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A detailed Dirac’s canonical analysis for a topological four dimensidnh&tlike theory with a compact dimension is developed. By per-
forming the compactification process we find out the relevant symmetries of the theory, namely, the full structure of the constraints and the
extended action. We show that the extended Hamiltonian is a linear combination of first class constraints, which means that the general
covariance of the theory is not affected by the compactification process. Furthermore, in order to carry out the correct counting of physical
degrees of freedom, we show that must be taken into account reducibility conditions among the first class constraints associated with the ex
cited KK modes. Moreover, we perform the Hamiltonian analysis of Maxwell theory writterBds-tike theory with a compact dimension,

we analyze the constraints of the theory and we calculate the fundamental Dirac’s brackets, finally the results obtained are compared with
those found in the literature.
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1. Introduction effects could be tested in the actual LHC collider, and in the
International Linear Collider [10].
We can find several works involving extra dimensions, for

Models that involve extra dimensions have introduced cominstance, in Refs. 4, 5, and 9 is developed the canonical anal-
pletely new ways of looking up on old problems in theoreticalysis of Maxwell theory in five dimensions with a compact
physics; the possible existence of a dimension extra beyongimension, after performing the compactification and fixing
the fourth dimension was considered around 1920's, whefhe gauge parameters, the final theory describes to Maxwell
Kaluza and Klein (KK) tried to unify electromagnetism with theory plus a tower of KK excitations corresponding to mas-
Einstein’s gravity by proposing a theory in 5D, where the fifth sive Proca fields. Furthermore, in the context of Yang-Mills
dimension is a circles® of radiusR, and the gauge field is (YM) theories, in Ref. 11 it has been carry out the canonical
contained in the extra component of the metric tensor (segnalysis of a 5D YM theory with a compact dimension; in
Ref. 1 and references therein). Nowadays, the study of modhat work were obtained different scenarios for the 4D effec-
els involving extra dimensions have an important activity intive action obtained after the compactification; if the gauge
order to explain and solve some fundamental problems foungarameters propagate in the bulk, then the excited KK modes
in theoretical physics, such as, the problem of mass hieraare gauge fields, and they are matter vector fields provided
chy, the explanation of dark energy, dark matter and inflathat those parameters are confined in the 3-brane.
tion [2]. Moreover, extra dimensions become also impor-  On the other side, the study of alternative models describ-
tant in theories of grand unification trying of incorporating ing Maxwell and YM theories expressed as the coupling of
gravity and gauge interactions consistently. In this respectopological theories have attracted attention recently because
it is well known that extra dimensions have a fundamentaby its close relation with gravity. In fact, the study of topo-
role in the developing of string theory, since all versions of|ogical actions has been motived in several contexts of the-
the theory are natural and consistently formulated only inpretical physics given their interesting relation with physical
a spacetime of more than four dimensions [3,4]. For someneories. One example of this is the well-known MacDowell-
time, however, it was conventional to assume that in strindviaunsouri formulation of gravity (see Ref. 12 and references
theory such extra dimensions were compactified to complemerein)_ In this formulation, breaking th&0(5) symmetry
manifolds of small sizes about the order of the Planck lengthef 4 B F-theory forSO(5) group down taSO(4) we can ob-
{p ~ 107%% cm [4,5], or they could be even of lower size tajn the Palatini action plus the sum of second Chern and Eu-
independently of the Plank Length [6-8]; in this respect, theler topological invariants. Due to these topological classes
compactification process is a crucial step in the constructiofave trivial local variations that do not contribute classically
of models with extra dimensions [9]. to the dynamics, we thus obtain essentially general relativ-

On the other hand, there are phenomenological and thedky [13,14]. Furthermore, in Refs. 15 and 16 , an analysis of
retical motivations to quantize a gauge theory in extra dimenspecific limits in the gauge coupling of topological theories
sions, for instance, if there exist extra dimensions, then theiyielding a pure YM dynamics in four and three dimensions
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has been reported. In this respect, in the four-dimensionaif the Dirac algorithm and also the Dirac brackets of the the-
case, nonperturbative topological configurations of the gaugery were constructed by using the field redefinition method.
fields are defined as having an important role in realistic theMoreover, a pure Dirac’s analysis of the action (1) has been
ories, e.g. quantum chromodynamics. Moreover, the 3D reported in Ref. 19, where it was showed that the action can
case is analyzed at the Lagrangian level, and the action bd&e split in two terms lacking physical degrees of freedom,
comes the coupling oB F'-like terms in order to generalize the complete action, however, does have physical degrees of
the quantum dynamics of YM [15]. freedom, the Maxwellian degrees of freedom. The studio of

Because of the ideas expressed above, in this paper vaetion (1) with a compact dimension becomes important be-
analyze a four dimension&t F'-like theory and the Maxwell cause could expose some information among the topological
theory written as & F-like theory (it is also called first or- sector given in the second term on the right hand side of (1)
der Maxwell action [17]) with a compact dimension. First, (the BF term), and the dynamical sector given in the full ac-
we perform the analysis for thBE term; in this case we are tion. Furthermore, our study could be useful for extending
interested in knowing the symmetries of a topological thethe work reported in Ref. 17 in order to find the dual theory
ory defined in four dimensions with a compact dimension.of Maxwell with extra dimensions.
We shall show that in order to obtain the correct counting of  Hence, we first analyze the following action
physical degrees of freedom, we must take into account re- ‘
ducibility c_onditions among the first class constraints of the So[A,B] = / e {BMN (OmAx — 3NAM)}. (4)
KK excitations; hence, in this paper we present the study of a
model with reducibility conditions in the KK modes. Finally, . . . . .
we perform the Hamﬁ/tonian analysis of first order Maxwgll The actionS, is a topo!oglcal theory, and its study in the

