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A model for the adiabatical pulsation of a Cepheid based on primary physical principles such as energy conservation, mechanical adiabaticity
and hydrostatic equilibrium is presented. The adiabatical treatment of the pulsation has been already studied by other authors but the novelty
of our model is that it allows to obtain physical parameters of the star, namely the amplitude of the oscillation, the mass, maximal velocity of
the pulsation and luminosity.
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1. Introduction

In the present work we are principally interested in contribut-
ing to understand the way in which Cepheids pulsate. Fol-
lowing Baade’s proposition [5], we present a model based on
primary physical principles such as energy conservation, me-
chanical adiabaticity and hydrostatic equilibrium. The adi-
abatic limit is relevant because Cepheids are weakly non-
adiabatic pulsators [7,47]. Additionally, we assert that na-
ture does not work in a very complicated way but obeying
the least action principle and Cepheids cannot be an excep-
tion. Thus, the adiabatic and hydrostatic equilibrium assump-
tions during pulsation and contraction processes are the pri-
mary fulfillment of this imperative. With such assumptions,
we get a differential equation for the pulsation velocity of
the star, which can be analytically integrated. Unlike other
models, this solution depends on a free parameter,(a), which
accounts for the anharmonicity of the pulsation of the star.
The solution of this equation states that a Cepheid pulsates
either as an anharmonic oscillator ifa ≈ 1 or harmonic os-
cillator whena ≈ 0. Instead of doing computer simulations
that require the introduction ofad hocparameters and con-
stants, the aim of the present paper is to treat the Cepheid
problem by a strictly analytic method which can be step by
step well understood and fitted with astronomical observa-
tions. In the theory of similarity and modeling, the key role
is played by dimensionless parameters that characterize the
phenomena under consideration. So that the physical sys-

tem tied with the phenomena obeys scaling which can also
be presented as similarity rules [37]. In this context, we have
applied similarity and dimensional techniques for describing
a Cepheid during its pulsation as atotum but not as a lay-
ered structure where the variabilities of the opacity and of the
adiabatic exponents are relevant for the compensation of the
energy loss as well as for the description of the oscillations
during the pulsation. In addition, it is important to note that
the adiabatic assumption does not affect the physical features
of the oscillation, such as the frequency and anharmonicity,
which are determined mainly by the elastic properties of the
star matter as in every vibrational physical process.

On the basis of adiabaticity and anharmonicity we were
able to obtain a theoretical period-luminosity relation. On
the other hand, it must be emphasized that for the authors the
matching of the method developed in the present paper with
observational data is very important. In this context, as input
for the calculations, the period, the radius and the the radial
velocity curve are introduced as observable parameters and as
output the amplitude of the oscillations, the surface gravity,
the mass, and the luminosity are obtainable; and since the am-
plitude of the oscillations, the mass, the surface gravity and
the luminosity of any star are not easily observable features,
a way to predict their values is very helpful and consequently
new.

Of course, the opacity and consequently convection and
turbulence can also be taken into account in our model but
then the concomitant differential equation is more compli-



ANALYSIS OF THE ADIABATICAL PULSATION OF CEPHEIDS 21

cated and cannot be analytically integrated. Consequently its
integration can be the scope of future work.

The outline of the paper is as follows. Section 2 presents
the model, the stability of the method is analyzed in Sec. 3,
the adaptation of the method to Cepheids is presented in
Sec. 4 and its application toδ Cephei, Polaris, FM Cas, SY
Cas and RR Lac with the corresponding results are provided
in Sec. 5. The discussion of the results are contained in Sec. 6
and we outline our conclusions in Sec. 7.

2. Our Hydrodynamical model

2.1. Fundamental equations

We begin by considering the energy conservation law for an
oscillating homogeneous star,i.e., a star with spatially con-
stant mass-density, temperature and averaged chemical com-
position. Using the mass conservation law for an oscillating
star and the continuity equation, the kinetic energy for such
an oscillating star is given by

Ekin =
3
10

MṘ2 (1)

whereM is the mass andR the radius of the star, respec-
tively. The factor3/5 has not been introducedad hoc, but
it emerges directly from the calculation of the kinetic energy
with the constrain that the mass density is spatially constant
during the oscillation. However, if only a small fraction of the
star is actually displaced during the pulsation, this hypothe-
sis is actually rather strong and then the geometric, kinematic
or rather dynamic similarity must be done carefully other-
wise the matching between the proposal of the paper and the
physical system drops dramatically. Additionally, the poten-
tial energy can be written as the sum of the gravitational and
thermal energies, namely

Epot = −3
5

M2G

R
+

3
2
kT

1 + Z

A

M

mH
(2)

whereG is the gravitational constant,mH the hydrogen atom
mass,Z the mean atomic number,A the mean atomic weight
of the matter of the star, andT its temperature. The mass of
a star consists principally of hydrogen and a helium mixture
and there is no less of generality, leaving the chemical com-
position of the star in relation toA andZ so that to take a
mean value for the chemical composition is anyway possible.
Assuming an adiabatic oscillation for the matter of the star,
the temperature obeys the relation

TR2 = T0R
2
0 = const. (3)

whereT0 andR0 are the equilibrium values of the tempera-
ture and the radius, respectively.

