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In this paper we find the exact solution of the nonlinear differential equation describing the trajectory of mercury considering relativistic
effects. Instead of the classical perturbation method we use the Jacobi elliptic functions to obtain the exact solution. The deviation of the
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of nonlinear differential equations.
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1. Introduction

While the consequences of the special theory of relativity
have been verified to a very high degree of accuracy by nu-
merous experiments, the experimental verification of the gen-
eral theory has so far been limited to three cases only.The
reason for this is obvious and is connected with the fact that
the Newtonian gravitational theory represents a very good
approximation for all gravitational phenomena inside the so-
lar system. Mercury is the inner most of the four terrestrial
planets in the Solar system, moving with high velocity in the
Sun’s gravitational field. Only comets and asteroids approach
the Sun closer at perihelion. This is why Mercury offers
unique possibilities for testing general Relativity [1,2] and
exploring the limits of alternative theories of gravitation with
an interesting accuracy [3].

There are many works in which the perihelion of Mercury
has been studied [3,4] , however, in most of them the nonlin-
ear differential equation describing the trajectory of Mercury
has been solved using the perturbation method. Instead of
the classical method we use the Jacobi elliptic functions to
obtain the exact solution for a nonlinear differential equation
and calculate the perihelion of Mercury.

The material of this paper is organized as follows. In the
first part we find the nonlinear differential equation that de-
scribes the trajectory of mercury considering relativistic ef-
fects; this aims to be a compact work. In the second part we
study the nonlinear differential equation of interest. Getting
away from the classic procedures we find the exact solution

of the nonlinear differential equation by means of Jacobi el-
liptic functions. This section is novel because it allows us
to calculate the perihelion of Mercury and other planets. In
the third part of the perihelion of Mercury and other planets
is calculated. The obtained theoretical results are compared
with experimental results.

Let us consider the motion of a planet in the gravitational
field of a much heavier body (the sun). The gravitational field
of the center in spherical coordinates is given by the linear
differential element

ds2 = −αdr2 − r2dθ2 − r2 sin2 θdϕ2 + βc2dt2, (1)

whereα, β are functions ofr which are determined from
field’s equation. According to the Schwarzschild’s exterior
solution [5] we have that

α =
(

1− 2m

r

)−1

, β =
(

1− 2m

r

)
, (2)

where m = GM/c2 is the relativistic mass of the planet,
M is the mass of the sun,G is the constant of gravitational
constant andc is the light speed. With a second order approx-
imation [6], we have that

α = 1 +
am

r2
+

bm2

r2
, β = 1− 2m

r
− cm2

r2
, (3)

where the coefficientsa, b, c are undetermined. Consider the
motion of a particle in field (1). Using the equations of
geodesic lines gives

d2xi

ds2
+ Γi

αβ

dxσ

ds

dxβ

ds
= 0, (4)
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which can lead to the following form

d

dt

(
gσσ

g44

dxσ

dt

)
− 1

2g44

∂gαα

∂xσ

(
dxα

dt

)2

= 0,

σ = 1, 2, 3 (5)

Assuming thatx1 = r, x2 = θ, x3 = ϕ, find the first inte-
grals of motion. Forσ = 3 and taking into account (5)

dϕ

dt
=

C1β

r2 sin2 θ
, (6)

whereC1 is the constant of integration. Forσ = 2 we have
that

d

dt

(
r2

β

dθ

dt

)
− r2

β
sin θ cos θ

(
dϕ

dt

)2

= 0 (7)

From (6) and multiplying by(2r2/β)(dθ/dt), Eq. (7) may
be easily integrated giving

(
dθ

dt

)2

=
β2

r4

(
C2

2 −
C2

1

sin2 θ

)
, (8)

whereC2 is a new constant of integration. On account of the
central symmetry of our problem, any plane through the cen-
ter may however be chosen as the planeθ = π/2, i.e. the
orbit can lie in any plane through the center.

From the first integral of motionσ = 1 we find the differ-
ential element (1) taking into account the previous results and
the geodesic equation (4). For the time coordinate we have.

d2t

ds2
+ Γ4

αβ

dxα

ds

dxβ

ds
= 0 (9)

Bearing in mind the Christoffel symbols, the Eq. (9) leads to.

d2t

ds2
+

1
g44

∂gα4

∂xβ

dxα

ds

dxβ

ds
= 0 (10)

or

g44
d2t

ds2
+

dg44

ds

dt

ds
= 0. (11)

Thus,
dt

ds
=

h

β
, (12)

whereh is constant of integration. Dividing the differential
element (1) bydt2 and taking into account the results of the
first integrals we find that

(
dr

dt

)2

=
β

α
− C2

1β2

r2α
− β2

h2α
. (13)

To find the orbit trajectory let us divide (13) by (6) squared.
Introducingu = 1/r we have that.

