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Estimation of the space charge limited current with quadratic damping
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In this paper we analyze the motion of charged particles under the influence of a quadratic velocity dependent frictional force inside a
vacuum tube diode. Our study is performed by using the adiabatic approximation that allows for exact analytic solutions for the case of weak
damping. The expressions obtained for the space charge limited current reduce to the well known Child-Langmuir law under the adiabatic
approximation when the dissipation parameter goes to zero.
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1. Introduction

The motion of charged particles accelerated across a gap is
of wide interest in fields such as high power diodes and vac-
uum microelectronics. Child and Langmuir [1,2] first stud-
ied the space charge limited emission for two infinite parallel
plane electrodes at fixed voltageϕ0 in vacuum separated by
a distanceD (See Fig. 1). Child and Langmuir worked with
ions moving without collisions inside a vacuum tube diode
and found an analytical solution for the electric potential, the
electric field and the ion density between the plates.

The main result of Child and Langmuir states that the
behavior of the current density is proportional to the three-
halves power of the bias potential and inversely proportional
to the square of the gap distance between the electrodes.
Since the derivation of this fundamental law many impor-
tant and useful variations on the classical Child-Langmuir
law have been investigated to account for relativistic electron
energies [3-5], non zero initial electron velocities [6-8], quan-
tum mechanical effects [9-11], nonzero electric field at the
cathode surface [12], and slow varying charge density [13].

The Mott-Gurney law represents an analog of the Child-
Langmuir law for the collision-dominated case for the case
when the vacuum tube diode contains particles that produce
collisions when electrons pass by [14,15]. The Mott-Gurney
law, can be in a natural way applied to a collision-dominated
near-cathode parallel plate, just in the same way as the Child-
Langmuir law applies to a collision-free near-cathode paral-

lel plate. The equation that describes the behavior of this
collission-dominated system is given by

mv
dv

dz
= −eE(z)− λv (1)

FIGURE 1. Vacuum Tube that consists of two parallel plates sub-
jected to an electrostatic potential between its terminals. The neg-
atively charged electrons moving to the right constitute a steady
electric current.



ESTIMATION OF THE SPACE CHARGE LIMITED CURRENT WITH QUADRATIC DAMPING 389

wherem is the electron mass,v is the particle velocity and
λ is the collision coefficient. The term on the left-hand side
of this equation describes the inertia force. If electrons ex-
perience several collisions, the velocity lowers abruptly and
this term is minor, this becomes identical to the correspond-
ing equation of the Mott-Gurney model. The terms on the
right-hand side describe the electric field force and a fric-
tional force resulting from elastic collisions of the electrons
with neutral particles. If the system is collision-free, the sec-
ond term on the right-hand side is zero and becomes identical
to the corresponding equation of the Child-Langmuir model.

Although the solution to the problem of charged particles
under the influence of a linear velocity dependent frictional
force is now well understood [16-20], the problem of the mo-
tion of charged particles under the influence of a quadratic ve-
locity dependent frictional force inside a vacuum tube diode
has never been solved before within the adiabatic approxi-
mation. The physical justification of choosing a frictional
force proportional to the particle’s velocity is by regarding
the medium inside the diode as two interpenetrating fluids
composed of neutral gas molecules and singly charged ions,
respectively. Phenomenologically, one can express the dy-
namic frictional force as an average over all possible colli-
sions. One can show that the frictional force may be taken
proportional to the square of the ion velocity [21,22].

To tackle this problem, we use a simple one-dimensional
dynamic equation in which collisions are assumed to be pro-
portional to the square of the velocity, where collisional ef-
fects are controlled by a friction parameterλ, which is as-
sumed to be constant. It is the adiabatic approximation given
in Ref. 13 that will allow us to solve the Poisson equation and
to analytically solve the problem in the form of an ordinary
linear differential equation for the case of weak damping,i.e.
λ ¿ 1. We will recover in the limit ofλ → 0 the ordinary
Child-Langmuir law for ballistic electron flow.

2. Electron dynamics with quadratic damping

We will follow the spirit of Ref. 13 by expressing the volume
charge density as a function of the current density and coor-
dinates only,i.e. ρ = ρ(J, z), by first solving the equation
of motion and using the following relationJ = ρv, whereJ
is the charge current density,ρ is the volume charge density
andv is the electron’s velocity.

Suppose that during the ions motion inside the diode there
is a frictional force which is proportional to the square of the
ion velocity. The equation of motion which describes the dy-
namics of the ion is given by

mv
dv

dz
= −eE(z)− λv2 (2)

Integrating both parts of the equation from 0 to any particular
z we get

z∫

0

d

dz

(
mv2

2

)
dz = −e

z∫

0

Edz − λ

z∫

0

v2dz (3)

Assuming that the ions leave with zero initial velocity,i.e.
v(0) = 0, we obtain

mv2

2
= −e

z∫

0

Edz − λ

z∫

0

v2dz (4)

Integrating by parts the last term of the above equation we
have

mv2

2
= −e

z∫

0

Edz − λzv2 + λ

z∫

0

z
dv2

dz
dz (5)

substituting the equation of motion (2) into the last part of
Eq. (5) we get

mv2

2
= −e

z∫

0

Edz − λzv2

+ λ

z∫

0

z

[
−2λv2

m
− 2e

m
E(z)