In hydrostatic equilibrium, the gravitational pressure, by
the derivative of the gravitational potential with respect to the
volume, equals the gas pressure,i.e.,

3
20π

M2G

R4
0

= %0
1 + Z

AmH
kT0 (4)

where %0 is the mass density. By considering
%0 = MR−3

0 /(4π/3) in Eq. (4), it follows immediately
that

kT0 =
1
5

A

1 + Z
mH

MG

R0
. (5)

By substituting (3) and (5) in (2) one gets

Epot = −3
5

M2G

R
+

3
10

M2G
R0

R2
(6)

and with the aid of Eqs. (1) and (6), the energy conservation
law takes the form

3
10

MṘ2 − 3
5

M2G

R
+

3
10

M2G
R0

R2
= const., (7)

which is a differential equation for the radius of the star as a
function of time. Another form of the same equation can be
obtained by using the substitution

y = R/R0. (8)

Thus, the differential equation (7) transforms into

ẏ2 =
2MG

R3
0

(
1
y
− 1

2
1
y2

)
+ E. (9)

Since we have a binding system where the potential energy is
greater than the kinetic energy due to the pulsation plus that
due to the gas pressure, one has thatE = const. < 0 with E
describing the total energy in mass units.E = const. is true
whereas the star does not loss mass during the pulsation and
it is assumed in the present work. The second derivation of
Eq. (9) leads to the associated equation of motion

ÿ = −MG

R3
0

(
1
y2
− 1

y3

)
(10)

where ÿ > 0 for y < 1 and ÿ < 0 for y > 1. Eq. (10)
describes the pulsation of a star in hydrostatic equilibrium
when the gravitational energy and gas pressure giving rise to
a kinetic energy are taken into account only. Such pulsation
is anharmonic because it is described as a non-linear oscil-
lating system. Despite of the non-linearity of the differential
equation (10), it can be integrated analytically.

2.2. Solution of the equation of motion

Let us consider Eq. (9) with the substitution

B =
2MG

R3
0

(11)

so that, separating the variables, the differential equation
transforms into

y dy√
B(y − 1

2 ) + Ey2
= dt
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which integral is

√
B(y − 1

2 ) + Ey2

E
+

B

2E

× 1√−E
arcsin

2Ey + B√
B(B + 2E)

= t− t0 (12)

wheret0 = const. Eq. (12) can also be written as

2Ey + B√
B(B + 2E)

= sin

[
2E
√−E

B

×
(

t− t0 −

√
B(y − 1

2 ) + Ey2

E

)]
.

Due to the periodicity of the sinus function, the value ofy for
a time given byt = t1 and t = t2 will be the same if the
period of the pulsation satisfies

τ = t2 − t1 =
2πB

2(−E)3/2
. (13)

With the aid of the energy conservation law given by (9), and
by calculating the maximum (or minimum) value of the am-
plitude of the oscillation at the surface (Ṙ = 0) one gets the
following relation for the energy

E = −1
2
B

(
2

ymax
− 1

y2
max

)
. (14)

So that, by substituting (14) and (11) into (13), the period
becomes

τ = 2π

√
R3

0

MG

[
2

ymax
− 1

y2
max

]−3/2

which means thatτ represents the period of an harmonic os-
cillation times a correction term which is a function of the
amplitude (square bracket).

In order to compare our results with those obtained by
observations, let us define

f =
2

ymax
− 1

y2
max

= 1− a2 (15)

By considering the middle part of the equality,f is a func-
tional which provides negative values without physical mean-
ing, whereas the right side is the parametrization of the func-
tional in the range interval where it provides positive values
and consequently with physical importance; thusa contains
the dependence on the real amplitude of every point of the
pulsation. With the aid of Eq. (15) the expression for the
period can be written as

τ = 2π

√
R3

0

MG
(1− a2)−3/2 (16)

and the oscillation described byy takes the form

(1− a2)y = 1 + a sin

{
(1− a2)3/2

[
(t− t0)

×
√

MG

R3
0

+

√
2(y − 1

2 )− (1− a2)y2

1− a2

]}
(17)

which depends ona as a parameter also.
The oscillation range ofy is

ymin=
1

1 + a
≤ y ≤ ymax=

1
1− a

(0 ≤ a ≤ 1) (18)

corresponding to the roots of Eq. (9) forẏ = 0. Evidently,a
(for a ¿ 1) is the amplitude of a quasi-harmonic oscillation.

