RESEARCH Revista Mexicana désica62 (2016) 51-59 JANUARY-FEBRUARY 2016

Chaotic synchronization of irregular complex network with hysteretic
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In this paper, a study on chaotic synchronization of an irregular network is made. Synchronization is achieved by using a modified Hamil-
tonian approach in a bidirectional irregular arrayed network made of 20 chaotic oscillators. The chaotic oscillator used as example is the
Hysteretic circuit. Afterwards the concept is used in chaotic encryption to send secured confidential analog information. As a result, an
image is encrypted using additive chaotic encrytion with two channels.
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En este trabajo, un estudio de la sincroniaaaiatica de una red irregular es realizada. La sincron@raes alcanzada al usar una modi-
ficacion al enfoque Hamiltoniano sobre una red bidireccional irregular creada por 20 osciladiiessc&l oscilador datico usado como
ejemplo es el circuito de Histeresis. Degpueste concepto es usado en encriptamieidticogpara enviar informagn araloga confidencial
de manera segura. Como resultado, una imagen es encriptada usando encriptadtientadidvo de dos canales.

Descriptores: Sincronizadbn cabtica; circuito de higresis; sistema hamiltoniano generalizado; comunicaciones privadas; redes complejas.

PACS: 05.45.-a; 05.45.Gg; 05.45.Pq; 05.45.Vx; 05.45.Xt

1. Introduction tors [23,24], fractional order chaotic oscillators [25-27], or
even systems in a generalized Hamiltonian form [28,29]. The

In recent years, chaotic synchronization has received a sp&lamiltonian approach have been extended to networks in
cial attention from the scientific community, due to the largeRef. 30, by modelling the couplings as a complex network
number of applications and benefits that offers this pheand having a coupling force as a scalar. Instead, we aim for a
nomenon in human affairs. Many master-slave chaotic Synf.ull Hamiltonian estimate-like model in which the gain of the
chronization have been reported in the scientific literatureNetwork is described as a vector. This way each state has its
seee.g [1-4] and references therein. However many system®&Wn individual gain over the network.

in nature and in technology are composed by a large number The main goals of this paper arg:to synchronize Hys-

of highly interconnected dynamical units, where their collec-teretic chaotic oscillators in their generalized Hamiltonian
tive behaviors are completely different to the individual be-form. This chaotic oscillators are coupled in an irregular
havior of each dynamical units. Such systems generate veiyrrayed network using bidirectional connections (undirected
complicated dynamics, the so-called complex network sysgraph). This objective is achieved using a modified Hamil-
tems, seee.g [5,6]. In fact this behavior has been found tonian approach based on [31] and [32]. Aijito transmit

in scientific article network [7,8], social relationships [9,10], an encrypted image message based on chaos synchronization
ecology [11], metabolic networks [12], neural networks [13], using additive encryption.

among others. Due to this intrinsical properties, it has been The paper is organized as follows: Section 2 shows a brief
used in secure communication systems as well, as seen iﬁummary on synchronization of complex networks. Sec-
Refs. 14 to 17. However, the security level had to be in+jon 3, describes synchronization via the Generalized Hamil-
creased due to recent investigations in decryption, which haghnian form and observer design. In Sec. 4 describes synchro-
made lots of these cryptosystems obsolete, [18,19]. nization in complex networks using the Generalized Hamilto-
To increase the security level, many of the cryptosys-hian approach. By using computer simulations, the approach
tems turn into more complex systems or use a combinationsed is explained by means of the Hysteretic chaotic circuit
of techniques. Other approach can be by choosing a chaotin Sec. 5. In Sec. 6, a brief introduction on additive encryp-
oscillator with a higher number of positive Lyapunov expo- tion with two channels is given; plus specifics on the image
nents, also called hyperchaotic [20-22], multi-scroll attrac-reconstruction algorithm. In Sec. 7 the results on the chaotic



52 E. GARZA-GONZALEZ, C. POSADAS-CASTILLO, A. RODRGUEZ-LINAN AND C. CRUZ-HERNANDEZ

encryption scheme are shown. Finally, some conclusions ar22. Complex dynamical network

given in Sec. 8.