. . . . context of extra dimensions become relevant. We need to re-
action with a compact dimension, and we compare our results : : . ;

ember that topological field theories are characterized by

with those found in the literature. In addition, we have adde eina devoid of local dearees of freedom. That is. the theo-
as appendix the fundamental Dirac’s brackets of the theorie Ing devol . 9 ' 1S,
les are susceptible only to global degrees of freedom asso-

under study, thus we develop the first steps for studying thl" . . ) : : .
quantization aspects. ciated with non-trivial topologies of the manifold in which

they are defined and topologies of the gauge bundle, thus the
next question arises; it is affected the topological nature,of
2. Hamiltonian dynamics of a BF-like topolog-  because of the compactification process?. Moreover, in or-
ical theory with a compact dimension der to carry out the counting of physical degrees of freedom
of (4) without a compact dimension, we must take into ac-
In the following lines, we shall study the Hamiltonian dynam- count reducibility conditions among the constraints [19,20],
ics for a four dimensionaB F'-like topological theory with a  hence, it is interesting to investigate if reducible constraints
compact dimension; then we develop the canonical analysiare still present after performing the compactification pro-
of a four dimensional Maxwell theory written asiF-like  cess. In fact, the Hamiltonian analysis of theories with re-
theory with a compact dimension. ducibility conditions among the constraints in the context of
Let us start with the following action reported in Sun- extra dimensions has not been performed, and we shall an-
dermeyer’s book [18] (also Yang-Mills theory is written as a swer these questions along this paper.

BF-like theory in that book) defined in four dimensions For simplicity, we shall work with a four dimensional ac-
tion. Then we will perform the compactification process in
S1[A,B] = /d‘*x{lBMNBMN order to obtain a three dimensional effective Lagrangian. It
4 is straightforward perform the extension of our results to di-
1 N mensions higher than four. The notation that we will use
— 5B (O AN — OnAn) }7 (1) along the paper is the following: the capital latin indices
M, N run over0,1,2,3 here3 label the compact dimen-
whereBMN — —BNM_ The equations of motion obtained sion and these indices can be raised and lowered by the
from (1) are given by four-dimensional Minkowski metrigy, v = (—1,1,1,1); z
will represent the coordinate in the compact dimension and
OM BN =0, (2) v =0,1,2 are spacetime indices* the coordinates that

label the points for the three-dimensional manifal; fur-

thermore we will suppose that the compact dimension is a
Bun = OmAn = OnAu 3) S1/Z, orbifold whose radius is; then any dynamical vari-
able defined o3 x S*/Z4 can be expanded in terms of the

By taking into account (3) in (2), we obtain the Maxwell’s complete set of harmonics [4,5,11,21]

free field equations. The action (1) is written in the first order

form, it have been analysed without a compacta dimension in 1 = ne
Ref. 17. In that paper was worked the context of S-duality B3(x, 2) :F B?#)(l") sin (§> ,
transformation by taking into account the general covariance =1
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1

B (x,z) = mBEg’;( x)
z
B
NP Z ) cos ( R) ,
As(z,2z) = n (%) )
A(2,2) = —— AO) ()
! V2R "

\/ﬁ Z A(") ) cos ( Pf) . (5)

The dynamical variables of the theory are given ng?)

(0) poi ij (n) 4(m) 4(n) po3 i3 0i 1j
Ao By Bioy» As™s A Ao By, Bioys By By
withi,j =1,2.

Let us perform the Hamiltonian analysis of the topologi-

cal term given byS,

2R

/ dz {BZWN (0MAN—8NAM)} . (6)
0

Sy [A,B] = / 3z

First, we start the analysis by performing the 3+1 decompo-
sition and we use explicitly the expansions given in (5); then

we perform the compactification process or$9/Zz orb-
ifold, we obtain the following effective Lagrangian

Bl] F(O)

i 4(0 0 i
Ly =283 A + 2400, B + B{j)

53

n=1

+ 2B, (@Af;‘) + ﬁAE”))

24" 0, BY%) + 2B} A"

R
() 4  pis g
+2B% (aoA EAO) B FM|, (@

heren =1,2,3,..,k — 1. We also can observe that the rank
of the Hessian is zero, so we expé6k — 4 primary con-
straints; from the definition of the momenta (8). We identify
the following primary constraints:

zero-modes k-modes
pO=11" x0, () 1,
o =11 ~0, ot =11 ~0,
9{0)=Mio)~2B{~0, o5 =TIg; =0, )
) =110, A0, <”) =11{" ~0,
<n>:H?n>_QB?3>”07
Sy =Wy —2B(;) X0,
0 =I1% ' ~0.