Using Eq. (16) and Eq. (17), the oscillation described by
y as a function of the timet, in units of the periodτ , can be
written as

(1− a2)y = 1 + a sin
[
2πx

+

√
(1− a2)[2

(
y − 1

2

)
− (1− a2)y2]

]

where

x = (t− t0)/τ. (19)

This equation can be solved forx where the domain ofy
given by (18) must be taken into account:

2πx = arcsin
[
1
a
[(1− a2)y − 1]

]

−
√

(1− a2)
[
2
(

y − 1
2

)
− (1− a2)y2

)]
. (20)

An alternative solution of Eq. (10) as a function of the maxi-
mum and minimum amplitudes can be found in the ancient
review about variable stars done by Ledouxet al. [16],
Rosseland [34], Kov́acs [23] and an exhaustive analysis of the
nonlinear adiabatic oscillations of the homogeneous model
has been done by Cox [10]. However, in both works the au-
thors have taken no notice of the advantages to express the
solution as function of the maximal amplitude only through
the parametera which allows to obtain expressions for the
following parameters of a Cepheid:∆R = Rmax − Rmin,
the maximal pulsation velocity, the equilibrium radius, the
mass, the luminosity and the surface gravity, such is being
proposed in the present paper.

2.3. Physical considerations for obtaining the stellar pa-
rameters

To determinea, as well asM andR0, in order to obtainy(x)
and consequentlyy(t), the following must be considered:
from a practical point of view by measuring the Doppler shift
of the spectral lines, the radial velocitẏR (or ẏ) of the star
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oscillation can be calculated and its integration with respect
to the time provides,∆R = Rmax − Rmin, but according to
(18) the relation

∆R

R0
=

2a

1− a2
(21)

must also be satisfied so thata can be known. Additionally,
according to Eq. (10), the maximal radial velocity (ÿ = 0)
occurs fory = 1, so that Eq. (9), (14) and (15) provide also a
relation between the maximal velocity of the oscillation and
the parametera:

Ṙ2
max =

MG

R0
a2. (22)

Another quantity that can be measured is the period of the
pulsation and it is related with the parametera via Eq. (16).
Firstly, solving Eq. (21) forR0 one obtains

R0 =
1− a2

2a
∆R (23)

and substituting this relation into Eq. (16), the following ex-
pression forMG is obtained

MG =
(

∆R

2a

)3(2π

τ

)2

. (24)

Using Eq. (22) and Eq. (24), one obtains another way to
determinea:

a2 = 1−
(

∆R

Ṙmax

)2(
π

τ

)2

. (25)

It is important to note thata is very sensitive to changes in
∆R, Ṙmax andτ , and viceversa. According to (25), the value
of a can be determined via the observed values of∆R, Ṙmax

andτ and using (23) and (24), the values ofR0 andM can
be known immediately. But can also be determined via the
method proposed in the Sec. 4 of this paper.

2.4. The luminosity

Assuming that the constituent of the star is a plasma, the lu-
minosity can be calculated assuming energy transport by ra-
diation through

L0 =
(

4π

3

)2
σc(AmH)5

σThZ(1 + Z)4

(
G

5k

)4

M3 (26)

hereσTh is the Thomson cross section andσ the radiation
density constant (σ = 4σ̂/c where σ̂ = 2π5k4/15c2h3 is
the Stefan-Boltzmann constant). In thermal equilibrium, and
using

L0 =
c

4
σT 4

eff04πR2
0 (27)

the effective temperature,Teff0, can also be determined.
Up to now, the empirical determination ofa has been es-

tablished, in the following we will give a theoretical interpre-
tation of a: sincea is associated with the amplitude of the
oscillations,a must be related to the forcing mechanism and
to the initial conditions of the motion. In this context, one can

assume that the change in the potential energy due to an ex-
pansion up to the maximal radius is produced by the radiation
pressure (similar to aκ-mechanism) so that

Epot(Rmax)− Epot(R0) =

Rmax∫

R0

1
3
σT 4

r 4πR2dR (28)

whereTr is the temperature of the radiation, which can be
determined through the radiation-matter interaction, given by
the adiabatic principle

TrR
2 = T0R

2
0. (29)

By substituting (29) on the right hand side of (28) and us-
ing (5) and (6) one gets

1− 2
ymax

+
1

y2
max

= α

[
1−

(
1

ymax

)5]
, (30)

where

α =
8πσ

9

(
1
5k

AmH

1 + Z

)4

M2G3 (31)

then, substitutingymax as function ofa in (30), according
with (15) or (18), one obtains

α =
a2

1− (1− a)5
. (32)

The determination ofa from α, i.e. from the massM and the
chemical composition can be done only numerically. Oth-
erwise, knowinga, one can determineα and therefore, in
accordance with (31), also the average of the chemical com-
position since the massM is known via another way. The
relationship betweena andα is a consequence of the assump-
tion implicit in Eq. (29) and as a result of such assumption
different values ofa would correspond to the same value of
the chemical composition expressed in this paper as a func-
tion of (1 + Z)/AmH . Now, instead of Eq. (29) we suppose
that the adiabatic principle is satisfied for the radiation only,
according to

TrR = T0R0 (33)

so that, after evaluating the integral in Eq. (28) and using
Eq. (5) and Eq. (6), one gets

1
ymax

= 1− 5α,

instead of Eq. (30). By substitutingymax from Eq. (18), one
obtains the linear relation

a = 5α (34)

in place of Eq. (32). Then, knowing the mass and the chemi-
cal composition,a is immediately determined. It is important
to note that fora ¿ 1, Eq. (32) reduces to Eq. (34), so that
in the limit of a ¿ 1, both assumptions give the same result.