Consider a dynamical network [32], that is made\ofdenti-

cal linearly and diffusively coupled n-dimensional oscillators

2. Synchronization of complex networks as (1). The state equations of the network is defined as

2.1. Synchronization analysis N

Synchronization is a process where many systems adjusta @i = f(z:) + Czaz‘jr%‘v i=12.,N,  (7)
given property of their motion to a common behavior, due to j=1

gzzﬁgggb?/r forcing [33]. Consider a set of identical SyStems’Where the constant > 0 is the coupling strenght of the net-

work. I' € R™"*™ is a constant matrix and it is assumed that
Xi = f(z;), (1) T =diag(r,re,...,ry) is a diagonal matrix with; = 1 for
. . _ a particulari andr; = 0 for j # 4. This means that the cou-
wherex; = [y, Zia, ... zix]T € R", IS the state variables 0 qqcillators are linked through theith state variables.
of the oscillatorz, f is a vector field defined it" and 114 coupling matriA = (a;;) € R¥* represents the cou-

@ = 1,2,.., N defines the different systems. The systems,jing configuration of the network. If there is a connection
synchronize if between oscillatoi and oscillatorj, thena;; = 1; otherwise,

lim [ (£) — x;(8)]| = 0 V> 1 (2) @i =0 (i # j). The diagonal elements éf are defined as:
t—00 ) ’ -’
wherei,; = 1,2,...,N represents all chaotic oscillators N N _
andi # j, x;(t) and x;(t) represents the states of the  @ij=— Z Qij=— Z aji, ©=1,2,.,N. (8)
pair of chaotic oscillatorg and j, where initial conditions J=1,5#i j=1,j#i

X;(0) # x;(0), andr is the synchronization time. It is also
said that the error vector of synchronization is defined wit
the expression:

hlf the degree of oscillatoris &;, then

(477 :—ki, 1= 1,2,...,N. (9)
e(t) = xi(t) —x;(t), X, X; € R, 3)
The complex dynamical network in (7), can achieve synchro-

synchrony exists i&(¢) = 0. Although, it is possible that the nization. if

error vector is not zero, but stays uniformly below a positive
value ofp € R, as expressed by:

Jim [Ix(8) = x; ()] < p. (4)
i ) ) this as portrait in the definition of synchronization in (2).
For this paper, a set of identical systems are used coupled

in a network. As such, it is possible to obtain all possible er-
rors between any given oscillators in the network using (3),3 Hamiltonian systems
and by further inspection, observe if the network is fully syn-

chronized. A better way to look at complete synchronizationtpe dynamical systems problem can be approach using an
of the entire network is to use the root mean squared ermofnerqy hased model, such as the Hamiltonian systems the-
c¢rms- This error provide a characteristic value for a quan-gry |y previews works, it has been shown chaotic oscillators
tity that is continuously changing. The aim in this paper is toconfigured in a master-slave arrangement, can achieve syn-
synchronize all states of the oscillators in the network. Ad-chronization using a Hamiltonian method [31]. Consider one
justing to it, the root mean squared eriggrs is defined  gynamical system like (1), it can be rewritten as its General-

z1(t) = x2(t) = ... = zn(2), as t— o0, (10)

by [34] ized Hamiltonian canonical form as [31]
N—-1 N n
1 OH OH
ERMS= N1, 7 o~ Z Z(miyh_xjyh)z» ®) &=JIy)5-+ 1+ +F),
-1 (V=D N\ IS Oz Oz
OH
where N is the amount of oscillators in the network, y = C%, (11)

h = 1,2,...,n represents the: states of the oscillators,

i =1,2,.,N -1, andj = 2,3,..., N represent all 0s- whereJ(y)0H/dz exhibits the conservative part of the sys-

cillators in the network where # j. The network is fully  tem.Sis a constant symmetric matrix, not necessarily of def-

synchronized in all states if inite sign.| is a constant skew symmetric matrfx(y) repre-

©6) sents a locally destabilizing vector field. The vector variable
y is referred to as the system output. The ma@iis a con-

therefore Eq. (2) holds. stant matrix. H (z) denotes a smooth energy function which

erms = 0,
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is globally positiveR™. The columns gradient vector ¢f,  and is assumed to exist everywhere. For the network case,
denoted by H/0x, is assumed to exist everywhere. the following notation will be used:

It is denoted that the estimate of the state vectbry &, T
and the Hamiltonian energy functidii(¢) to the particular- OH — OH OH o OH )
ization of H in terms of¢. 7 is denoted as the estimated Ox;  [Oxin Oz Oxig
output, computed in terms of the estimated statdhe dy-
namic nonlinear state observer for the system (11) will be a8 ar

(15)

To easily note the difference between the oscillator num-
¢ and the states, a comma will be placed.

follows:

: 0H OH . L .