(
du

dϕ

)2

=
1

C2
1αβ

− u2

α
− 1

C2
1h2α

(14)

Replacing (3) in (14) and conserving the terms of second
order with respect tom gives

(
du

dϕ

)2

+ u2 − h2 − 1
C2

1h2
− m

C2
1

(
2− a +

a

h2

)
u

=
m2

C2
1

(
4 + a2 − 2a− b− c− a2 − b

h2

)
u2

+ amu3 −m2(a2 − b)u4 (15)

For distances far enough from the center all the terms on the
right side in Eq. (14) are very small and can be neglected. In
this case Eq. (14) is consistent with the Newtonian case.

(
du

dϕ

)2

+ u2 − 2
p
u− e2 − 1

p2
= 0,

where p is the focal parameter ande the eccentricity.
From (14)-(15) equating coefficients gives

h2 − 1
C2

1h2
=

e2 − 1
p2

,
m

C2
1

(
2− a +

a

h2

)
=

2
p
. (16)

Therefore

C2
1 =

2mp

2 + (e2 − 1)am
p

h2 =
2 + (e2 − 1)am

p

2− (e2 − 1)
(

2−a
p

)
m

. (17)

Taking into account the previous expressions and conserving
the linear terms with respect tom/p with a good approxima-
tion for our purposes we have that

(
du

dϕ

)2

+ u2 − 2u

p
− e2 − 1

p2

=
m

p
(4− 2a− c)u2 + amu3 (18)

Differentiating with respect toϕ and simplifying we obtain

d2u

dϕ2
+ u− 1

p
=

m

p
(4− 2a− c)u +

3
2
amu2. (19)

According to the Schwarzschild’s exterior solution [5]
a = 2, b = 4, c = 0. Therefore

d2u

dϕ2
+ u =

1
p

+ 3
GM

c2
u2. (20)

2. Analytic Solution to Planetary Motion
Equation.

In this section we will give the exact solution to initial value
problem

d2u

dϕ2
+ u =

1
p

+ 3
GM

c2
u2,

u(0) = u0, u′(0) = 0 (21)
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Instead of solving problem (21), we will solve a more general
one

d2y

dx2
+ y =

λ

2
+

3
2
ρy2,

y(0) = y0 > 0 , y′(0) = 0, where ρ > 0. (22)

Multyplying Eq. (22) byy′(x) and integrating once gives

1
2

(
dy

dx

)2

+
1
2
y2 =

λ

2
y +

ρ

2
y3 + C, (23)

whereC is the constant of integration. Its value may be ob-
tained form (23) settingx = 0 :

C =
1
2
y2
0 −

λ

2
y0 − ρ

2
y3
0 . (24)

From (23) and (24) we obtain
(

dy

dx

)2

= ρy3 − y2 + λy + y2
0 − λy0 − ρy3

0

or, equivalently,
(

dy

dx

)2

= (y − y0)

× (
ρy2 + (ρy0 − 1)y + ρy2

0 + λ− y0

)
(25)

We will suppose that all threey−roots of equation

(y − y0)
(
ρy2 + (ρy0 − 1)y + ρy2

0 + λ− y0

)
= 0 (26)

are real and distinct. These roots are

y0 and y± =
1
2ρ

(
1− ρy0 ±

√
∆

)
,

∆ = −3ρ2y2
0 + 2ρy0 − 4λρ + 1 > 0 (27)

Equation (25) may be written in the form
(

dy

dx

)2

= ρ (y − y0) (y − y1) (y − y2), (28)

where
y1 = y− < y+ = y2. (29)

We seek a solution to Eq. (28) in the form

y(x) = λ + (y0 − λ) cn2(
√

wx ,
√

k) (30)

Putting (30) into (28) gives the following equation :

(λ− y0) (λρ− ρy0 − 4kw) cn6
(√

wx ,
√

k
)

+ (y0 − λ) (3λρ− ρy0 − ρy1 − ρy2 − 8kw + 4w) cn4

×
(√

wx ,
√

k
)

+
(
3λ2ρ− 2λρy0 − 2λρy1 − 2λρy2

− 4λkw + 4λw + ρy0y1 + ρy0y2 + ρy1y2 + 4kwy0

− 4wy0

)
cn2

(√
wx ,

√
k
)

+ ρ (y1 − λ) (λ− y2) = 0.