In Eq. (29) and Eq. (33) a mean value of the temperature
in the interior of the star is assumed, according to Eq. (5).
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However, keeping in mind that theκ−mechanism can be
present, it seems to be more appropriate to use the radiation
temperature on the surface of the star (Teff0) via the relation

T 4
eff0R

2
0 =

(
4π

3

)2 (AmH)5

πσThZ(1 + Z)4

(
G

5k

)4

M3. (35)

In accordance with the adiabatic assumption given by
Eq. (29) and the evaluation of Eq. (28), one gets from Eq. (35)

a2

1− (1− a)5
=

8
9

(
4π

3

)2

× σ(AmH)5

σThZ(1 + Z)4
G3

(5k)4
MR2

0. (36)

Otherwise, for the adiabatic assumption given by Eq. (33),
one gets

a =
40
9

(
4π

3

)2
σ(AmH)5

σThZ(1 + Z)4
G3

(5k)4
MR2

0. (37)

The experimental measurements of∆R, Ṙ andτ allow the
calculation ofa, M andR0 in accordance with Eq. (21), (22)
and (25) respectively. After that, the chemical composition
can be determined via Eq. (36) or (37).

The temporal behavior of the luminosity can be deter-
mined through the Stefan-Boltzmann law given by Eq. (27)
and considering once again the adiabatic assumption given
by Eq. (33) for the radiation temperature on the surface of
the star (thin atmosphere), one obtains for the luminosity

L =
(

c

4
σT 4

eff4πR2
0

)
R2

0

R2
(38)

here the quantity in brackets is the equilibrium luminosity, so
that considering (8) one gets that

L =
L0

y2
.

Equation (38) shows that the luminosity takes great values
for a small radii and viceversa. This behavior is not in accor-
dance with the observations since aπ/2 phase shift is present
in our model: according with the observations, the maximum
and the minimum of the luminosity correspond to the same
value of the radius. This phase shift can be due to the fact that
theκ−mechanism has not been explicitly taken into account,
because in our adiabatic model without damping no perma-
nent excitations of the oscillations are necessary. Hitherto,
the relation period-luminosity is given in an implicit way. In-
deed, knowing the mass and the mean value of the chemical
composition, which can be calculated using the period of the
oscillation, the luminosity can be determined in accordance
with Eq. (26).

Assuming that the chemical composition is always deter-
mined via anyone of the equations given above, then a period-
luminosity relation can be approximated fora2 ¿ 1. Firstly,
solving Eq. (16) forR0 one gets

R3
0 =

τ2(1− a2)3

4π2
MG, (39)

and the solution forM of Eq. (26) yields to

M =

[(
3
4π

)2
σThZ(1 + Z)4

σcAmHA4

(5k)4

G4
L0

]1/3

. (40)

By substituting Eq. (40) into Eq. (39) one obtains

R2
0 =

τ4/3

42/3π4/3
(1− a2)2G2/3

×
[(

3
4π

)2
σThZ(1 + Z)4

σcAmHA4

(
5k

G

)4
]2/9

L
2/9
0

with this expression for the radius of the star, one returns to
Eq. (27) and the solution for the luminosity takes the form

L
7/12
0 =

1
2
T 3

eff0τ
(σc

π

)7/12

×
[(

3
4

)2
σThZ(1 + Z)4

m5
HA5

(5k)4

G

]1/6 (
1− a2

)3/2
. (41)

The period-luminosity relation given by Eq. (41) explicitly
depends on the surface temperatureTeff0, on the chemical
composition and ona. However whena2 ¿ 1 the luminos-
ity does not depend ona any more and as we show later, it
is a very important result. Alternatively, Eq. (41) can be also
written as the P-L relation

M∗ = −4.29logτ − 4.29logΛ + 4.74 (42)

whereM∗ means absolute magnitude and

Λ =
1

2L
7/12
¯

T 3
eff0(

σc

π
)7/12

×
[(

3
4

)2
σThZ(1 + Z)4

m5
HA5

(5k)4

G

]1/6

(1− a2)3/2. (43)

By comparing the slope of the P-L relation given by (42)
with that provided by Sandageet al. [35] for the galactic cal-
ibrators when[fe/H] = 0.0, namely〈M0

B〉, 〈M0
V 〉, 〈M0

I 〉,
the following relative differences between the slopes in de-
grees units can be found7.8%, 5.9%, 2.2%.

