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Analysis of the adiabatical pulsation of Cepheids
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A model for the adiabatical pulsation of a Cepheid based on primary physical principles such as energy conservation, mechanical adiabaticity
and hydrostatic equilibrium is presented. The adiabatical treatment of the pulsation has been already studied by other authors but the novelty
of our model is that it allows to obtain physical parameters of the star, namely the amplitude of the oscillation, the mass, maximal velocity of
the pulsation and luminosity.
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1. Introduction tem tied with the phenomena obeys scaling which can also
be presented as similarity rules [37]. In this context, we have

In the present work we are principally interested in contribut—"’“:)p”ed similarity and dimensional techniques for describing
a Cepheid during its pulsation aste@tumbut not as a lay-

ing to understand the way in which Cepheids pulsate. Fol-

lowing Baade’s proposition [5], we present a model based Ols,?red structure where the variabilities of the opacity and of the

primary physical principles such as energy conservation, mezgdiabatic exponents are relevant for the compensation of the

chanical adiabaticity and hydrostatic equilibrium. The adi-Eneray loss as well as for the description of the oscillations

abatic limit is relevant because Cepheids are weakly non(_jurlng the pulsation. In addition, it is important to note that

adiabatic pulsators [7,47]. Additionally, we assert that na—the adiabqtic gssumption does not affect the physical feqtgres
ture does not work in a very complicated way but obeyingOf t_he oscillation, _SUCh as the frequency gnd anha_rmonlcny,
the least action principle and Cepheids cannot be an exce vhich are dete_rmlned m_amly by the elf_iSt'C properties of the
tion. Thus, the adiabatic and hydrostatic equilibrium assump§tar matter as in every vibrational physical process.

tions during pulsation and contraction processes are the pri- On the basis of adiabaticity and anharmonicity we were
mary fulfillment of this imperative. With such assumptions, able to obtain a theoretical period-luminosity relation. On
we get a differential equation for the pulsation velocity of the other hand, it must be emphasized that for the authors the
the star, which can be analytically integrated. Unlike othermatching of the method developed in the present paper with
mode|S, this solution depends on afree param&t%rwhich observational data is very |mp0rtant. In this Context, as Input
accounts for the anharmonicity of the pulsation of the starfor the calculations, the period, the radius and the the radial
The solution of this equation states that a Cepheid pulsaté&locity curve are introduced as observable parameters and as
either as an anharmonic oscillatoraifa 1 or harmonic os-  output the amplitude of the oscillations, the surface gravity,
Ci”ator Whena ~ 0. |nstead Of doing Computer Simulations the mass, and the |uminOSity are Obtainable; and since the am-
that require the introduction dd hocparameters and con- plltude of the OSCi”ationS, the mass, the surface graVity and
stants, the aim of the present paper is to treat the Cephel#€ luminosity of any star are not easily observable features,
problem by a strictly analytic method which can be step bya way to predict their values is very helpful and consequently
step well understood and fitted with astronomical observal€W.

tions. In the theory of similarity and modeling, the key role  Of course, the opacity and consequently convection and
is played by dimensionless parameters that characterize therbulence can also be taken into account in our model but
phenomena under consideration. So that the physical sy$hen the concomitant differential equation is more compli-
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cated and cannot be analytically integrated. Consequently itwhere o, is the mass density. By considering

integration can be the scope of future work. o0 = MR;?/(4m/3) in Eq. (4), it follows immediately
The outline of the paper is as follows. Section 2 presentshat

the model, the stability of the method is analyzed in Sec. 3, KTy = 1 A mH@ (®)

the adaptation of the method to Cepheids is presented in 51+Z7 Ry

Sec. 4 and its application ®Cephei, Polaris, FM Cas, SY gy supstituting (3) and (5) in (2) one gets
Cas and RR Lac with the corresponding results are provided

in Sec. 5. The discussion of the results are contained in Sec. 6 3M?G 3, Ro
and we outline our conclusions in Sec. 7. Epor = 5 R + EM Gﬁ ®)
. and with the aid of Egs. (1) and (6), the energy conservation
2. Our Hydrodynamical model law takes the form Gs. (D and ©) ¥
2.1. Fundamental equations 3 . 3M2G 3 R
2 up2_ 2 2 M2 = t. 7
10 5k a0t Oge T eomsts ()

