting operators that also commute
with the Hamiltonian. In fact, the separable solutions of the L0y

L . i ) ih— = Hy, ©)]
Schiddinger equation are common eigenfunctions of a set of ot

mutually commuting operators, with the separation constantghen) is a constant. Indeed, taking the derivative with respect
being the eigenvalues of such operators. Usually, these Oy the time of both sides of (2), we obtain
erators do not depend explicitly on the time and, since they
commute with the Hamiltonian, are constants of motion. (lhaA> v+ A (ih&/’> _ ih®¢ + mf’i
As we shall show below, there is no reason to restrict our- ot ot dt ot
selves to time-independent operators; we can find solutiongng making use of Egs. (1) and (3),
of the Schédinger equation that are common eigenfunctions
of a set of, possibly time-dependent, mutually commuting op- —[A,HlY + AHy = ih%?/} + \H,
erators that are constants of motion (and, therefore, may not de
commute with the Hamiltonian). This method is analogousthat is,
to that given by the Liouville theorem on the solutions of the HAp = ihgw £ AHY
Hamilton—Jacobi equation (se=g, Ref. [1]). dt
In Sec. 2 we establish the basic results of this paper and iand using Eg. (2) again, it follows thd /dt = 0.
Sec. 3 we present several examples, exposing the advantages Conversely, assuming thaltis a constant of motion and
of the method. We show that making use of the operators thdhat its eigenvalues are constant, from (2) we have
represent the initial position of a particle one readily obtains 9A A A
the Green function of the corresponding Hamiltonian. (ihaf> v+ A (lhat> = Aih@

or, by virtue of (1),
2. Basic results
—[AHJyp + A (ih%> = )\iha—w

Let A be a, possibly time-dependent, Hermitean operator that ot ot’
is a constant of motion,e., which amounts to
A e O
ih@ +[A,H] =0, (1) —AHY + HMp+ A (1718t> = )\lhg,
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The eigenvalue equatioNyy) = xpy amounts to thdirst-

A (ihaw — H¢> =\ <iha¢ _ H¢) ) order differential equation
ot ot
If the spectrum of4 is non-degenerate, it follows that (x coswt — h.sm wi 8) Y =z
imw Ox

L Oy o .

1h§ — Hy = i, whose solution is readily found to be
Wher_eu is some complex-valued function tbnly. Then, if W = F(t) exp [ i”_W (x2 coswi — 23:01:)] )
F(t) is a solution of 2hsinwt

_dF whereF (t) is a function oft only.
pE + lha =0, (4) Assuming thatz, is a constant, one finds that

. o o ) the wavefunction (7) satisfies the Sétmnger equation,
we find thatF'y satisfies the Scbdinger equation. In fact, ihdp /9t = Hip, if and only if [cf. Eq. (4)]

ihé’(;"w) _F(H + ) + (ih(zF) " dInF _ weoswt = mway’
t L dt 2sinwt  2ihsin®wt’
=H(Fy) + (uF - ihif) . hence

F =

imwzg? cos wt)
?

e

= exp "

(Note that, ify is an eigenfunction ofi with eigenvalue), ) smwt 2h Sm_ wt_ ) )
then, if F(t) is a function oft only, F(¢)y is also an eigen- yvhere Cis a constant, and substituting this expression
function of A with eigenvalue).) When the spectrum is N0 (7) we obtain

degenerate, the proof is similar, considering linear combina- C

tions of the eigenfunctions of with the same eigenvaluke Vay (@, 1) = Tono

and, in place of (4), one would have to solve a linear system Smw

of first-order diff_erential gqgations, Whi_Ch may be as c_ompli- X eXp { i@w [(:v2 + 202) coswt — 236096] } . (@)
cated as the original Sdbilinger equation. However, if we 2hsinwt

find a complete set of mutually commuting operators that are

constants of motion (complete in the sense that, upto a facto’?‘S usual, the wavefunctions,, are orthogonal for different

there is only one common eigenvector of these operators fo\{alues of the eigenvalugy. Note also that the functions (8)
a given set of the eigenvalues), the common eigenfunction%re not separable. o
of such a set of operators can be chosen in such a way th?t In:]he pfese"“ ex?mplﬁ IS tlme—mdependen_t.aEnd, ti?ere—
they are solutions of the Sasinger equation (assuming that '0re: INere is a set of stationary states(x) exp(=iE,t/h),

i where theFE,, are the eigenvalues df. Hence, the wave-
the eigenvalues are constant). function (8) must be expressible in the form

This result is analogous to the Liouville theorem of the P

Hamiltonian mechanics, according to which if we have a set Bt
of constants of motion such that their Poisson brackets are Yo (2,8) = > cn(0)pn () exp (— hn )
equal to zero, they can be used to find complete solutions of n

the Hamilton—Jacobi equation. and the symmetry of the right-hand side of (8) under the in-
terchange of andz, implies that

3. Examples

Yoo (,) = z,; bn(w0)¢n () exp (‘i%t>

In this section we give several examples, finding solutions of

the Schodinger equation starting from the eigenfunctions of, ith th it | f th it
constants of motion that depend explicitly on the time. I.€., With thé appropriate value of the cons 3@1_%0 (x.’ t)

is the time-depende@reen functiorof the one-dimensional
harmonic oscillatordf., for instance, Refs. 2 to 4). This was

3.1. The one-dimensional harmonic oscillator . o .
to be expected since the operaf§y is, in the Heisenberg

One can readily verify that the operator picture, the position operator at= 0 and, therefore,,,
corresponds to the state of the particle with a well defined
X, = xcoswt — 2 sinwt (5)  value (equal tax,) of the position at = 0. The value of the
mw

normalization constarit’ can be determined by the condition
is a constant of motion if the Hamiltonian is given by oo
P mw? }gr(l) / Yo(z,t)de =1, 9)
—0o0

_ 2
H—2m+ 5 (6)
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which gives wheree and E are constants, one readily finds that
C = mw

eFt?