()= ()™

Furthermore, the canonical Hamiltonian is given by

0 i
H, /d2< AP 01T,

ij 1n(0)
B(O)Fw

[ 2% (0:48" + %Ag’”)

- Ay (o, + R“(n)) B, FY )D

Thus by using the primary constraints (9), we define the pri-
mary Hamiltonian given by

Hp = Hc+/d$ l/\m)%a +)‘(o)¢'?)+/\§0)¢20)

26700+ D (A?i 55+ N 53 +AS 0y

n=1

+ A 05 AN O A ol ATV 6 ))] (10)

whereF(m) = 0; A(m) 8;A'™ . The first three terms on S
the left hand side are called the zero modes and the theory dwhere)\?f;), Moy A, A ALy A, A5 and A, A,
scribes a topological theory [19,20,22], the followmg terms \(® \(9) are Lagrange multipliers enforcing the constraints.

correspond to a KK tower; in fact, botB?’ and AS” are  The non- vanishing fundamental Poisson brackets for the the-
called Kaluza-Klein (KK) modes. In the éohowmg we shall ory under study are given by

suppose that the number of KK modes is givenibyaking
the limit ¥ — oo at the end of the calculations.

{AGP (@0, ), I (2, )} = 6M v 6™,00% (2 — ),
The theory under study is a singular system, it is easy to

observe that the Hessian isl@k — 4 x 10k — 4 matrix, it {B(m) (2°, 2), Hg’})( )} = lgmn((;MI(;NJ
has a determinant equal to zero. Hence, the Hamiltonian for- 2
malism calls for the definition of the momert ") , ) — N 6M )% (x —y). (11)

canonically conjugate t()AE(}), BMNY, , _ ,
() Let us now analyze if secondary constraints arise from the

oM. 0Lo (n) 0Ly 8 consistency conditions over the primary constraints. For this
(n) = (3 A(n)) ’ MN (6 BMN) > (8) aim, we construct thél0k — 4) x (10k — 4) matrix formed
02M 0 by the Poisson brackets among the primary constraints; the
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non-vanishing Poisson brackets between primary constraints are given by
{86 (), 8y ()} = 710 (2 — ),

{065 (2), 6%y (1)} = 087 (x — ),

{667 (@), 6,y ()} = 087 10% (3 —

(12)
Y)-

If we write to (12) in matrix form, itis straightforward to observe that has r&ik=2 and4%—2 null vectors. From consistency
and by using the null vectors, we find the followitg — 2 secondary constraints

Oy (@) = {0y (), Hp} = 0 = o) = lIlfy),~ 0.
5 (0 0 0)
o (@) =\ (2), Hp} =0 = wfj ~FY ~0,
(M () = {¢W (), Hpy ~0 = — 0, AY" + A 0,
Q.S(()m)(z) = {¢(()m) (I)v HP} ~0 = d}(gm) = akn?m) + EH(m) ~ 0,
¢§]m)( ) = {¢(m)( ), Hp} ~ 0 N wl(jm) Fz(]m) 0; (13)
and the rank allows us to fix the followirgk — 2 Lagrange multipliers
zero-modes k-modes
07 _ j 03 _
Aoy = —20; B 0 Ay = —20; B(n),
A = A =0, (14)
0k _ _ . Rik 2m pk3
Almy = ~20:B{m) + 7 By
A — .

For this theory there are not third constraints. Hence, this completes Dirac’s consistency procedure for finding the complete
set of constraints. Explicitly the set of constraints primary and secondary obtained are given by

zero-modes
(b (0) _ 0) ~ 0,
quE,Q) = HZ@ ~ 0,

k-modes

(n) _
03 =

o) =TI ~ 0,

g3 ~ 0,

Ol = M) — 2B% ~ 0, og) =157 ~ 0,
0 A ) — ™
%) = 110, ~ 0, o =T ~ 0,
Uiy = OILfy ~ 0, 3 =TI  —2B% ~0, (15)
©) () = M) (n)
(0) _ () i i
v =FY =0, ¢, =1, —2BY% ~0,

0 — 170 ~
P(ny = 1) = 0,
Ui = AT +

[ J— k
Viny = Ol +
v

EA(n) ~

nT1r3
R &

= FZ,(;L) =~ 0.

Once identified all the constraints as primary, secondary etc., we may verify which ones correspond to first and second class.

For this purpose we will construct the matrix formed by the Poisson brackets among the primary and secondary constraints; in
order to achieve this aim, we find that the non-zero Poisson brackets among primary and secondary constraints are given by
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{66, (2), 07 (y)} = 67:6%(x — ),

{00y (@) 00 ()} = — (7.0} — 5910¢) 6% (z — ),

{665 (2), 0}y (1)} = 6™ 0% (2 — ),

{667 (@), 61,0y (1)} = 606" ;0% (x — ), (16)
{60 (2), 05 (1)} = —6™,000% (2 — 1),

[y @) @)} = = 507080 (@ = ).

{010 (@). 07 ()} = =67 (87,0 — 610Y) 6%(x — ).