3. Stability of the method

Following Ripepiet al. [33], in this section we want to study
the sensitivity of the model to the parameters and data. For
convenience and keeping in mind a general application of the
model, a normalization of the physical quantities must be in-
troduced:µ = M/M¯ describes the mass of the star in units
of the solar mass; the normalization of the radius deserves
more care, firstlyξ(t) = R(t)/Robs describes the temporal
evolution of the radius of the starR(t) in units ofRobs which

Rev. Mex. Fis.62 (2016) 20–30



ANALYSIS OF THE ADIABATICAL PULSATION OF CEPHEIDS 25

FIGURE 1. Graphics of the Function F(ξ, ζ).

is the radius of the star determined on the basis of obser-
vational datae.g. via the Baade-Wesselink [46] method
or else proposed on the basis of physical considerations.
χ(t) = Robs/R¯ characterizes the observed radius of the
Cepheid in units of the solar radius. It is relevant to note that
Robs is a mean radius.ζ = R0/Robs, gives an account of
the choice of the hydrodynamical equilibrium radiusR0 in
terms of the observed radiusRobs. So thatζ as well asχ are
changing parameters because of the pulsation of the star.

With the aid of

E = −MG(1− a2)
R3

0

and using the suitable parameters, the differential equation
given by Eq. (9) can be written as

ξ̇(t) =
{

M¯Gµ

R3
obsζ

}1/2 1
ξ(t)

F (ξ(t), ζ) (44)

with

F (ξ, ζ) =
{
2ζξ(t)− (1− a2)ξ(t)2 − ζ2

}1/2
. (45)

Figure 1 shows the behavior ofF (ξ(t), ζ) as a function of
ξ(t) and ζ with null points given byξ1(t) = ζ/(1− a)
and ξ2(t) = ζ/(1 + a). According to the variational cal-
culus [24,32], the stationary value of the functionF (ξ(t), ζ),
considering the variations ofξ(t) because of the pulsation
and the possible variations of the parameterζ due to changes
in the empirical determination of the observable radius, ap-
pears whenξ(t) = ζ = 1/(1− a2) and this all ows to lin-
earize the functionF (ξ(t), ζ). Finally, it is important to note
that Eq. (45) is very sensitive to changes ina, µ, ζ, ξ(t) and
that in our model the parametersζ anda play a relevant role
on the determination of the physical properties of the star.

4. Adaptation of the equations containing the
physical stellar quantities for Cepheids

Equations (21) to (25) contains the physical quantities of the
Cepheid, namely the amplitude of the pulsation, the surface
gravity and mass, whereas the luminosity can be calculated
with (41). Taking into account the normalization conditions,

the adiabaticity requirement and using the variational princi-
ple the equation of motion for Cepheids can be written as

Ṙ2 =
M¯Ggcep

ζ(ζ2 − ζ)2χR¯g¯
[2ζξ(t)−(1−a2)ξ2(t)−ζ2]. (46)

Here, one has substitutedµ/ξ2(t) = χ2gcep/g¯ obtained
from

gcep = g¯
M

M¯(
R(t)
R¯

)2

wheregcep denotes the surface gravity of the Cepheid star
and log g¯ = 4.437 is the surface gravity of the sun [39].
Equation (46) works very well and its deduction is not im-
mediate and trivial (cf. Appendix A). The pulsation ampli-
tudes and masses are also very sensitive to the changes of
ζ. Moreover, ζ = 1 corresponds to a very special case,
when R(t) = R0 = Robs so that the functionF (ξ(t), ζ)
linearizes and the perturbationsδ(ξ(t)) andδ(ζ) remain arbi-
trary. For the calibration of the model presented in this paper,
the adoptions of the observational radial velocity curve and
the observational radiusRobs are crucial. In the last case, the
Robs obtained via an experimental method,e.g. the Baade-
Wesselink (BW) method and its variants for which the pro-
jection factor (p) is a key quantity would be desirable, but to
do that is not always possible. The projection factor defined
asvpuls = pvobs [36] is used to convert the observed velocity
into the pulsation velocity. Because of the troubles for veri-
fying theoretical results with observations,e.g. the observed
velocity is often referred to as radial velocity [19] and since
we match our pulsation velocity curve with the observational
radial velocity curve a mismatch of the results is not excluded
but for values ofp close to one, one obtains better fits so when
p = 1.27 [27,20,28] the reliability of the matching is79%,
whereasp = 1.44 [19] provides an accuracy of the matching
of 69%. However, the matching must be done with the pul-
sation velocity curve. There are still inconsistencies aboutp,
on one hand lies the fact thatp is not constant with respect to
the phase and therefore with respect to the time [19,36] and
on the other emerges the suggestion that the projection factor
is constant and equal to1.27 ± 0.05 [20]. In any case the
basis of our model is not affected and for its application in
the present paper one has select1.27 for δ Cep, FM Cas, SY
Cas, RR Lac and1.31 for Polaris [4].