We begin by considering the energy conservation law for an
oscillating homogeneous stae., a star with spatially con- which is a differential equation for the radius of the star as a
stant mass-density, temperature and averaged chemical cofanction of time. Another form of the same equation can be
position. Using the mass conservation law for an oscillatingobtained by using the substitution

star and the continuity equation, the kinetic energy for such

an oscillating star is given by y = R/Ry. (8)
3 .
Eiin = 15 M R? (1) Thus, the differential equation (7) transforms into
where M is the mass and& the radius of the star, respec- 5 2MG (1 11
tively. The factor3/5 has not been introducestl hog but vy = R’ <y - 2y2> E ©)

it emerges directly from the calculation of the kinetic energy

with the constrain that the mass density is spatially constarince we have a binding system where the potential energy is
during the oscillation. However, if only a small fraction of the greater than the kinetic energy due to the pulsation plus that
star is actually displaced during the pulsation, this hypothedue to the gas pressure, one has fiiat const. < 0 with E

sis is actually rather strong and then the geometric, kinematidescribing the total energy in mass unif$ = const. is true

or rather dynamic similarity must be done carefully other-whereas the star does not loss mass during the pulsation and
wise the matching between the proposal of the paper and thieis assumed in the present work. The second derivation of
physical system drops dramatically. Additionally, the poten-Eq. (9) leads to the associated equation of motion

tial energy can be written as the sum of the gravitational and

thermal energies, namely . MG/r1 1 10
Y= "xs TERR: (10)
3M?G 3 _1+Z M 0
Bpow = =2+ 5k () , ,
5 R 2 A mpy wherejj > 0 fory < 1 andj < 0 fory > 1. Eq. (10)

whereG is the gravitational constantyy; the hydrogen atom describes the pulsation of a star in hydrostatic equilibrium
mass,Z the mean atomic numbe, the mean atomic weight When the gravitational energy and gas pressure giving rise to
of the matter of the star, arifl its temperature. The mass of @ kinetic energy are taken into account only. Such pulsation
a star consists principally of hydrogen and a helium mixturdS anharmonic because it is described as a non-linear oscil-
and there is no less of generality, leaving the chemical comlating system. Despite of the non-linearity of the differential
position of the star in relation tel and Z so that to take a €quation (10), it can be integrated analytically.

mean value for the chemical composition is anyway possible.

Assuming an adiabatic oscillation for the matter of the star2.2.  Solution of the equation of motion

the temperature obeys the relation

) ) Let us consider Eq. (9) with the substitution
TR” =TyRj = const. 3)

S 2MG
whereTy and Ry are the equilibrium values of the tempera- B= 73
0

ture and the radius, respectively.
In hydrostatic equilibrium, the gravitational pressure, bygq that, separating the variables, the differential equation

the derivative of the gravitational potential with respect to they ansforms into

volume, equals the gas pressture,

(11)

d
3 M2G 1+7 vy — dt

- = kT, 4
207 Ry P Amyg 0 @) By — 3) + Ey?
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which integral is and the oscillation described lptakes the form
By - 3) + BEy? N B (1—a2)y:1+asin{(1—a2)3/2[(t—to)
E 2F
1 2Fy + B 1 2,2
X arcsin —————— =1t —t 12 MG 20y —3)—(1—-a?)y
V—E B(B + 2E) o 12 A\ T v — (17)
3 —

wherety = const. Eqg. (12) can also be written as which depends on as a parameter also.

2By + B Y o) The oscillation range af is
RR Lo 1 1
VB(B +2E) B = <y < - <a<1) (18
Ymin 1+a_y_ymax 1—a (O_CL_ ) ( )
By — 3) + Ey? corresponding to the roots of Eq. (9) for= 0. Evidently,a
X\ t—to— E : (for a <« 1) is the amplitude of a quasi-harmonic oscillation.

Using Eq. (16) and Eq. (17), the oscillation described by

Due to the periodicity of the sinus function, the value/gér ~ ¥ &s & function of the time, in units of the period, can be
a time given byt = t; andt = t, will be the same if the Written as

period of the pulsation satisfies
(1—a?®)y =1+ asin |:27T:L'

-y 3) - (-
Ja-eie(s-3) - -enw

2rB

BT (13)