Again, if we write to (16) in matrix form, we find that has
arank= 6k — 2 and8k — 4 null vectors. Thus, by using the k/ariables,8k — 4 first class constraints angk — 2 second
rank and the null vectors, we find the following 4 first classclass constraints, therefore the number of degrees of freedom
constraints for the zero modes is given by

70 =F —oqy) + o,11) ~ 0,

G:% (20k—8— (2(8k—4)+6k—2)) = — (k—1). (21)

Y0y =0:11{g) ~ 0, Co . .
This is an interesting fact, the counting of degrees of free-

yfj‘?) :Hﬁ?) ~0, dom is negative and this can not be correct. It is important to
0 0 comment, that in a four dimension&F' theory without a
Y0y =) = 0, (17) compact dimension, in order to carry out the correct counting

and the following 4 second class constraints for the zer®fPhysical degrees of freedom, we must take into account the
modes reducibility conditions among first class constraints [20,22]

© ©) Hence, if we observe the constraints found above, we can
Xoi =" =0, see that the reducibility among the constraints is also present;
however, there exist reducibility conditions in the first class

i =TTt — 0i . o .
X{0) =Mo) = 2B ~ 0. (18) constraints of the KK excitations and there are not in the zero

Furthermore, we identifying the followingk — 8 first class  mode. In fact, it can be showed that the reducibility condi-
constraints for the KK-modes tions are identified by the following — 1 relations

(m) _g 4(m) | T (m) g (m)  M(m) ~(m “(m) M _(m

Yz =0; A3 + RA" 0;1L 5 RHOZ. ~ 0, 5”](_ ) _ aj%-(g ) E%(j — (22)

%(;‘n) =Fi(1m) - 3iH(()T) + 3jH(()T) ~ 0, In this manner, the number of independent first class con-

(M) cx(m) straints arg8k — 4 — k4 1 = 7k — 3); then, this implies that
Vi =iy’ =0, the number of physical degrees of freedom is

(m) _11(m) o 1
T T T G =5 (20k—8—(2ATh—3)+6k—2) =0. (23)
0 _ 170 ~
Vom) =Hm) =0, . . o
Therefore, theB F-like theory with a compact dimension is

Y(m) :&-H%m) + %H?m) ~ 0, (19)  still topological one. It is important to comment that if we
] perform the counting of physical degrees of freedom for the
and6k — 6 second class constraints zero mode, then we find that it is devoid of local degrees
Xégz) :Hg?) ~ 0, of freedom as expected; for the zero mode defined in three
dimensions there are not reducibility conditions. All this
Xty =y = 2B3) =0, information become relevant, because after performing the

compactification process there are already reducibility condi-
tions; we need to remember that the correct identification of
Xom) :H(()’.”) ~0 (20) the constraints is a relevant step because they allows us iden-
‘ ' tify observables and constraints are the best guideline to per-
With all this information at hand, the counting of degrees ofform the quantization; similarly the reducibility conditions in
freedom is carry out as follows: there @@ — 8 dynamical  the KK modes must be taken into account in that process.

7 I & ) 01 ~
X(m) =) = 2Bn) = 0,
(
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With all this information, we can identify the extended action; thus, we use the first class constraints (20), the second class
constraints (18), the Lagrange multipliers (14) and we find that the extended action takes the form

: v ~15 ~(0 0 i 0
Sk (QKaPIO)\K) = /ddx{A(O)H(o) + B(O‘;HV(/)L HO — (é)%(]) (0)7(0) (0)%(]) - O‘é )V?o) A((]o) E)z)

(0) A 5 M (n) n i3 ~(n n)
- X(o) + Z { H(n) + B%NHMN —H™ - 0‘(}31,)%'(3) - (n)’Yu " A(n)%(:z

n=1
—)\E])%(jn) )‘én)VE)n) —a(n)%n) _Agn) X(n) — )\(n)XEJ:L) )\(n)Xég) Agn)X?n)}} (24)

where we abbreviate witl) - y Pk all the dynamical variables and the generalized momekxtastand for all Lagrange
multipliers associated with the first and second class constraints. From the extended action, it is possible to identify the
extended Hamiltonian which is given by

k
2 (0) BY 5 0) (n) (n) (n) Jj ~(0 )
Heyt = /d (é)’y” E [ A 'y(n) — 2B(n)%3 B(n)vm ] + O‘(O)%g a® Yoy + A(O)’Y”

~(n)

+af 7(0) Z {a 5% + T W

+ Xoyvis” + A(n)%(]n) >‘(()n)7?n) JrOf(n)V(n)H- (25)

We can observe that this expression is a linear combination of constraints. In fact, they are first class constraints of the zero
mode and first class constrains of thg<-modes. It is well-known, that for the action (6) without compact dimensions, its
extended Hamiltonian is a linear combination of first class constraints [20,22]. Thus, we can notice that the general covariance
of the theory is not affected by the compactification process. Hence, in order to perform a quantization of the theory, it is
not possible to construct the Schrodinger equation because the action of the Hamiltonian on physical states is annihilation. In
Dirac’s quantization of systems with general covariance, the restriction on physical states is archived by demanding that the
first class constraints in their quantum form must be satisfied; thus in this paper we have all tools for studying the quantization
of the theory by means a canonical framework.