2m

As is well known [3], from the Green function (8)
one can obtain the expression of the stationary stateis a constant of motion that corresponds to the position of the
¢n(x) exp(—iE,t/h) in terms of the Hermite polynomials.  particle att = 0. Thus, the eigenvalue equatiofyy = xg

is equivalent to

(14)

3.2. Atime-dependent Hamiltonian

ht o | eEt*\
Now we shall consider the time-dependent Hamiltonian e e i ool K L
H— ﬁ — ktz, (10) with the solution
2m . 9
. im [ 4 eEt“x
wherek is a constant. The operator b= F(t)exp | o | 27 — 2200 + — :
3
Xo=x— p + kt? (11)  whereF(t) is a function oft only. Substituting this last ex-

m - 3m pression into the Schidinger equation one obtains the con-

is a constant of motion and, in the Heisenberg picture, cordition
responds to the position of the particletat 0. The eigen- dln F 1 m L, eBttzy 2B
functions of this operator are determined by the first-order =5 + 5z \@0” = +

1

differential equation m 4m?
ht O Lt and, therefore,
T———+— | Y=z,
imox  3m C
o . . Vol ) = =7
wherex, is the eigenvalue ak,. The solutions of this equa-
tion have the form im o  eEt(x+x0) B!
X exp o | (@ — o) + e b
im [ 22 k3 20t m 12m
Y = F(t)exp [ ( — zox + >} ,
ht \ 2 3m where( is a constant.

where F'(t) is a function oft only. Substituting this expres-
sion into the Schidinger equation, assuming that is con-
stant, we obtain the equation

3.4. Atwo-dimensional system

The Hamiltonian

3 246
dlnF:_i_F .m 02 4kt 1’0+4kt 7 1 eB \2 ¢B \?2
dt 2t ' 2iht2 3m Im? =—|{pat+——y) +|(py— 52 (15)
2m 2c 2c
thus,
corresponds to a charged particle of massand electric
C . . L
gy (T, 1) = 7 chargee in a uniform magnetic field3. The operators
t
. 1 1.
im o 2kt3(z—zo) 4K*tC Xo==(1+coswt)r — ~ysinwt
— |(z— - 12 2 2
exp { 2nt {(m o)+ = Bz [ 12 | .
where C' is a constant. With the appropriate value ©f ~ pbesinwt £+ (1= coswtpy, - (16)
(C = /m/2mih), (12) is the Green function for the Hamil- 1 1 .
tonian (10). Yy = 5(1 + coswt)y + 2% sin wt
It may be remarked that, since the Hamiltonian (10) de- 1 1
pends explicitly on the time, the corresponding Scimger Py sinwt — M(l — cos wt) Py, (17)

equation cannot be solved by separation of variables.
wherew = eB/mc, are two constants of motion that com-
3.3.  Another standard example mute with each other. The operators (16) and (17) correspond
, ) ) ) to the Cartesian coordinates of the particle at 0. (It may
Another example usually considered in connection with the,q yomarked that, for any system, the operators that represent
Green functions is that of a particle in a uniform field. If ¢ jnitial values of the Cartesian coordinates, or of the Carte-
2 sian components of the momentum, are constants of motion

p .
H=,— —ebz, (13)  that commute with each other.)
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Since the operators (16) and (17) are linear in the momenta, one readily finds their eigenfunctions. In fact, the eigenfunc-
tions of Xy andY;, with eigenvalues:q andyy, respectively, are

imw .
w = F(t) exp {4}1(1—(}05@2‘,‘) [(x2 + y2 — QxOx — 2y0y) sin wt + 2($(]y — y()(E)(]. — COSs Wt):l }
i 1
= F(t)exp {ﬁu {(ﬁ + 9% — 2x02 — 2y0Yy) cot §Wt + 2(zoy — yox)} } , (18)

whereF (t) is a function oft only. Substituting (18) into the Sabwlinger equation we obtain the single condition

dn '~ w tlt imwQ( 2 1 y02) ‘th
7dt = 2 CO 20) Sh Zo Yo CSC 20) ,
therefore,
1 i 1
1 = Ccsc §wt exp [ﬁ? {[(x — m0)2 + (y— yo)z] cot iwt + 2(xoy — yox)H , (19)
where(C' is a constant.
4. Concluding remarks with the Hamiltonian, the difference is that there are not many

useful time-independent constants of motion linear in the mo-
The procedure followed here to find the Green functiongnentum.
highly contrasts with the methods usually employed in the  After the submission of this work, Ref. 5 was brought
literature (seee.g, Refs. 2 to 4). For instance, the fact that to the attention of the present author. In that article, the
the operatorsyy, defined by Egs. (5), (11), and (14), are lin- constants of motion that represent the initial conditions are
ear inp implies that, in order to find the Green functions, onespecifically employed to find the Green functions. Further-
only has to solve two first-order ordinary differential equa-more, in Ref. 5 such constants of motion are obtained for the
tions. Even though the results presented in Sec. 2 also appiypost general Hamiltonian quadratic in the coordinates and
in the usual case of time-independent operators that commutaomenta with coefficients that may depend on the time.
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