Equating the cooefficients of this polynomial in
cn

(√
wx ,

√
k
)

to zero and solving the resulting algebraic
system gives

λ = y1, w =
ρ

4
(y2 − y0), k =

y1 − y0

y2 − y0

λ = y2, w =
ρ

4
(y1 − y0), k =

y2 − y0

y1 − y0
(31)

Making use of the identities

cn
(√

wx,
√

k
)

= nc
(√−wx,

√
1− k

)
,

0 < k < 1 and w < 0. (32)

and

cn
(√

wx,
√

k
)

= cd

(
√

1− k
√

wx,

√
k

k − 1

)
,

k < 0 and w > 0. (33)

cn
(√

wx,
√

k
)

= nd

(√
w(k − 1)x,

1√
1− k

)
,

k < 0 and w < 0. (34)

we chooseλ, andw from the solution set (31) to obtain a
periodic solution (30) as follows :
First Case : y0 > y2 > y1. We set λ = y2,
w = (ρ/4)(y1 − y0) < 0 andk = (y2 − y0)/(y1 − y0) > 0.
By formula (32) the solution to i.v.p. problem (22) is

y(x) =
1
2ρ

(
1− ρy0 +

√
∆

)

+
1
2ρ

(
3ρy0 − 1−

√
∆

)
nc2(ω x ,m), (35)

where ∆ = 1 + 2(y0 − 2λ)ρ− 3ρ2y2
0 > 0 and

0 < m =
√

y2 − y1

y0 − y1
=

√
2
√

∆
3y0ρ− 1 +

√
∆

< 1. (36)

ω =
√

ρ

2
√

y0 − y1 =

√
3y0ρ− 1 +

√
∆

8
> 0. (37)

Solution (35) is2T−periodic whereT = K(m)/ω and
K(m) is the complete elliptic integral of the first kind given
by

K(m) =

π/2∫

0

dθ√
1−m2 sin2 θ

. (38)

thus,

T =
K(m)

ω
=

√
8

3y0ρ− 1 +
√

∆
K

×



√
2
√

∆
3y0ρ− 1 +

√
∆


 . (39)
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FIGURE 1.

FIGURE 2.

Example 1. Let λ = 0.087, ρ = 1 andy0 = 0.895. We have

y0 = 0.895 > y2 = 0.151147 > y1 = −0.0461471.

The solution to i.v.p. problem

d2y

dx2
+ y = 0.043 5 +

3
2
y2,

y(0) = 0.895, y′(0) = 0

is

y(x) = 0.151147 + 0.743853nc2(0.485064x, 0.209632)

This solution is unbounded and periodic with period
τ = 6.86306789474.Its graph is shown in Fig. 1.
Let

r(x) =
1

y(x)

=
1

0.151147 + 0.743853 nc2(0.485064x, 0.209632)
.

If we interpretr(x) as the radius of the orbit of a certain
particle moving in a certain stellar system of planets moving
around the origin andx = θ is the polar angle, then the polar
plot of planet’s trajectory is shown in Fig. 2. TheAi’s are
interpreted as ”aphelions”.

This case shows us, from a mathematical point of view, the
inability to have a planet with zero angular speed, since it
would fall to the sun; why we must be ruled out this solution
for the physical system proposed.

Second Case: y2 > y1 > y0. We setλ = y1,
w = (ρ/4)(y2 − y0) > 0 andk = (y1 − y0/y2 − y0) > 0.
Solution to i.v.p. problem (22) is

y(x) =
1
2ρ

(
1− ρy0 −

√
∆

)

+
1
2ρ

(
3ρy0 − 1 +

√
∆

)
cn2(ω x ,m), (40)

where ∆ = 1 + 2(y0 − 2λ)ρ− 3ρ2y2
0 > 0 and

0 < m =
√

y1 − y0

y2 − y0
=

√
1− 3y0ρ−

√
∆

1− 3y0ρ +
√

∆
< 1. (41)

ω =
√

ρ

2
√

y2 − y0 =

√
1− 3y0ρ +

√
∆

8
> 0. (42)

Solution (40) is2T−periodic where

T =
K(m)

ω
=

√
8

1− 3y0ρ +
√

∆
K

×



√
1− 3y0ρ−

√
∆

1− 3y0ρ +
√

∆


 . (43)

FIGURE 3.
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FIGURE 4.