By following with our analysis, we need to know the gauge transformations on the phase space. For this important step,
we shall define the following gauge generator in terms of the first class constraints (20)

(©

_ 2 (n) 37 () _(n) (n) (n) (n) (0 (0) -(0)
Gf/zd xl&:(n)vﬁ +6(J)’yZ]L +e5 V) HE) Vi3 +5(n)7” + &y V(n)JrE(O)%]

)+€E]>%J )+50 7(0)“30 Yoy |- (26)

Thus we obtain that the gauge transformations on the

phase space are given by gauge parameters. In the following lines, we shall perform
the Hamiltonian analysis of the action (1) and we will find

zero-mode k-mode that the fieldB™Y is not a gauge field anymore. There are
5AELO) _ _8M€E)0)) 6AEL") _ —%68"), not redupibility qonditions among the constraints,.moreover,
, _ . (n) there exist physical degrees of freedom and the fixing of the
3B, = Okl JASY = 2ef, gauge parameters will allow us to find massive Proca fields
6BY. = 9y §B%3 — 13 i3 and pseudo-Goldston bosons as expected. Furthermore, we
© g’.)’ E)”) (n)? R have added in the Appendix B the Dirac brackets of the the-
0oy = Oke(ys 0By = =0kl = 2y ory which are important for studying the quantization.
J11% =0, B = 3003, 27)
Oy =0, OB = ‘90%)» o .
SIIE = 0,603 3. Hamiltonian analysis of the four-
511’(’") s R dimensional Maxwell theory written as a
(m) = O6En) ~ RE(m): BF-like theory with a compact dimension
o1 | =0,
STIMN =0, By following the steps developed in previous section, we can

) perform the Hamiltonian analysis of (1). In this section we

We notice that the fieldB8?~ andA,, are gauge fields; there shall resume the complete analysis; thus by performing the
are not degrees of freedom, thus, it is not relevant to fix th& + 1 decomposition. Using the expansion of the fields (5),
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and developing the compactification process 61 &z, orb-  and the followingl 2k — 6 second class constraints
ifold, we obtain the following effective Lagrangian written as

9 Z @~
L= *B’“'B(O) BWF(O) Z B(n 0i 0 ’
© v 0) _ 10 ¢
Xz_] ij Y
13 (m) | " 4(n) _7J 0j
=BG (0uAf” + AR Xioy = Ifo) + Bg) = 0,
1 "z n LV n N(O) — } (B(O) (O)) ~ O
+ 1Bgn)B< ) — 5Bén)}«w : (28) Xi;" = 5 (Bij ij ;
We identify the zizro mode glvi:n by Xég) Hé}i) ~0,
nwr n(0) - puv p(0)
180 Bu — 5B Faw =~ o,

and the following terms are identified as the KK excitations.
We have commented above, that the action (28) describes Xoj = H(()?) ~ 0,
Maxwell theory in three dimensions (zero mode) plus a tower
of KK-modes. The theory is singular, there exists the same Xijw = i~ =
number of dynamical variables defined above. Hence, after

developing a pure Dirac’s analysis, we find a seRbffirst X
class constraints given by

3

n) =

=

7 7 07
X(n) = iy + By = 0,
0o _ 0
Y0y = o) = 0,

) ~(n) _ 1 ( (n) ( 4(n) n (n))) -
Y0) = &»HE ) ~ 0, Xis =5 B, ;A5 + RAi ~ 0,
0 _ 10 ~ o 1 . .
ey = ey = =5 (B - E) ~o0 (30)
= Oy + 7y ~ O, ORI | |
R The identification of second class constraints, allows us to fix

| the following12k — 6 Lagrange multipliers

zero-modes k-modes
0k i 03 _ i3 (a9 4(n) | n 4n)
N = 40, Biky + 200k, %) = —40,Bi3) + 20, (51457 + 5AM),
ij _ 7 J L 13 LTT3 n
Aoy = 0y = 1g),  AG) = 2(0'IIE,) + RTIG,,),
0 _ , ; i L on () | n g(n)
A9 =, A?;)_—4akB§;)+28kF(’j;)+%(aiA3 + 2 A )
i _ ntj 7J i aiT1d
By = Boy — Fooys Afmy = 0TI,y — I, (31)
A =0,
A =0

13 73 13
Biny =2 (B<n> - F(n)) :
_ ij ]
By =By = Fiay:

By using all this information it is possible to carry out the counting of degrees of freedom as follows; théfg: arel
dynamical variable2k first class constraints ani@k — 6 second class constraints, thus

1
G = 5 (20k — 8 — (2(2k) + 12k — 6)) = 2k — 1.
We observe that it = 1 we obtain one degree of freedom as expected for Maxwell theory in three dimensions.