Even though the selection ofR0 also is not arbitrary and
constraining the selection to the domain of feasible values of
R(t) the maximal velocity of the pulsation can be calculated
from

Ṙ2
max =

M¯Ggcepa
2

ζ(ζ2 − ζ)2χR¯g¯
. (47)

Estimations for the amplitudes and the mass can also be elu-
cidated. By substitutingR0 into Eq. (21), one gets

∆R =
2aζRobs

1− a2
(48)
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TABLE I. Measured parameters [row 1 to 5], masses using theM − τ relations provided by Gieren [row 6 to 9] and physical parameters
calculated with the method proposed in the present paper [row 10 to 15] for a sample of five Cepheids.

Stars
δCep Polaris FM Cas SY Cas RR Lac

Parameters

τ(days) 5.3663 3.9729 5.809284 4.07110 6.41629

χ 42.7 46 49 40 52

Log gCep 2.2 2.2 † † †
∆R/R¯ † † † † †

Log (L/L¯) 3.29 3.34 3.45 3.31 3.49

Mev/M¯ 5.72± 0.5 5.30± 0.5 5.86± 0.5 5.37± 0.5 6.03± 0.5

Mth/M¯ 6.32± 3.3 5.77± 3.3 6.47± 3.3 5.81± 3.3 6.68± 3.3

Mpul/M¯ 4.47± 2 4.12± 2 4.60± 2 4.14± 2 4.78± 2

Mwess/M¯ 5.22± 0.9 4.92± 0.9 5.34± 0.9 4.94± 0.9 5.5± 0.9

a 0.5 0.05 0.5 0.5 0.5

ζ 0.435 0.435 0.435 0.435 0.435

M/M¯ 7.07 6.87 9.29 10.1 9.07

∆R/R¯ 24.8 2.01 28.6 23.1 30.3

Log gCep 2.66 2.97 3.37 3.62 3.56

Log (L/L¯) 3.25 3.82 3.51 3.23 3.54

†Means no available observed data.

with such expression, one can obtain the amplitude of pulsa-
tion normalized to the radius of the sun (∆R/R¯) and with
that, the mass can be calculated via Eq. (24) but written as

M =
1
G

(
∆R

2a

)3 (
2π

τ

)2

. (49)

5. Application of the model and results

As illustrative examples of the functionality of the method,
one have selectedδ Cep, FM Cas, SY Cas, RR Lac and Po-
laris. The first step is to match Eq. (46) containing the so-
lution (20) with the observational pulsation velocity curve
in order to determine the value of the parametera. For the
case ofδ Cep, one has chosen the Shane’s [38] radial veloc-
ity curve and the Wallerstein’s [44] over other options be-
cause on the one hand, Shane examined 116 blue lines and
he did not find definitive evidence of line level effects on the
radial velocity curve; besides, his curve compiles the data ob-
tained in three different observation series. Incidentally, the
Wallerstein’s data for the metallic absorption lines are also
in agreement with that of the Shane’s curve. More recently,
Butler [8] measured iodine velocities and his data matched
well with Shane’s curve within a standard deviation of0.289
km/sec . It is important to point out that both curves were
obtained with metallic absorption lines only [9]. More recent
results published by Bersieret al. [6] and Mérandet al. [26]
deserve special attention because both of them provide more
recent pulsation velocity curves, which fit very well with that
of Shane and consequently with ours. On the other hand, we
have selected the Wallerstein’s results because they contain
Hα absorption lines which provide changes in the amplitude

of the oscillation which are relevant for the application of our
model. Here must be indicated that the Wallerstein’s curve is
selected only as a control upper bound of the maximal veloc-
ity for calculating the surface gravity. Indeed, the maximal
radial velocities inferred from the Shane’s and Wallerstein’s
observational radial velocity curves for the metallic absorp-
tion lines multiplied byp = 1.27 are a little less than the
maximal radial velocity provided by theHα absorption line.
Another different thing is to select ad hoc theHα absorption
lines for applying the method because it is known that such
lines behave significantly different from the metallic lines due
to the large extension of the line forming zone and other phys-
ical effects described by Tayloret al. [40] and Nardettoet
al. [30].

For Polaris we have select as radial velocity curve that
provided by Dinshawet al. [12] because it has more points
than that reported by Hatzeset al. [21] and Arellano Ferro [2]
although the three curves are simple sine waves. In both cases
our pulsation velocity curve matches very well with those ob-
tained experimentally: forδ Cep whena = 0.5 and for Po-
laris witha = 0.05. These situations are illustrated in Fig. 2
and 3, where the pulsation velocitydR(t)/dt versus the nor-
malized periodx given by Eq. (34) is plotted. For obtaining
the curve for Polaris, one has used that of Dinshawet al. [12]
as trail. Additionally, the physical parameters obtained in the
present paper either forδ Cep FM Cas, SY Cas, RR Lac as
for polaris with our proposition are shown in in Table I.