T=1y—1 =

With the aid of the energy conservation law given by (9), and
by calculating the maximum (or minimum) value of the am-where
plitude of the oscillation at the surfac& (= 0) one gets the

following relation for the energy z=(t—to)/T. (19)
1 9 1 This equation can be solved far where the domain of
E = _2B< - = ) (14)  given by (18) must be taken into account:
Ymax  Ymax
p— 1 p— — 2 J—
So that, by substituting (14) and (11) into (13), the period 27+ = Aesin L[(l @)y ”]
becomes
1
— —/Q=a®)|2ly—=)—-(1-a?>y?])|. (20
Tl 1 % A2(v-3)-a-ae)]. @
T=27 UG - =
Ymax  Ymax An alternative solution of Eq. (10) as a function of the maxi-

mum and minimum amplitudes can be found in the ancient
review about variable stars done by Ledoeixal [16],
Rosseland [34], Koacs [23] and an exhaustive analysis of the
nonlinear adiabatic oscillations of the homogeneous model
Yhas been done by Cox [10]. However, in both works the au-
thors have taken no notice of the advantages to express the
2 1 9 solution as function of the maximal amplitude only through
f= Ymax v2, =1-a 19 the parameteet. which allows to obtain expressions for the
following parameters of a Cepheid\R = Rpyax — Rumin,
By considering the middle part of the equalifyis a func-  the maximal pulsation velocity, the equilibrium radius, the
tional which provides negative values without physical meanmass, the luminosity and the surface gravity, such is being
ing, whereas the right side is the parametrization of the funcproposed in the present paper.
tional in the range interval where it provides positive values
and consequently with physical importance; thusontains  2.3.  Physical considerations for obtaining the stellar pa-
the dependence on the real amplitude of every point of the rameters
pulsation. With the aid of Eq. (15) the expression for the

which means that represents the period of an harmonic os-
cillation times a correction term which is a function of the
amplitude (square bracket).

In order to compare our results with those obtained b
observations, let us define

period can be written as To determines, as well asM and Ry, in order to obtairy(z)
and consequently(¢), the following must be considered:
R} 2\—3/2 from a practical point of view by measuring the Doppler shift
T =27 m(l —a’) (16)  of the spectral lines, the radial velocify (or ¢) of the star
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oscillation can be calculated and its integration with respecassume that the change in the potential energy due to an ex-
to the time providesAR = R,,.x — Rmin, but according to  pansion up to the maximal radius is produced by the radiation

(18) the relation pressure (similar to a-mechanism) so that

of_ 20 21) 0

RO 1-— a2 max 1
must also be satisfied so thatan be known. Additionally, Epot(Rmax) — Epot(Ro) = / §JT§47T R?dR  (28)
according to Eq. (10), the maximal radial velocity € 0) Ro

occurs fory = 1, so that Eq. (9), (14) and (15) provide also a
relation between the maximal velocity of the oscillation and
the parameted:

whereT; is the temperature of the radiation, which can be
determined through the radiation-matter interaction, given by
the adiabatic principle
72 = 20, (22) PP
Ro T.R? = TyR2. (29)
Another quantity that can be measured is the period of the
pulsation and it is related with the parameteria Eq. (16). By substituting (29) on the right hand side of (28) and us-

Firstly, solving Eq. (21) for?, one obtains ing (5) and (6) one gets
1—a? 5
Ry = AR 23) -2 :%1-( L )] (30)
2a Ymax  Yiax Ymax
and substituting this relation into Eq. (16), the following ex- ywhere
ression forM/ G is obtained 4
P o STO (LA s (31)
3 2 9 \bkl1+2Z
AR 27 o . . .
MG = 0 - (24)  then, substituting,,., as function ofa in (30), according
with (15) or (18), one obtains
Using Eg. (22) and Eqg. (24), one obtains another way to 9
determinea: a=—2 (32)
1-(1-a)®
) AR \?/7m\? o :
a®=1-— R - . (25)  The determination of from ¢, i.e. from the mass\/ and the
max T

chemical composition can be done only numerically. Oth-
It is important to note that is very sensitive to changes in €rwise, knowinga, one can determine and therefore, in
AR, R...x andr, and viceversa. According to (25), the value accordance with (31), also the average of the chemical com-
of a can be determined via the observed valueA & R, position since the mas&/ is known via another way. The
andr and using (23) and (24), the values®§ and M can  relationship betweemanda is a consequence of the assump-
be known immediately. But can also be determined via thdion implicit in Eq. (29) and as a result of such assumption

method proposed in the Sec. 4 of this paper. different values of: would correspond to the same value of
the chemical composition expressed in this paper as a func-
2.4. The luminosity tion of (1 + Z)/Amy. Now, instead of Eq. (29) we suppose

that the adiabatic principle is satisfied for the radiation only,
Assuming that the constituent of the star is a plasma, the luaccording to

minosity can be calculated assuming energy transport by ra- T.R =TyR, (33)

diation through
g so that, after evaluating the integral in Eq. (28) and using

o (47r>2 oc(Amy)® (G )4M3 (26) Eqg. (5) and Eq. (6), one gets

3 ) omZ(1+ Z)*\ 5k 1

=1-b5a,
hereoTy, is the Thomson cross section agdhe radiation Ymax

density constanto( = 46/c whereg = 2m°k*/15¢°h* is  instead of Eq. (30). By substituting,.. from Eq. (18), one
the Stefan-Boltzmann constant). In thermal equilibrium, anthptains the linear relation

using .
Lo = ZaTgﬂozxﬂRg (27) a=5a (34)
the effective temperaturé.q,, can also be determined. in place of Eq. (32). Then, knowing the mass and the chemi-