By using the first class constraints (29), the second class constraints (30), and the Lagrange multipliers we find that the
extended action takes the form

Rev. Mex. Fits62 (2016) 31-44



38 ALBERTO ESCALANTE Y MOISES ZARATE REYES

A v > VL 0 0) 4 ij ~(0
Sk (QK,PK,)\K) = / [A(VO)H(O) + BO 0 = HO = 3Oy — A )7?0) -\ )X(O) (O)Xw ﬂ({)) EJ)

N
()TN 5(n) [ TMN _ 44(n) _ (n (n) (n) i (n) 2
+Z{AN Gy + Barn iy —H™ = Ag = By = A Xy = A" Xy (32)

n=1

—/\((’i)xé’g) )\((];)Xér;) )‘(n)XEQ) )‘ XZL) 5(n)X13 ﬁzi)il(»?)}}dx:s,

where the corresponding extended Hamiltonian is given by

N
Hoa=H+ [ 801 + 328 + 3= {38 + 8710 }] s, (33)
n=1
Here we define

(0) ij 1(0) (0) i i\ . (0) (0) 0 ~(o) i
H = /d x( O)H + B(g)B — Ay Y0 )+( 40; B{O) ajF(JO ) Xoi + 2xi; 0;1L; F(g)

N
(n) () | 1 <n> L iz pn) 4 () ij ~(n) ( )9, (n

B (aiAgm + %Ag’”) + (aiAg”) + %Ag’”) (aiAg’L) + %AE")) +2 (aingn) + %HE")) A (34)

48, Bt pii 2 g an) TV A (n) () A M) (n)
+ < 45'JB(H) + 25'JF(n) + l (31/13 + A, )) Xoi ( 40; B (n) +20; (5‘1/13 + A, )) Xo3 ])

N
:/d% <H(o> s H<n>> ,
n=1

Note, that the extended Hamiltonian is not a linear combination of constraints anymore, thBYef®,, v of the ac-
tion (1) breaks down the general covariance of the theory and eliminates the reducibility relations preseri f:litke
term.

Now, the first class constraints allows us to know the fun-
damental gauge transformations. For this important step, V\)&nd the gauge transformation for the/k modes
use the Castellani's procedure [23,24] to construct the gauge

generators SAM = —0,e(). (37)
G:/z [sé )7&)4—6( )W(n)—i-aéo)'y?())—&—a(o)’y(o)} dz?. (35) 6A; R£(n)7 (38)
Thus, we find that the gauge transformations on the phase B =0, (39)
space are given for 5H“ —0 (40)
zero modes ()
SIIfy) =0, (41)
SAD = — 9,e(0), (n)
§BO) =0, we can observe that the gauge transformations for the zero
v mode are the same given for Maxwell theory written in the
5H (0) =0, standard form [24], and we also observe that théiled is

not a gauge field anymore. Finally, the transformations of

pyo
ol 0, (36) the fields A}, A3 corresponding for thé-th mode are the

0 —
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same to those reported in the literature (see [4,24] and theould provide generalized QCD theories as it is claimed in
cites therein). Hence, by fixing the gauge parameters bRef. 15. In this manner, our results can be used for studying
Emn) = —(R/n)A:(,,”) and considering the second class con-those generalizations in the context of extra dimensions. Fur-
straints as strong identities, the effective action (28) is rethermore, we have commented that our results can be used for
duced to that reported in Ref. 4 and 25, namely extending those reported in Ref. 17. In fact, in this paper we
have at hand all the tools for study S-Duality of Maxwell the-
1 ory with a compact dimension. Moreover, our results also can
L= —ZF{SL)'F;E%) be used for studying models that are present in string theory
- such as those models described by Kalb-Ramond fields. Fi-
I Z (42) nally, all the results presented in this work will be useful in or-
ot der to compare the Dirac quantization with other schemes, for

_instance, with the Faddeev-Jackiw quantization (see the Ref.
where we able to observe that the KK-modes are massivgg an cites therein). In fact, in Faddeev-Jackiw approach it

Proca fieldsAS" has been absorbed and it is identified as s possible to obtain all the relevant Dirac’s results; the gener-
pseudo-Goldstone boson [4,25]. Furthermore, we have addeffi; o4 Faddeev-Jackiw brackets coincide with the Dirac ones,
in the appendix A the Dirac brackets, thus we have developeflagically in this formulation we only choose the symplectic
a full Hamiltonian analysis of the theory under study. variables either the configuration space or the phase space
and by fixing the appropriated gauge, we can invert the sym-
plectic matrix in order to obtain a complete analysis. In this
respect, in order to make progress in the quantization, we will
work with the Faddeev-Jackiw formulation and we will con-
In this paper, the Hamiltonian analysis for a topologiBdl-  firm the results obtained along this paper. All these ideas are
like theory and for Maxwell theory expressed ag&-like  in progress and will be the subject of future works.
theory with a compact dimension has been performed. For
the former, we performed the compactification process on a
S1/Z, orbifold, then we analysed the effective theory and .
all the constraints, gauge transformations and the extendé%ppend'x
Hamiltonian have been obtained. We also found that the
extended Hamiltonian is given by a linear combination of A,
first class constraints of the zero mode and first class con-
straints of the KK modes, this indicates that the compactin this section we will compute the Dirac brackets for fh&
ification process does not break the general covariance aheory with a compact dimension given by the action (7). By
the theory. Moreover, we observed that reducibility relationsusing the constraints given in (17), (18) and the fixed gauge
among the constraints are preserved before and after performp; 4" ~ 0, 4" ~ 0, 21;;0' By, ~ 0 and2B{), ~ 0 we
ing the compatification process, however, the reducibility isgbtain the following set of second class constraints
given among the first class constraints of the excited modes,
there is not reducibility in the zero modes. This important
fact allowed us to conclude that the theory is a topological
one. Y = A" ~ o,
Finally, for Maxwell theory written in the first order for-
malism with a compact dimension, we found the constraints,
the gauge transformations and the extended action. We ob- 5(?0) — H(()o) ~ 0,
served that the theory do not present reducibility conditions
among the constraints, and the theory is not topological any-
more. In fact, the theory has the same symmetries and de-
grees of freedom than Maxwell theory with a compact di-
mension [4,9]. Finally by fixing the gauge parameters we
noted that the theory is reduced to Maxwell theory in three
dimensions described by the zero mode plus a tower of mas-
sive Proca fields excitations. 5(@ ¥ ~ 0,
] 7
We would to comment that our results are generic and can