Example 2. Let λ = 0.012, ρ = 0.055 andy0 = 18.1. We
havey2 = 37.7704 > y1 = 27.4629 > y0 = 18.1. Then the
solution to i.v.p. problem

d2y

dx2
+ y = 0.06 + 0.0825y2, y(0) = 18.1 , y′(0) = 0

y(x) = 27.462911− 9.362911cn2(0.520066 x, 0.6899197)

This solution is periodic with period7.053916. Its graph is
shown in Fig. 3.

Let

r(x) =
1

y(x)

=
1

27.462911− 9.362911cn2(0.520066 x, 0.6899197)
.

If we interpretr(x) as the radius of the orbit of a certain
particle moving in a certain stellar system of planets mov-
ing around the origin andx = θ is the polar angle, then the
polar plot of planet’s trajectory is shown in Fig. 4. ThePi’s
are interpreted as “perihelions” and theAi’s are interpreted
as “aphelions”.

Third Case : y2 > y0 > y1. We setλ = y2,
w = (ρ/4)(y1 − y0) < 0 andk = y1 − y0/y2 − y0 < 0.
By formula (34) the solution to i.v.p. problem (22) is

y(x) =
1
2ρ

(
1− ρy0 +

√
∆

)

+
1
2ρ

(
3ρy0 − 1−

√
∆

)
nd2(ω x , m), (44)

where ∆ = 1 + 2(y0 − 2λ)ρ− 3ρ2y2
0 > 0 and

0 < m =
√

y2 − y0

y2 − y1
=

√
1− 3y0ρ +

√
∆

2
√

∆
< 1. (45)

FIGURE 5.

and

ω =
√

ρ

2
√

y0 − y1 =

√
3y0ρ− 1 +

√
∆

8
> 0 (46)

Solution (44) is2T−periodic where

T =
K(m)

ω
=

√
8

3y0ρ− 1 +
√

∆
K

×



√
1− 3ρy0 +

√
∆

2
√

∆


 . (47)

Example 3. Let λ = ρ = 1/4 and y0 = 2. We have
y2 = 3 > y0 = 2 > y1 = −1. The solution to i.v.p. problem

d2y

dx2
+ y =

1
8

+
3
8
y2, y(0) = 2, y′(0) = 0

is

y(x) = 3− nd2

(√
3

4
x,

1
2

)

This solution is bounded and periodic with period7.7861474.
Its graph is shown in Fig. 5.

Let

r(x) =
1

y(x)
=

1

3− nd2
(√

3
4 x, 1

2

) .

If we interpretr(x) as the radius of the orbit of a certain
particle moving in a certain stella system of planets moving
around the origin andx = θ is the polar angle, then the po-
lar plot of planet’s trajectory is shown in Fig. 6. ThePi’s
are interpreted as “perihelions” and theAi’s are interpreted
as “aphelions”..

Thus, we have succesfully solved the initial value prob-
lem (22). We obtained the solution to this problem in terms
of Jacobi elliptic functions cn, nc and nd with positive fre-
quency and module on the interval(0, 1). This is important
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FIGURE 6.

for physical interpretations. These solutions are the key to
give an exact value not only for the Mercury’s perihelion ad-
vance but also for the rest of planets in our solar system. This
is the main purpose of next section.

FIGURE 7.

The trajectory of all planets in our solar system is simi-
lar to the trajectory in Fig. 6 where the sun is located at the
origin. Figure 7 illustrates the way Mercury’s perihelion ad-
vances.

The polar equation for the planet’s trajectory is given by
r(θ) = 1/u(θ), whereu(x) is the solution to initial value
problem (21) and it is

r(θ) =
1

1
2ρ

(
1−ρy0+

√
∆

)
+ 1

2ρ

(
3ρy0−1−√∆

)
nd2(ωθ,m)

, (48)

whereρ = 2GM/c2, y0 = 1/Per, Per is the perihelion dis-
tance of the planet from the sun,c is the light speed in the
vacuum,∆ = 1 + 2(y0 − 2λ)ρ − 3ρ2y2

0 > 0, λ = 2/p
= 2L2/GM , L is the angular momentum of the planet and
ω andm are given by (45)-(46). The formula for planet‘s
perihelion advance is

δrad = 2T − 2π, (49)

whereT is given by (47). Thus

δrad = 2
K (m)

ω
− 2π, (50)

where

ω =2

√
2

6µ
c2Per − 1 +

√
∆

,

m =

√
1
2
− 6µ− c2Per

2c2Per

√
∆

, µ = GM, (51)