Up to now, the empirical determination ethas been es- cal compositiong is immediately determined. It is important
tablished, in the following we will give a theoretical interpre- to note that fom < 1, Eq. (32) reduces to Eq. (34), so that
tation of a: sincea is associated with the amplitude of the in the limit of ¢ <« 1, both assumptions give the same result.
oscillations,a must be related to the forcing mechanism and  In Eq. (29) and Eg. (33) a mean value of the temperature
to the initial conditions of the motion. In this context, one canin the interior of the star is assumed, according to Eq. (5).

Rev. Mex. Fis62(2016) 20-30
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However, keeping in mind that the—mechanism can be and the solution fo/ of Eq. (26) yields to
present, it seems to be more appropriate to use the radiation
temperature on the surface of the stBsx{) via the relation [( 3 )2 ornZ(1+ Z)* (5k)*

4\ 2 A 5 4 An ocAmpgA* G4
T RE = (ﬂ> (mH)(G> M3 (35) H

3 7TO'ThZ(1+Z)4 5k o . .
, ) X , ) By substituting Eq. (40) into Eqg. (39) one obtains
In accordance with the adiabatic assumption given by

Eq. (29) and the evaluation of Eq. (28), one gets from Eq. (35) ) 74/3

1/3
LO] . (40)

_ L 2\22/3
1-(1—-a¥ 9 ) 2/9
P 9k X[(?»)%Thzum‘* (5k> Lo
A 5 3 4 0
o(Amy) G MER2. (36) 4 ocAmpg A G

X omZ(1+ Z)3 (5k)1

Otherwise, for the adiabatic assumption given by Eq. (33)
one gets

40 (47\?_o(Amn)®  GP [z _ g o072
=< \= MRy. 37 o = 5leffoT
=7 < 3 ) e Z(1+ 2)1 Gyt o 37 ST (%)

The experimental measurements/®R, R andr allow the " [(3)2 ornZ(1+ Z)* (5k)*
calculation ofa, M and R, in accordance with Eg. (21), (22) 4 m3; A5 G
and (25) respectively. After that, the chemical composition
can be determined via Eg. (36) or (37). The period-luminosity relation given by Eqg. (41) explicitly
The temporal behavior of the luminosity can be deter-depends on the surface temperatiifg,, on the chemical
mined through the Stefan-Boltzmann law given by Eq. (27)composition and oa. However whem? < 1 the luminos-
and considering once again the adiabatic assumption giveity does not depend om any more and as we show later, it
by Eqg. (33) for the radiation temperature on the surface ofs a very important result. Alternatively, Eq. (41) can be also
the star (thin atmosphere), one obtains for the luminosity  written as the P-L relation

2
I— <ZUT§H4” Rg) % (38) M* = —4.29logr — 4.20l0gA + 474 (42)

with this expression for the radius of the star, one returns to
Eg. (27) and the solution for the luminosity takes the form

1/6
(1-a2)**. (1)

here the quantity in brackets is the equilibrium luminosity, sowhere M * means absolute magnitude and
that considering (8) one gets that

Ly =7
Equation (38) shows that the luminosity takes great values 3\ 2 ornZ(1+ Z)* (5k)*
for a small radii and viceversa. This behavior is notin accor- < <4> mo. A5 G
dance with the observations since & phase shift is present "
in our model: according with the observations, the maximum By comparing the slope of the P-L relation given by (42)
and the minimum of the Ium|n03|_ty correspond to the Samey;, g4 provided by Sandags al. [35] for the galactic cal-
value of the radius. This phase shift can be due to the fact th%rators when{fe/H] = 0.0, namely(M$), (MY, (MY)

- g B/ Vi I/

the s—mechanism has not been explicitly taken into accounty, o following relative differences between the slopes in de-
because in our adiabatic model without damping no PerMag e units can be fourid’%, 5.9%, 2.2%

nent excitations of the oscillations are necessary. Hitherto,

the relation period-luminosity is given in an implicit way. In-

deed, knowing the mass and the mean value of the chemicg Stability of the method

composition, which can be calculated using the period of the

oscillation, the luminosity can be determined in accordance=ollowing Ripepiet al. [33], in this section we want to study

with Eq. (26). the sensitivity of the model to the parameters and data. For
Assuming that the chemical composition is always detergonvenience and keeping in mind a general application of the

mined via anyone of the equations given above, then a periognodel, a normalization of the physical quantities must be in-

luminosity relation can be approximated fof < 1. Firstly,  troduced;u = M/M., describes the mass of the star in units