€= J(y)a— + (I + S)a— +F(y) +K(y —n), 5. Hysteretic chaotic circuit in an irregular

¢ ¢ network
= CaH 12
= ¢’ (12) " Consider the following nonlinear equations for a hysteretic
chaaotic circuit described by

whereK is a constant vector, known as the observer gain. For
the following theorems + S = W, when needed. Ty = T2 + Y21 + g3,
Theorem 3.1[31] The stater of the nonlinear systerfil) i'vg = —wz1 — 0T2,
can be globally, exponentially, asymptotically estimated by etz = (1 — 23)(s21 + 3) — B3,

the statef of an observer of the forrfl2), if the pair of ma- A chaotic d . hieved. ifth d .
trices (C, W), or the pair (C, S), is either observable or, at chaotic dynamic is achieved, if the parameters used are:

least, detectable. An observability condition on either of the”_: 0'2’,51: _IQ_;]W :h 10, 6 = 0.001, s =h1-66?, ﬁF': 01.001,
pairs (C, W), or (C, S), is a sufficient but not necessary con- & ~ 0.3 [31]. ec aotic at'tracFor IS shown in F1g. L. )
dition for asymptotic state reconstruction. The gen_erallze_d Hamiltonian form of the Hysteretic
Theorem 3.2[31] The stater of the nonlinear systerfl1) chaotic circuit (16) is expressed as [31]:

can be globally, exponentially, asymptotically estimated by

x 0 Lla+w) L(g—s)]
the statet of an observer of the forif1.2),if and only if there x; | —ia+w) 2 0 = (go ) oH
exist a constant matriX’ such that the symmetric matrix : 3 Oz
T3 6(g s) 0 0 |
W — KC] + [W — KC]T = [S— KC] + [S— KC]T [ s(—w)  5(gt+s) | ap
! gl o 0 o
=2 (S-S (KC +CTKT)|, (13) | 3:(9+ ) 0 —=(B-1)
[ 0
is negative definite. + 0 ,
i —x3(r3 + sz1)
4. Hamiltonian networks y=[1 0 05 (16)
xr
One of the objectives of this paper, is to extend said approach TheC andS matrices are given by
in Sec. 3 to a network of multiple oscillators. Based on the
model (7) in Ref. 32 as a framework for the notation, a model C=[1 0 o0,
of a Hamiltonian network has been obtained. The dynam- . L
ics of a complex network where the oscillators are given in T s(l—w)  x(g+s)
Hamiltonian form are determined as follows: S=1 3(1-w) —0 . 0
xlgts) 0 (-1
oH OH a
& = J(yi)a— + (I + S)a— +F(y:) +K Zaijyj, The pair C,S) is observable, and hence detectable.
Li T j=1 Therefore Theorem 3.1 holds. The energy function of the
OH Hysteretic chaotic circuit is defined by
yi=+Co (14) ,
' H(z) = 5(af + 23 + ea3). (17)

where: = 1,2,..., N represents all the chaotic oscillators, 2

z; = (zi1, Ti2, ..., Tin)T € R is the state vector of theth Consider an irregular network of 20 Hysteretic chaotic
oscillator,K = [K; K, Kj3]T is a constant vectoe R oscillators in generalized Hamiltonian form as in Eq. (16),
and is the gain of the networR, = (a,j) € RV*N is called  see Fig. 1. By using (16) and (17) with the connection topol-
coupling matrix and represents the coupling configuration obgy like is shown in Fig. 2, the corresponding coupling ma-
the network,0H /dx; is the columns gradient vecter R™  trix is given by
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FIGURE 2. Anirregular arrayed network connection topology con-
sisting of 20 oscillators that will be used for the synchronization.
The oscillators were arbitrary coupled.