∆ =1 +
1
c2

(
4µ

Per
− 16L2

)
− 12

(
µ

c2Per

)2

and L =
√

µPer(1 + e), (52)

beinge the planet’s orbit eccentricity,M the sun’s mass and
G the gravitational constant. Usually, the precession is given
in arcseconds per century, that is

δarcsec= δrad× 180
π

deg
rad

× 602 arcsec
deg

× 365.25636
Sid

rev
yr
× 100

yr
century

, (53)

or

δarcsec= δrad× 23668612128
πSid

yr
century

, (54)

whereSid is the sidereal period of the planet [9]. The equa-
tion of motion that describes planet’s trajectory is

r(θ) =
Per

D + (1−D)nd2
(

1
2

4
√

∆θ,
√

1
2 − 6µ−c2Per

2c2Per

√
∆

) ,

D =
c2Per(1 +

√
∆)− 2µ

4µ
, (55)

where∆ andµ are given by (52).
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TABLE I. Perihelion Precessions.

Planet Per (meters) e Sid δrad δarcsec

Mercury 46001009000 0.20563593 87.969 5.018133082401732×10−7 42.97693500862488

Venus 107476170000 0.00677672 224.701 2.572055430860587×10−7 8.623791317233945

Earth 147098291000 0.01671123 365.25636 1.860888749760647×10−7 3.838358574167813

Mars 206655215000 0.09339410 686.98 1.231693227410346×10−7 1.350769916476435

Jupiter 740679835000 0.04838624 4332.589 3.584047814086944×10−8 0.062323125075340

Saturn 1349823615000 0.05386179 10759.22 1.956432882366244×10−8 0.013699574726097

Uranus 2734998229000 0.04725744 30685.4 9.716618620814188×10−9 0.002385647580547

Neptune 4459753056000 0.00859048 60189 6.187282686198614×10−9 0.000774472052943

Pluto 4436820000000 0.24880766 90465 5.022942950461129×10−9 0.000418312245384

TABLE II. Equations of motions in Polar Form

Planet Equation of Motion in PolarForm

Mercury r(θ) = 46001.009
1.557803988877954−1.557803888877954nd2(0.4999999628041897θ,0.0001479789442513079)

Venus r(θ) = 10747.617
3.639633535560302−3.639633435560301nd2(0.4999999795784685θ,0.00001923216058165254)

Earth r(θ) = 14709.8291
4.981419425598379−4.981419325598379nd2(0.4999999852740075θ,0.00002568877974426872)

Mars r(θ) = 20665.5215
6.998288757462074−6.998288657462074nd2(0.4999999905036310θ,0.00004940721657982459)

Jupiter r(θ) = 74067.9835
25.08280015202405−25.08280005202404nd2(0.4999999971939060θ,0.00001918347301137213)

Saturn r(θ) = 134982.3615
45.71118922451532−45.71118912451532nd2(0.4999999984710723θ,0.00001495382384989734)

Uranus r(θ) = 273499.8229
92.61952483754239−92.61952473754238nd2(0.4999999992389563θ,9.871246084989281×10−6)

Neptune r(θ) = 445975.3056
151.0275966064833−151.0275965064833nd2(0.4999999995090416θ,3.358446164452811×10−6)

Pluto r(θ) = 443682
150.2509786813500−150.2509785813500nd2(0.4999999996334375θ,0.00001628509997473153)

3. Motion equation for the planets and their
precessions

Formulas (50)-(55) allow us to obtain the polar equation for
the planet’s trajectory and to calculate perihelion’s advance
for each planet in our solar system. Following values will be
used:

M = 1.9891× 1030 Kg,

G = 6.671281903963040991511534289× 10−11Nm2/Kg2

and c = 299792458 m/s

Table I shows these data for each planet. This is the main
result of this work. The values ofPer ande were taken from
NASA web site [7]. The values ofSid appear in the web
site [8]. The values presented in Table I for precessions are
consistent with NASA data. However, we did not take into
account perturbations caused by Jupiter and Saturn. Table II
contains the equations of motion in polar form.

4. Conclusions

We solved exactly the nonlinear differential equation that de-
scribes the orbit of the inner planets around the sun. The
solution is expressed in terms of Jacobi elliptic function dn.
Because the elliptic functions are periodic we can calculate
the precession of perihelion’s advance for each of the planets
in the solar system.

The obtained results are also applicable to asteroids , in
general, to any body moving aroun the sun. We think that
they may be of great interest to astronomers and for those
interested in the study of nonlinear differential equations.
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