6. Discussion

In the present paper we have outlined a method to determine
some physical properties of a pulsating star, namely the mass,
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FIGURE 2. Pulsation velocity curve ofδ Cep as function of a nor-
malized periodx.

the amplitude of the oscillation, the surface gravity and the
luminosity (row 12 to 15 of Table I). As input, one needs ex-
perimental data for the period, the radius and the pulsation
velocity curve of he star. Our method has properly two free
parameters namelya andζ. The first one is fixed by matching
the solution (20) of Eq. (9) with the observational pulsation
velocity curve. This is the starting point becausea is present
in the relations to determine the mass, the amplitude of the
oscillation, the surface gravity and the luminosity. To begin
with, we have matched our solution with the experimental
pulsation velocity curves ofδ Cep, and Polaris. In both cases
the fitting is successful showing that the pulsation ofδ Cep is
anharmonic sincea = 0.5 whereas the pulsation of Polaris
is harmonic becausea = 0.05 (Cf. Fig. 2 and 3). Here,
it must be pointed out that the following values of the pro-
jection factor1.27 and1.31 have been taken into account to
obtain the pulsation velocity of the observed radial veloci-
ties (the points in Fig. 2 and Fig. 3) forδ Cep and Polaris
respectively. Once the value of the parametera is obtained,
the values for the physical parameters can be calculated. Be-
cause the pulsation radial velocity curve forδ Cep is similar
to that of FM Cas, SY Cas, RR Lac [6], the study is extended
to such Cepheids and Table I also shows the results for such
sample of Cepheids. We have matched our theoretical pul-
sation velocity curve with the experimental data provided by
Shane forδ Cep, which range from -5 km/sec up 45 km/sec,
however an adjustment with points obtained via theoretical
modelse.g. that supplied by Nataleet al. [29] is not excluded
but the matching must be carried out carefully because a ver-
tical translation is present and the translation constant must
be known.

FIGURE 3. Pulsation velocity curve of Polaris as function of a nor-
malized periodx.

It is desirable to compare our results with observational
data or with results obtained by other methods. However,
for the sample of Cepheids we are interested on, there are
no direct observational measurements and just a few data
obtained by other methods. Thus, Table I gives account for
either experimental data and those obtained by our method.
For knowing the mass we resort to theM − τ relations pro-
vided by Gieren [17] to calculate the values that also show
the well known mass discrepancy for Cepheids. Forδ Cep,
the radius provided by Turner [41], the surface gravity pro-
posed by Andrievskyet al. [1] and the luminosity claimed by
Kervelaet al. [22] are included in Table I. For Polaris the ex-
perimental quantities are taken from Nordgrenet al. [31] (the
radius), Usenkoet al. [43] Log gCep = 2.2 (surface gravity)
and Turneret al. [42] Log L/L¯ = 3.34 (luminosity). For
the Cepheids FM Cas, SY Cas, RR Lac, the periods provided
by Bersieret al. [6] have been used and their radii have been
calculated vialog R = 1.244+0.587 log τ [15]. The temper-
atures have been estimated withlog T = 3.886−0.175 (B−
V ) where (B − V ) = −0.101 log2 τ + 0.5385 log τ +
0.2644 [25] and the luminosities were obtained through
Mbol = 96m.57−5 log R−10 log T [25]. Finally it must be
pointed out that the† means that there are not observational
data for such parameter.

Besides to the Table I quantities, let us mention for Po-
laris the mass proposed by Arellano Ferro [3] of6M¯, and
that of Evanset al. [13] of 5± 1.5M¯.

Additionally, Table I contains the mass, the amplitude of
the pulsation, the surface gravity and the luminosity of the
same sample of stars, obtained by the method proposed in the
present paper. Our mass must be properly compared with the
observational massMwess/M¯ and with the theoretical mass
Mth/M¯. With regard to the last one, the relative differences
of the masses are12% 20% for δ Cep and Polaris respec-
tively, whereas for FM Cas, SY Cas, RR Lac such relative
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differences are much bigger. It means that the radii of the last
three stars have been measured with large errors. The same
evidence can be inferred from the most bigger relative differ-
ences between our result and theMwess/M¯ which is directly
based on the radii measures. In the case of Polaris a direct
comparison of our results with that of Arellano Ferro [3] and
that of Evanset al. [13], one obtains a relative differences
of 12% and5% respectively, which means that our model is
well calibrated with the most well observed Cepheids namely
δ Cep and polaris. With respect to the surface gravity in a log-
arithmic scale one can notice that the relative differences for
δ Cep and polaris are17% and25% respectively.

Owing to the fact that our Eq. (41) for calculating the
luminosity does not depend on the radius but on the period,
our estimations of the luminosity are in very good agreement
with the observational data. The relative differences lay be-
tween1.2% and 2.4% in the logarithmic scale but for Po-
laris it is 13%. It means that the period has been measured
with a very good precision. The amplitudes of the oscillation
provided in the present work would represent an estimation
that should be experimentally corroborated, although at the
present it will not be easy to do it because the instruments for
such observation must be extremely refined.