FIGURE 1. Chaotic attractor of the Hysteretic circuit chaotic oscil-
lator projected onto thex(, z2, x3)-space.
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To construct the proposed arrangement shown in Fig. 2 (with 29 connections), we have used the coupling; signals
i =1,2,...,20 for the 20 oscillators. For this purpose, we have designed the input sigpnals= 1,2, ..., 20 that explicitly
are given byu; = (=3y1,1 + Y21 + Y71 + y111), u2 = (Y11 — 3y21 +Ys1 + Yi6,1), us = (—2y31 + Yo1 + Y13.1),
ug = (=221 + Yo + Y14,1), us = (—4ys1 + Ye,1 + Yo1 + Y101 + Y15,1)s Us = (Y51 — 36,1 + Y12,1 + Y19,1),
ur = (Y11 —4yr1+ys1+ vz +y1a1), us = (Y21 Y70 —4ys1+yo,1 +y18,1), U = (Y31 + a1 + Y51+ Ys,1 —4Y91),
w10 = (¥5,1 —2Y101 +Y14,1), w11 = (Y1,1—2y11,1+Y17,1)s w12 = (Ye,1+Y7,1—312,1+Y13,1)s w13 = (Y3,1+Y12,1 —3y13,1+
Y16,1)s U1a = (Ya,1 +Y71+Y10,1 — Y141+ Y171 +Y19,1), U1s = (Y51 —3Y15,1 Y191 +¥20,1), 16 = (Y2,1 +¥y13,1—2%16,1),
urr = (Y11,1+Y141—2y17.1)s wis = (Ys,1—Y18,1)s Y19 = (Yo,1+¥14,1+Y151—4y19.1+Y20,1), U20 = (Y151 +Y19,1 —2Y20,1)-

Using (14), the network is written as:

Ty 0 T(1+w) £(g—s) ]
Ty, = —%(1 +w) 0 0 o
N j7173 _E(g_ 8) 0 0 ]
1 v s1-w) £(g+s) ] 0
+ %(1 —w) ) 0 o 4 0 + Kuy,
2=(g+s) 0 -5(B-1) —af 5(x1,3) + s1,1)
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T2.1 0 %(1—|—w) i(g—s) i
T2,9 = —%(1 +w) 0 0 %
N i’273 —?(g — S) 0 0 i
) .
¥ s(1—w)  2(g+s) 0
- %(1—@ -0 0 o4 0 + Kuy,
2=(g+s) 0 -%(B-1) —a5 3(w2,3) + 522,1)
"1.72()’1 0 %(1—‘1-(4}) i(g—s) 1
%20,2 = —%(1 + w) 0 0 aa.rfo
Nag 20,3 —5:(9—8) 0 0 i
v Mi-w) ks ] 0
+ %1(1—w) -6 0 adzi]o + 0 + Kugp.
22(g+ ) 0 -%(B-1) | —5 3(720,3) + 5720,1)

=
o
[—]
b4
=
b
o
=
xF
Ty 2 0 7 4 i ® « <
X01,1 01,1 01,1

FIGURE 3. Phase plane of the state of the oscillators 3, 5, 7, 10, 13, 15, 17, 19, and 20 compared to:statéoscillator 1. The phase
plane depicts synchronization among the oscillators. Note that only a fraction of the oscillators were compared. These were picked arbitrary

and for space purposes. Also note that the synchronization transitory was omitted.
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0 10 20 a0 40 50 60 70 80 a0 100
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FIGURE 4. Root mean squared errekars Of the dynamics of every oscillator on the network. Note that only the first 100 seconds are

shown.
@ Message reveived: |@#5%
. Transmitted signal .
[ Transmitter : Receiver ]
Message transmitted: Hello Message received: Hello

FIGURE 5. Example of encryption, were an intruder cannot make sense of the message.