_Lpuupey 120 o
4 v T2 \ R # ’

4. Conclusions

0 =04 ~ 0,
X(0) = &;Hz(-o) ~ 07
20 _ L i p® _ iig 1@ &
X = 277 ij n-oilly;s =Y,

X(0) = 277”@‘3?3) ~ 0,

i _opi A
X(o) = 2By = 0,

be extended to a 5D theory and models with a close relation
to YM and general relativity. In fact, we have commented

above that there are topological generalizations of Maxwell
and Yang-Mills theories in three and four dimensions, that

X(o) = TT{o) = 2B{g) ~ 0,
0 0
X, =TI = 0.
(A1)
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Thus, the matrix whose entries are given by the Poisson brackets among the constraints (A.1) takes the form

X0 XD xo w20 %o - Wy
@ o o -v2 0 o0 0 0 0 A, 0
XV o 0o 0o 1 0 0 0 0 0 0
Xo | V2 0 0 0 0 0 0 0 0 0
x?o) 0 -1 0 0 0 0 0 0 0 0
GO _ X1 o o0 0 0 0o -v? 0 0 0 0 2 y)
Xyl 0 o o 0o v o0 0 0 0 n'*o;
Xgy | 0 o 0 0 0 0 0 (6469, —6467%) 0O 0
1o o o 0o o 0 — (8067, —6167) 0 o 0
Xjoy | % 0 0o 0 0 0 0 0 0 ok
XP?\Vo o 0o 0o 0 —piy 0 0 sk 0.
(A2)
Hence, the inverse is given
x© X(()O) X(0) X?O) X X0 Xfé> >~<1(3) X?o) Xé(l)c)
O 0 0 gz 0 0 0 0 0 0 0
X 0 0 0o -1 0 0 0 0 0 0
Xo | —9z 0 0 0 0 0 0 0 0 %
X0o) 0 1 0 0 0 0 0 0 0 0
goi_ %0 0 0 0 0 0 & 0 0 129 g Py (A3
R(0) 0 0 0 0 -9z 0 0 0 0 0
X%> 0 0 0 0 0 0 0 — (6787, — §487) 0 0
X201 0 0o 0o o0 0 0 (67507, —6%07%) 0 0 0
X | O 0 0o o - "’gff 0 0 0 0 o
2\ o 0 -& o 0 0 0 0 —5k 0

In this manner, the nonzero Dirac’s brackets are given by
1
-2

. 1 ..
{B (@), AP ()} = = 5670%(x — )

(A (2), Ty ()} o =07 36%(z — ) (205 — 07 9.0)) 8*(x — ),

1 o
- 57 (0;0; = "0, 01) 6 (x — y),

(B (), 115 (1)} p =0,

(B (@), 17 (1)} p =0. (A4)

We can obtain similar results for the excited modes. Therefore, we have in this work all the elements for studying the quanti-
zation of the theories under study. It is important to comment that all these results are not reported in the literature.

B.

In this appendix, we calculate the Dirac brackets for Maxwell theory written as a BF-like theory. For our aims we will calculate
the Dirac brackets for the zero mode, then we will calculate the brackets for the excited modes. Hence, by using the following
fixed gauge?iAEO) ~0 andA(()O) ~ 0, we obtain the following set of second class constraints
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x =48 =0,

X(0) :H((Jo) ~ 0,

1 =0,4 ~0,

X(0) =0Tl = 0,

xor =I5 ~0,

vy =1 =0,

X(o) =0y +B(o) = 0,

1
7O _2 (B@ - F.(.O)) ~ 0. (B.1)

Thus, we can calculate the following matrix whose entries are given by the Poisson brackets between these constraints, obtair
ing

_ ~ ~ 0 0 ~(0
x© X(0) x(© X(0) Xéj) chz) X?o) X§d>
X9 o 1 o0 0 0 0 0 0
Xoy | -1 0 0 0 0 0 0 0
O o o o -v2 o0 0 Ok 0
2
xop | 0 0 V 0 0 0 0 0
i (z,y) = (@ —y).
X1 o o o o o 0 —1eiy, 0
XE?) 0 0 o0 0 0 0 0 —1 (6%%87, — 6487y,)
Xiy | 0 0 -a 0 3 0 0 1 (690K — 6710;)
PN 0 0 0 0 0 L0 —88y) —3 (680 - 8*.0y) 0
(B.2)
The inverse of this matrix is given by
_ ~ ~ 0 0 ~(0
x(© X0 X9 xo X(()k) chz) X?o) chl)
X9 o -1 o0 0 0 0 0 0
Xop | 10 0 0 0 0 0 0
£ 1 0 o 0 &= 0 0 0 0
0 0o —-2L1 9 _ 20 0 0 0
)™ (w,y)=" v v (@~ ).
Ol o 0o o % 0 4(640), — 0'k0y) 207, 0
X2 0o 0 0 0 —4(6%0 - 6%:0;) 0 0 4(81407, —6%87%)
Xioy | 0 0 0 0 —26%, 0 0 0
P \o 0o 0o 0 0 —4 (81467, — 6°57,) 0 0
(B.3)
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Thus, we obtain the following Dirac’s brackets for the zero mode
0,0;
(A0 @). 18y ) = (- 23 ) e~ )
(B (2), 10 (1)}p =0
{4 (2), A (9))}p = 0
{Héo)( z), (0)( )}D =0
(B (@), 11 ()} p = 2 (8%;0: — 6%:0;) 6%(x — v),