Finally, it must be pointed out that despite of the sim-
ple treatment of the pulsation, our model predicts acceptable
values for the physical properties of a Cepheid, namely, the
mass, the amplitude of the oscillation, the surface gravity and
specially the luminosity. However, such predictions must be
taken as reference data for observations and more realistic
pulsations models but never as a deterministic algorithm be-
cause our model does not take into account pulsations in the
overtone modes. Moreover, peculiarities as time dependence
of the radial velocities, secular decreases or increases of the
pulsations amplitudes [14] and mass loss have also been put
aside because our primary purpose was to treat the Cepheid
problem by a strictly analytic method which could be step
by step well understood and fitted with astronomical obser-
vations. However, in this framework in a coming paper the
evolutive and pulsative masses will bee conciliated.

7. Conclusions

In order to understand the pulsation mechanism of cepheids,
we have presented a model based on primary physical prin-
ciples, namely energy conservation, mechanical adiabaticity
and hydrodynamical equilibrium, and we have found that the
star pulsates anharmonically if the parametera takes values
close to1 or harmonically whena ≈ 0. The model has only
two free parametersa andζ but relies on three observables:
period, radius and pulsation velocity.a is coupled with the
pulsation velocity curve andζ with a suitable selection of the
hydrodynamic normalization radius. Moreover, the model is
presented so that a matching with the observational data is
possible, then knowing the oscillation period and the radius,
one can predict the amplitude of the oscillation, the mass, the
superficial gravity and the luminosity of a pulsating star. In-

deed the adiabatical approximation has been already studied
by by Ledoux et al. [16] and Cox [10] but not in the way pre-
sented in this paper, which allows the prediction of the stel-
lar parameters mentioned above. For calibrating the method,
we have applied it toδ Cep and Polaris and we were able
to reproduce the experimental pulsation velocity curves re-
ported by Shane [38] and Wallerstein [44], Bersier et al. [6],
Mérand et al. [26] in the first case and that from Dinshaw [38]
in the second one. Forδ Cep, we geta = 0.5 and for Polaris
a = 0.05, consequently the pulsation ofδ Cep is anharmonic
and that of Polaris is harmonic. After the matching the treat-
ment is extended to FM Cas, SY Cas, RR Lac and Table 1
gives account for he results which are in very good agree-
ment with the observational data for the case ofδ Cep and
Polarisa = 0.05, and for FM Cas, SY Cas, RR Lac remain
as predicted values.

Appendix

A. Constrictions into the pulsation of Cepheids

In this paragraph we focus on the physical constrictions of
the method for its application to Cepheids. One begins by
writing Eq. (44) as

Q(ξ, ξ̇(t), t) = ξ(t)ξ̇(t)−
{

M¯Gµ

R3
obsζ

}1/2

× {
2ζξ(t)− (1− a2)ξ(t)2 − ζ2

}1/2
(A.1)

Then a necessary condition for the functionalJ(ξ(t)) of the
form

J(ξ(t)) =

vmax∫

vmin

Q(ξ, ξ̇(t), t)dt (A.2)

to have an extremum for a given functionξ(t), is thatξ(t)
satisfies the Eulers equation

Qξ(t) −
d

dt
Qξ̇(t) = 0 (A.3)

where the subscripts denote partial derivatives with respect to
the corresponding arguments [18]. Firstly, forξ(t) Eq. (A.3)
provides

ξ(t) =
ζ

(1− a2)
(A.4)

which is in accordance with the stability condition obtained
before in paragraph 3. Forζ(t) andχ(t), the Eulers condition
reduces to the differential equation

M¯Gµ

2

(
M¯Gµ

ζ(t)R3
obs

)− 1
2 1
ζ(t)R3

obs

(
1

Robs

dRobs

dζ(t)
+

1
ζ(t)

)

× F 2(ζ(t), ξ(t))−
(

M¯Gµ

ζ(t)R3
obs

) 1
2

(ξ(t)− ζ(t)) = 0 (A.5)
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Using the condition given by Eq. (A.4) and solving for
χ(t) one obtains

χ(t) = ζ2(t)− ζ(t) + const (A.6)

In view of the fact that the star is never motionless dur-
ing the pulsation and during the observation, the assumption
that ζ as well asχ must be a function of time is the most
reasonable, so that forconst = 0 and sinceζ is always≤ 1
to first approximation the dominant term in the last equation
is −ζ(t) but in order to recover the physical meaning of the
equation of motion, the expressionχ2(t) = (ζ2(t) − ζ(t))2

must be taken into account, which is also in accordance with
the adiabatical assumption (cf. Eq. 3). Therefore Eq. (46)
describes the pulsation of a Cepheid satisfying the stability
condition for the time functionsξ(t), ζ(t) andχ(t) as well as
the fact that the adiabatical radial pulsation of the star comply
with the least action principle.
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