1 oc
A 2 egffO( - )7/12
1/6

(1—a?)%2. (43)

solving Eq. (16) forRz, one gets of the solar mass; the normalization of the radius deserves
s T2(1-a?)? more care, firsth¢(t) = R(t)/Robs describes the temporal
Ry = TMG (39)  evolution of the radius of the stdt(t) in units of Ryps Which

Rev. Mex. Fis62(2016) 20-30
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FIGURE 1. Graphics of the Function E(().

is the radius of the star determined on the basis of obse
vational datae.g via the Baade-Wesselink [46] method
or else proposed on the basis of physical consideration
x(t) = Rops/ R characterizes the observed radius of th
Cepheid in units of the solar radius. It is relevant to note tha
Rops is @ mean radius{ = Rg/Rops, gives an account of
the choice of the hydrodynamical equilibrium radilg in
terms of the observed radidgs. So that¢ as well asy are
changing parameters because of the pulsation of the star.
With the aid of

MGQA - a?)

E= :
R

and using the suitable parameters, the differential equatio

given by Eq. (9) can be written as

] 1/2
- {2 Greno e
with
F(&,0) = {2¢e(t) — (1 — ) = V2. (45)

Figure 1 shows the behavior @f(£(t), () as a function of
&(t) and ¢ with null points given by&(t) = ¢(/(1 —a)
and&(t) = ¢/(1+a). According to the variational cal-
culus [24,32], the stationary value of the functiB¢ (t), ¢),
considering the variations df(¢t) because of the pulsation
and the possible variations of the paramétdue to changes
in the empirical determination of the observable radius, ap
pears wherg(t) = ¢ = 1/(1 — @?) and this all ows to lin-
earize the functior(£(t), ¢). Finally, it is important to note
that Eq. (45) is very sensitive to changesiin, ¢, £(t) and
that in our model the parametef@nda play a relevant role
on the determination of the physical properties of the star.

4. Adaptation of the equations containing the

physical stellar quantities for Cepheids

Equations (21) to (25) contains the physical quantities of th
Cepheid, namely the amplitude of the pulsation, the surfac

gravity and mass, whereas the luminosity can be calculated

with (41). Taking into account the normalization conditions,

Rev. Mex. Fis62
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the adiabaticity requirement and using the variational princi-
ple the equation of motion for Cepheids can be written as

MQchep
C(¢* = O)*xRogo

Here, one has substituted/¢?(t) = x%gcep/g9e Obtained
from

R = [2¢(t)—(1—a?)€%(t)— (7). (46)

M
Mo
R(t)

Ro

Geep = 9o ( )2
where gcep denotes the surface gravity of the Cepheid star
ra}nd log g = 4.437 is the surface gravity of the sun [39].

Equation (46) works very well and its deduction is not im-
mediate and trivial (cf. Appendix A). The pulsation ampli-

e?Udes and masses are also very sensitive to the changes of

g. Moreover,{ = 1 corresponds to a very special case,
when R(t) = Ry = Rops SO that the function?(¢(t), ¢)
linearizes and the perturbatiofi& (¢)) andd(¢) remain arbi-
trary. For the calibration of the model presented in this paper,
the adoptions of the observational radial velocity curve and
the observational radiuBgps are crucial. In the last case, the
Rops Obtained via an experimental methadg the Baade-
Wesselink (BW) method and its variants for which the pro-
jection factor p) is a key quantity would be desirable, but to
do that is not always possible. The projection factor defined
QSvpms = puops [36] is used to convert the observed velocity
into the pulsation velocity. Because of the troubles for veri-
fying theoretical results with observatioresg. the observed
velocity is often referred to as radial velocity [19] and since
we match our pulsation velocity curve with the observational
radial velocity curve a mismatch of the results is not excluded
but for values op close to one, one obtains better fits so when
p = 1.27 [27,20,28] the reliability of the matching 8%,
wherea® = 1.44 [19] provides an accuracy of the matching
of 69%. However, the matching must be done with the pul-
sation velocity curve. There are still inconsistencies apout
on one hand lies the fact thais not constant with respect to
the phase and therefore with respect to the time [19,36] and
on the other emerges the suggestion that the projection factor
is constant and equal tb27 + 0.05 [20]. In any case the
basis of our model is not affected and for its application in
the present paper one has seleef for § Cep, FM Cas, SY
Cas, RR Lac and.31 for Polaris [4].