(B (@), Bl (@)}p = =2 (6%;0, — 6%,0;) 6* (= — y),

A0 @, B = - (9 - 25 8% ) 5.4)

Observe that the Dirac brackets among the flelﬁ)g HJ are those knew for Maxwell theory [24].
Now we calculate Dirac’s brackets for the excited mod>es of the Max#EHlike theory. By working with the following fixed
gaugeaiAi ~0 andHi(”n) + %AO ~ 0, we obtain the following set of second class constraints
0O _ 170 ~
X(m) =ty =0,
I L ﬁA(n) ~
Xy = iy + 5407 =0,

Xy = Ol + =11 ~ 0,

R
= <o
W= <
Xiny = Wiy + Blyy © 0,
W= (B - FY) =0

(n) _ pgm
Xo3 = gz’ ~ 0,

Xin) = H(n) + By ~ 0,
~(n 1 n n n n
W =5 (BY - (048" + A ) ~o. (B.5)

TBus we obtain the following matrix whose entries are given by the Poisson brackets between these second class constraints,
obtaining

) 30 53 (m) () . () KM

~w
]
2

Xy Xy X(n) Xok ki X(n) Xkt 03" Xk3' X(n) Xi3

x(”) 0 0 o -v2 o 0 28 0 0 0 0 0

g”) 0 0 -5 0 0 0 0 0 0 0 0 0
Xn) 0 2 0 0 0 0 0 0 0 0 0 %ak
XE”) vZ o 0 0 0 0 0 0 0 0 0 0
x?:.”) 0 0 0 0 0 0 — 35 0 0 0 0 0

n) _1 (st si, _ st 53

) —Xij 0 0 0 0 0 0 0 1 (6787, —81s7y) 0 0 0 0 2o — ).
i 1si 1 (si i n si 2
XE") o0 0 0 2%k 0 0 1 (670 — 575 0)) 0 0 0 3R%k
X o o 0 0 0 L (s787, —sh87y) 1 (6% ,0; - o ,0;) 0 0 0 0 0
Xéjg) 0 0 0 0 0 0 0 0 0 0 -3 0
Xég) 0 0 0 0 0 0 0 0 0 0 o —lsi,
1 i

XE"§ 0 o o 0 0 0 0 0 1 0 0 Loy
~-(n 1g. _n si 150 1,
55 0 o -2a; o 0 0 S5t 0 o 1lsi, 1o, 0 oo
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Hence, the inverse matrix is given by

43

£y %y X xor iy Xty ) xt3 xiE Xy X4
(m) 0 0 R 0 0 0 0 0 0 0 0
Xg") 0 0 & 0 0 0 0 0 0 2Ra 0 0
X2, 0 7% 0 0 0 0 0 0 0 0 0 0
Xin; 7# 0 0 0 72% 0 0 0 0 o 0 0
x((;,’) 0 0 0 2% 0 a(6t0, —6tpoy) 287y 0 0 % o 0
a1 = 0 0 0 o —a(sk;0; - sk;0;) 0 0 a(stysdy —shsiy) o 0 0 0 |52 - y).
xln 0 0 0 0 —25% 0 0 0 0 0 0 0
if;; 0 0 0 0 0 —4 (88l —s1s7y) o 0 0 0 0 0
xég) 0 0 0 0 0 0 0 0 0 10y, 2 0
XZ(%,;) o -2Ey o 0 4"2: 0 0 0 —49; 0 0 45ty
X2, 0 0 0 0 0 0 0 0 —2 0 0 0
5(;;‘; 0 0 0 0 0 0 0 0 0 —458%), 0 0
®.7)
In this manner, the Dirac brackets for the excited modes are given by
n 0,05
(A1, o = (# - 92 )52 - ),
n n o, (0= —y)

(A9 @10 )0 = 0 (S

{457 (@), 1) (0)}p = 0*(z — ),

{Bfi)($> W)} =0,

(B (@), 1y ()} = 2 (6%;0, — 6%,0;) 8*(x — y),

{B” (), B{m) (@)}p = =2(6°;0; — 6%:0;) 8*(x — y),

{B(y(x), Bl (2)}p = =8:0%(z — y),

"o
{B(n)( ) (n)( )}D = Eé j52(x - y):
{B(n)( )7 H(sn) (y)}D = 8162(‘77 - y)a
0;0;
(A @), B 0} = - (= L) 22 =),
{45 (). B (@)} p = 8°(z — ). (8.8)
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