The initial conditions were selected arbitrary, and can be
seen in Table 1. In order for the dynamics of the oscillators toTasLE . Initial conditions of each oscillator.
achieve synchronization as in Eq. (2), the vedtowas de-

period of time. This shows that synchronization in every
zi1,i = 1,2,...,20 is obtained, hence Eq. (2) holds. The _%10(0)=(-6.57,2.479, ~0.31) x20(0
Fig. 4 shows the root mean squared ekgl,s, expressed

in Eq. (5), of all the statesu( 1, z; 2, z; 3) Of every oscillator

i in the network. It can be seen that all states synchronizg,  Chaotic encryption

and the network experience complete synchronization after a

finite period of time. The states (t), z2(¢), andzs(t) of all ~ Whether is used by the military or securing bank accounts,
oscillators can be shown in Fig. 8 in sections e), f), and gmany forms of encryption have been developed throughout
respectively, in which only the first 120 seconds are showrhistory. Decryption developed as a way of finding out what
for representative purposes. the encrypted data meant, see Fig. 5. As a result, the newest

termined as in Theorem 3.2. As a result the parameter gains” 21(0)=(5,~7:2,1.5) 211(0)=(0,-0.09,0)
are: K; = 5.27, K5 = —1.1002, K3 = 0.00122. The fol- ~ 22(0)=(8,2.5,-1.2) 212(0)=(~1.9,3.22,3.75)
lowing gradient vectors were used as well: x3(0)=(0.53,0.1,0.26) x13(0)=(0.5,1.12,6.62)
$4(0):(1 0 1) 1‘14(0)2(1 0 —1)
oH _ Z; C i—io..00. g ©O=651931) 15(0)=(—1,1,0.4)
dxq - 26(0)=(—9, —1.2, —3.7) 216(0)=(0.9, —3.712,4.07)
m7(0):(1 -2.1,1) 217(0)=(-0.9,0.8,1.31)
A diagonal line in the phase graph, as shown in the 25(0)=(5.5, —1.451,3.6) 215(0)=(0.8,1.1,6.61)
Fig. 3, means that synchronization is achieved after a finite
1’9(0) (1, —9 01 O 1) LE19(0)=(1, —0 1 O 1)
(0)=(

0.8,—0.8,3.9)
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=1 B = _:
i 1
1
I Coupling signal 1 1
=i 1
: Y= xu(r) : 2 :
! L] N
1 1 ]
! ! = I Message
Message : Encrypted signal : + : . retriived
m(z) EGEERGI G K )

FIGURE 6. General diagram for the chaotic communication scheme with two transmission channels. Note that for the simulation 20
oscillators is usedm(t) is the message to be transmitted, which will be added a chaotic dyrami¢). Now the encrypted signalt) is
obtained. A chaotic dynamic from a different oscillator (¢) will be subtracted ta(t), as a means to retrieve a messagdgt). To ensure

that the dynamia; »(t) andz2 2(t) are the same, a coupling signal is send from one oscillator to the other to synchronize them.

cryptosystem must be better that the previous one by “out-
smarting” decryption; and vice-versa. Chaotic synchroniza-
tion can be used as a technique for encrypting data. Masking
signal with chaotic synchronization was suggested by Cuomo
in 1992 [4].

6.1. Additive encryption with two channels

For this type of encryption, the original messaggt) is
added to the coupling signal produced by a chaotic oscilla-
tor, in this case = x4 2(¢). The encrypted signal will be:

s(t) = z11(t) +m(t). (29)

This encrypted signal can be decrypted by other chaotic
oscillator, but only if both oscillators have exactly the same
dynamic regardless of their original initial conditions. To en-
sure this, a coupling signal; ; is send among oscillators FIGURE 7. “Creacbn de las aves” (Bird creation), 1957. Author:
so they can synchronize as in Eq. (10), see Fig. 6. AcRemedios Varo. Original PNG image to be encrypted.
cording to (2), the original chaotic signak »(t) and the ) .
synchronized signat- »(t) should have the same dynamic !nformatlon :lszou.t the coIqu can b(_e either 3 or 4 charact_er
212(t) = x95(t). This means that the message can be obif the image is using a8-b_|t or 16-bit c_olor forma_t, according
tained by subtracting the chaotic signal,(t) from the en- 0 Matlab specifics. Basically, for this encryption scheme,

crypted message(t), as follows: the matrixM/ x N x P is turned into a signal, see Fig. 8d.
This signal will be used as our original messagg). Al-
m*(t) = s(t) — xa,2(1). (20)  though, signal masking or additive encryption will not work
if the masking signayy = x; »(t) is proportionally low to
So then: the original message:(t). For this case, the masking signal

was multiplied 10 times. If this is not done, the resulting en-
crypted message will still be visible, but with perturbations