]
dz (6)

Assuming thatλ ¿ 1 we can neglect the quadratic term inλ
to obtain to first order in the friction parameter the following
equation

mv2

2
= −e

z∫

0

Edz − λzv2 − 2eλ

m

z∫

0

zE(z)dz (7)

Integrating once again by parts and collecting terms we get
the following expression

v2
(m

2
+ λz

)
= −

(
z +

λ

m
z2

)
eE

+ e

z∫

0

(
z +

λ

m
z2

)
dE

dz
dz (8)

Integrating by parts the last term of the equation and using
Gauss law,i.e. dE/dz = ρ/ε0 we get

v2
(m

2
+ λz

)
= −

(
z +

λ

m
z2

)
eE + e

ρ

ε0

(
z2

2
+

λz3

3m

)

− e

ε0

z∫

0

(
z2

2
+

λz3

3m

)
dρ

dz
dz (9)

Using the adiabatic condition over the charge density,i.e.
(dρ/dz) ≈ 0, and substitutingE ≈ (ρz/ε0) in Eq. (9) we
get

v2
(m

2
+ λz

)
≈ −e

ρ

ε0

(
z2

2
+

2λz3

3m

)
(10)

Using the following relationJ = ρv in Eq. (10) we get

J2

ρ2

(m

2
+ λz

)
≈ −e

ρ

ε0

(
z2

2
+

2λz3

3m

)
(11)
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solving forρ in terms ofJ andz we get the following expres-
sion for the charge density

ρ(J, z) = −
(

ε0J
2m

ez2

) 1
3

(
1 + 2λz

m

1 + 4λz
3m

)1/3

(12)

substituting the charge density from Eq. (12) to the Poisson
equation we get the following second order linear differential
equation

d2V

dz2
=

1
ε0

(
ε0J

2m

ez2

) 1
3

(
1 + 2λz

m

1 + 4λz
3m

) 1
3

(13)

The Poisson equation given in Eq. (13) can be solved using
direct integration. Integrating with Mathematica we obtain
the following result

dV

dz
=

1
ε0

(
ε0J

2m

e

) 1
3

3z
1
3

× F1

(
1
3
,
−1
3

,
1
3
,
4
3
;
−2λz

m
,
−4λz

m

)
(14)

whereF1 is the Appel Hypergeometric function [23]. Ex-
panding the Appell Hypergeometric function into series we
obtain the first order approximation in terms ofλ, which sim-
plifies the previous differential equation into an ordinary dif-
ferential equation (ODE)

dV

dz
≈ 1

ε0

(
ε0J

2m

e

) 1
3

(
3z

1
3 − 6λ

12m
z

4
3

)
(15)

Integrating Eq. (15) we get the following analytic result for
the electric potential

V (z) ≈ 1
ε0

(
ε0J

2m

e

) 1
3

(
32

4
z

4
3 − 18λ

84m
z

7
3

)
(16)

By settingV (z = D) = V0 in Eq. (16) we get the following
result

V0 =
1
ε0

(
ε0J

2m

e

) 1
3

(
32

4
D

4
3 − 18λ

84m
D

7
3

)
(17)

Solving for the current densityJ in Eq. (17) we get

J =
V

3
2

0 ε0e
1
2

m
1
2

[
9D

4
3

4 − 18λD
7
3

84m

] 3
2

(18)

From Eq. (18) we see that the space charged current den-
sity J is proportional to the three-halves power of the bias
potential but is not inversely proportional to the square of the
gap distance between the electrodes. We can express this cur-
rent density as a function of a non-colliding particles current
density given by the Child-Langmuir law under the adiabatic
approximation,i.e.

J0 =
8V o

3
2 ε0

27D2

√
e

m
= 0.47JCL,

to obtain
J =

J0[
1− 2λD

21m

] 3
2
; (19)

3. Results

In this section we compare our model with the original Child-
Langmuir model. The analysis includes the system’s behav-
ior as a function of the values given tolambda, which must
be0 ≤ λ < 21m/2D.

We can see in the Charge Density figure and the Volt-
age figure that our model behaves identically as the Child-
Langmuir model when lambda goes to zero. On the other
hand, for large values of lambda,λ = 21m/2D, we can see
the quadratic behavior of our model.

FIGURE 2. Plot showing the electrostatic potential in the adiabatic
approximation with D = 1. Note how the functions for the electro-
static potential have the same value at z = 0 and z = D such that the
applied bias in the vacuum tube diode isV0 and when lambda tends
to zero the curves are really close to each other for0 < z < D.

FIGURE 3. Volume charge density for our model compared to the
Child-Langmuir model.
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4. Conclusions

In this paper we analyze the motion of ions inside a planar
diode subjected to a frictional force which is proportional to
the square of the ion velocity. We obtain an analytic solution
up to first order in the friction paramenter and under adia-
batic conditions. The solution to our problem using the adia-
batic condition can be readily determined by simply integrat-

ing Poisson’s equation and applying the boundary conditions
at the cathode and anode, respectively.
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