Even though the selection &, also is not arbitrary and
constraining the selection to the domain of feasible values of
R(t) the maximal velocity of the pulsation can be calculated
from

]\4®chepﬂ2
C(¢* = O*xRoge

Estimations for the amplitudes and the mass can also be elu-

RQ

max

(47)

gidated. By substituting?, into Eq. (21), one gets

_ 2aCRobs
AR = T — a2

(48)

(2016) 20-30
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TABLE |. Measured parameters [row 1 to 5], masses usingithe 7 relations provided by Gieren [row 6 to 9] and physical parameters
calculated with the method proposed in the present paper [row 10 to 15] for a sample of five Cepheids.

Parametz tre;rs 6Cep Polaris FM Cas SY Cas RR Lac
7(days 5.3663 3.9729 5.809284 4.07110 6.41629
X 42.7 46 49 40 52
Log gcep 2.2 2.2 T T T
AR/Ro T T T T T
Log (L)L) 3.29 3.34 3.45 3.31 3.49
Mev/Mg 5.72+ 0.5 5.30 £ 0.5 5.86 £ 0.5 5.37+ 0.5 6.03+£0.5
Min/Mg 6.32 + 3.3 5.77+3.3 6.47 + 3.3 5.81 + 3.3 6.68 + 3.3
Mpu/Meg 4.47 + 2 4.12+2 4.60 £ 2 4.14+ 2 4.78 £ 2
Muwess/ M 5.22+0.9 4.92+0.9 5.34 +£0.9 4.94+0.9 5.5+0.9
a 0.5 0.05 0.5 0.5 0.5
¢ 0.435 0.435 0.435 0.435 0.435
M/Me 7.07 6.87 9.29 10.1 9.07
AR/Rg 24.8 2.01 28.6 23.1 30.3
Log gcep 2.66 2.97 3.37 3.62 3.56
Log (L/La) 3.25 3.82 3.51 3.23 3.54

t Means no available observed data.

with such expression, one can obtain the amplitude of pulsasf the oscillation which are relevant for the application of our
tion normalized to the radius of the suAR/Ry) and with  model. Here must be indicated that the Wallerstein’s curve is
that, the mass can be calculated via Eq. (24) but written as selected only as a control upper bound of the maximal veloc-
. ) ity for calculating the surface gravity. Indeed, the maximal
et (AR) (27T> (49) radial velocities inferred from the Shane's and Wallerstein’s
G\ 2a ’ observational radial velocity curves for the metallic absorp-
tion lines multiplied byp = 1.27 are a little less than the
maximal radial velocity provided by thH, absorption line.
Another different thing is to select ad hoc the, absorption
As illustrative examples of the functionality of the method, lines for applying the method because it is known that such
one have selectefiCep, FM Cas, SY Cas, RR Lac and Po- lines behave significantly different from the metallic lines due
laris. The first step is to match Eq. (46) containing the soi0 the large extension of the line forming zone and other phys-
lution (20) with the observational pulsation velocity curve ical effects described by Tayla@t al [40] and Nardettcet
in order to determine the value of the parameterFor the ~ al. [30].
case of§ Cep, one has chosen the Shane’s [38] radial veloc- For Polaris we have select as radial velocity curve that
ity curve and the Wallerstein’s [44] over other options be-provided by Dinshavet al. [12] because it has more points
cause on the one hand, Shane examined 116 blue lines aftan that reported by Hatzesal [21] and Arellano Ferro [2]
he did not find definitive evidence of line level effects on thealthough the three curves are simple sine waves. In both cases
radial velocity curve; besides, his curve compiles the data oboUr pulsation velocity curve matches very well with those ob-
tained in three different observation series. Incidentally, thdained experimentally: fof Cep whenu = 0.5 and for Po-
Wallerstein’s data for the metallic absorption lines are alsdaris witha = 0.05. These situations are illustrated in Fig. 2
in agreement with that of the Shane’s curve. More recentlyand 3, where the pulsation velocidy?(t)/dt versus the nor-
Butler [8] measured iodine velocities and his data matchednalized periodr given by Eq. (34) is plotted. For obtaining
well with Shane’s curve within a standard deviatiordafg9 ~ the curve for Polaris, one has used that of Dinskaal. [12]
km/sec . It is important to point out that both curves wereas trail. Additionally, the physical parameters obtained in the
obtained with metallic absorption lines only [9]. More recent Present paper either for Cep FM Cas, SY Cas, RR Lac as
results published by Bersiet al. [6] and Merandet al. [26]  for polaris with our proposition are shown in in Table I.
deserve special attention because both of them provide more
recent pulsation velocity curves, which fit very wellwith that §  Discussion
of Shane and consequently with ours. On the other hand, we
have selected the Wallerstein's results because they contain the present paper we have outlined a method to determine
H,, absorption lines which provide changes in the amplitudesome physical properties of a pulsating star, namely the mass,

T

5. Application of the model and results
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X It is desirable to compare our results with observational

data or with results obtained by other methods. However,

for the sample of Cepheids we are interested on, there are

no direct observational measurements and just a few data

the amplitude of the oscillation, the surface gravity and the®Ptained by other methods. Thus, Table | gives account for

luminosity (row 12 to 15 of Table I). As input, one needs eX_elther experlmental data and those obtained by_ our method.
For knowing the mass we resort to thé — 7 relations pro-

perimental data for the period, the radius and the pulsation’ :
velocity curve of he star. Our method has properly two freevided by Gieren [17] to calculate the values that also show

parameters namelyand¢. The first one is fixed by matching 1€ well known mass discrepancy for Cepheids. &Gep,
the solution (20) of Eq. (9) with the observational pulsationt"® radius provided by Turner [41], the surface gravity pro-

velocity curve. This is the starting point becausis present  PoSed by Andrievskgt al. [1] and the luminosity claimed by
in the relations to determine the mass, the amplitude of th&ervelaetal [22] are included in Table I. For Polaris the ex-
oscillation, the surface gravity and the luminosity. To beginP€imental quantities are taken from Nordgetial [31] (the
with, we have matched our solution with the experimental@dius), Usenket al [43] Log gcep = 2.2 (surface gravity)

pulsation velocity curves ofCep, and Polaris. In both cases &nd Turneret al. [42] Log L/Le = 3.34 (luminosity). For
the fitting is successful showing that the pulsation Gepis "€ Cepheids FM Cas, SY Cas, RR Lac, the periods provided

anharmonic since — 0.5 whereas the pulsation of Polaris by Bersieret.al. [6] have been used and their radii have been
is harmonic because = 0.05 (Cf. Fig. 2 and 3). Here, calculated vidog R :-1.244+0..58710g 7[15]. The temper-

it must be pointed out that the following values of the pro-tures have been estimated wiig T; 3.886 —0.175 (B —
jection factor1.27 and1.31 have been taken into account to V) where (B — V) = —0.101log™ 7 + 0.5385log ™ +
obtain the pulsation velocity of the observed radial veloci-0-2644 [25] and the luminosities were obtained through

ties (the points in Fig. 2 and Fig. 3) ferCep and Polaris Mbol = 96™.57—5 log R—10 log T'[25]. Finally it must be
respectively. Once the value of the parametés obtained, pointed out that thg means that there are not observational
the values for the physical parameters can be calculated. Bdata for such parameter.

cause the pulsation radial velocity curve foEep is similar Besides to the Table | quantities, let us mention for Po-
to that of FM Cas, SY Cas, RR Lac [6], the study is extendedaris the mass proposed by Arellano Ferro [3}6dfl, and

to such Cepheids and Table | also shows the results for sudhat of Evanst al. [13] of 5 &+ 1.5M.

sample of Cepheids. We have matched our theoretical pul- Additionally, Table | contains the mass, the amplitude of
sation velocity curve with the experimental data provided bythe pulsation, the surface gravity and the luminosity of the
Shane ford Cep, which range from -5 km/sec up 45 km/sec,same sample of stars, obtained by the method proposed in the
however an adjustment with points obtained via theoreticapresent paper. Our mass must be properly compared with the
modelse.g that supplied by Natalet al. [29] is not excluded observational masi/yess/ M and with the theoretical mass
but the matching must be carried out carefully because a vei;;, /M. With regard to the last one, the relative differences
tical translation is present and the translation constant mustf the masses ar&2% 20% for § Cep and Polaris respec-
be known. tively, whereas for FM Cas, SY Cas, RR Lac such relative

FIGURE 2. Pulsation velocity curve of Cep as function of a nor-
malized periodr.
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differences are much bigger. It means that the radii of the lasdeed the adiabatical approximation has been already studied
three stars have been measured with large errors. The sarbg by Ledoux et al. [16] and Cox [10] but not in the way pre-
evidence can be inferred from the most bigger relative differsented in this paper, which allows the prediction of the stel-
ences between our result and thgesy/ M which is directly  lar parameters mentioned above. For calibrating the method,
based on the radii measures. In the case of Polaris a direate have applied it t&@ Cep and Polaris and we were able
comparison of our results with that of Arellano Ferro [3] andto reproduce the experimental pulsation velocity curves re-
that of Evanset al [13], one obtains a relative differences ported by Shane [38] and Wallerstein [44], Bersier et al. [6],
of 12% and5% respectively, which means that our model is Mérand et al. [26] in the first case and that from Dinshaw [38]
well calibrated with the most well observed Cepheids namelyn the second one. FarCep, we get: = 0.5 and for Polaris
0 Cep and polaris. With respect to the surface gravity in aloga = 0.05, consequently the pulsation 8Cep is anharmonic
arithmic scale one can notice that the relative differences foand that of Polaris is harmonic. After the matching the treat-
0 Cep and polaris ar&r% and25% respectively. ment is extended to FM Cas, SY Cas, RR Lac and Table 1
Owing to the fact that our Eq. (41) for calculating the gives account for he results which are in very good agree-
luminosity does not depend on the radius but on the periodnent with the observational data for the case) @ep and
our estimations of the luminosity are in very good agreemenPolarisa = 0.05, and for FM Cas, SY Cas, RR Lac remain
with the observational data. The relative differences lay beas predicted values.
tween1.2% and 2.4% in the logarithmic scale but for Po-
laris it is 13%. It means that the period has been measure(%\
with a very good precision. The amplitudes of the oscillation

provided in the present work would represent an estimatio _— . . .
that should be experimentally corroborated, although at th%" Constrictions into the pulsation of Cepheids

present it will not be easy to do it because the instruments forn this paragraph we focus on the physical constrictions of

such_obser\_/ation must be_ extremely refined._ . the method for its application to Cepheids. One begins by
Finally, it must be pointed out that despite of the SIM-\\riting Eq. (44) as

ple treatment of the pulsation, our model predicts acceptable
values for the physical properties of a Cepheid, namely, the ) ) MoGu 1/2
mass, the amplitude of the oscillation, the surface gravity and Q(&,£(t),t) = £(t)&(t) — { RC }

specially the luminosity. However, such predictions must be obs

taken as reference data for observations and more realistic x {2¢E(t) — (1 —a®)E(t)? - <2}1/2 (A.1)
pulsations models but never as a deterministic algorithm be-

cause our model does not take into account pulsations in thehen a necessary condition for the functiodd (¢)) of the
overtone modes. Moreover, peculiarities as time dependengerm
of the radial velocities, secular decreases or increases of the )
pulsations amplitudes [14] and mass loss have also been put J(E(t)) = / Q(&,&(1), t)dt (A.2)
aside because our primary purpose was to treat the Cepheid Vmmin

problem by a strictly analytic methoq which COUI_d be S04 have an extremum for a given functigiy), is thaté(¢)
by step well undergtooq and fitted Wl.th astron_omlcal obser—Satisfies the Eulers equation
vations. However, in this framework in a coming paper the

evolutive and pulsative masses will bee conciliated.

ppendix

VUmax

d
Qer) = 7@ty =0 (A3)

7. Conclusions where the subscripts denote partial derivatives with respect to

In order to understand the pulsation mechanism of cepheidéhe corresponding arguments [18]. Firstly, &) Eq. (A-3)
¢

we have presented a model based on primary physical prirP—rOVIdes
ciples, namely energy conservation, mechanical adiabaticity €)= ——— (A.4)

. g (1-a?)
and hydrodynamical equilibrium, and we have found that the
star pulsates anharmonically if the parametéakes values which is in accordance with the stability condition obtained
close tol or harmonically whem ~ 0. The model has only ~before in paragraph 3. Fq(t) andx(#), the Eulers condition
two free parameters and¢ but relies on three observables: reduces to the differential equation
period, radius and pulsation velocity. is coupled with the .
pulsation velocity curve anflwith a suitable selection of the M Gu ( MoGu ) : 1 1 dRobs 1

¢(t)

hydrodynamic normalization radius. Moreover, the modelis ~— 9 C(t)R3,s R3,. \ Rops d((1) + @
presented so that a matching with the observational data is

possible, then knowing the oscillation period and the radius, MoGp
one can predict the amplitude of the oscillation, the mass, the x F2({(t),£(t)) — ( ®R3
superficial gravity and the luminosity of a pulsating star. In- C(£) Rops

-

) (£(t) = ¢(#)) = 0 (A5)
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Using the condition given by Eq. (A.4) and solving for ciay Tecnologa (CONACYT), Asociaddn Nacional de Uni-
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