This same principle was used using 20 oscillators all cou{résulting from the chaotic masking signal).
pled as in Fig. 2. For encryption, we could have used any
kind of data; in this case we are using an image, a paint7, Results on the chaotic encryption
ing from famous author Remedios Varo, see Fig. 7. Itis a
264 x 216 pixels picture, of approximately 110 KB, in PNG In Fig. 8 the results of the synchronization and the encryp-
format. tions scheme can be seen. As explained before, the image
Before an encryption is done, a brief introduction to the(see Fig. 8a) is changed to a signal or messagg as can
kind of data to be encrypted is explained. Digital imagesbe seen in Fig. 8d. Before encrypting the image, the 20 oscil-
are made of pixels, which are the smallest controllable elelators are coupled and synchronized as proved with the phase
ment of a picture. Each pixel contains a code referring tgplane in Fig. 3. Synchronization among the statgs(t),
color. For a colored image, a 3 dimensional information ma=z; »(t), andz; 5(t), is achieved in the first 120 seconds, see
trix M x N x P can be obtained. In these caBgjives back Fig. 8e, 8f, and 8g. Past this transition

m*(t) = m(t). (21)
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). AN AR VI ARARIA iy
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FIGURE 8. a) Depicts the original painting to be encrypted; b) reconstructed image after encryftjos 1 2(t) + m(t); c) image
reconstructed from oscillator 2 by*(¢) = s(t) — x2,2(¢). Note that the reconstructed image from oscillator 3 to 20 are the same as
in oscillator 2, so then they are not shown. d) Signal produced by reshaping the imége,e), f), and g) show the evolution and
synchronization of the states : (¢), z;,2(¢), andx;,3(¢) respectively, of the oscillators 1 through 20. Note that only the first 120 seconds are
shown for representative purposes and that in e) the black line represents the message to be enejgréstarts after the synchronization
is completed.

time, the image is encrypted adding the chaotic signal as igeneralized Hamiltonian form. Then it was shown its poten-
s(t) = z1,2(t)+m(t), and the encrypted image retrieved is in tial in data encryption using an image. This can give new in-
Fig. 8b. Finally, the signal is decrypted subtracting a chaotisights, about the construction of the oscillators and networks.
signal produced by any oscillator, in this case oscillator 2, adlany other chaotic oscillators in generalized Hamiltonian
inm*(t) = s(t) — x2,2(t). The image retrieved by the mes- form can be used. Recent studies on synchronization of com-
sagem*(t) can be seen in Fig. 8c; revealing a perfect matchplex dynamical networks may shed new light on behavior and
with the original. understanding of synchronization itself or complexity in net-
work dynamics.

8. Conclusion

For some time the generalized Hamiltonian approach waé\cknowledgments

used exclusively to synchronize two chaotic oscillators in a

unidirectional master-slave array. In this paper synchronizaThis work was supported by CONACYT, &%ico under Re-
tion was achieved in an irregular arrayed network in theirsearch Grant No. 166654.

Rev. Mex. Fis62 (2016) 51-59



CHAOTIC SYNCHRONIZATION OF IRREGULAR COMPLEX NETWORK WITH HYSTERETIC CIRCUIT-LIKE OSCILLATORS...

. C. Cruz-HerandezNonlinear Dyn. Syst. Theo#(2004) 1.
. X.Wu, G. Chen, and J. Caphys. D229(2007) 52.
L. M. Pecora and T. L. CarrolPhys. Rev. Let64 (1990) 821.

K. M. Cuomo, A. V. Oppenheim, and S. H. StrogalEEE
Trans. Circuits Syst. I, Analog Digit. Signal Proce46 (1993)
626.

. P. Grigolini, P. Hamilton, J. Roberts, and B. J. We&shaos,
Solitons & Fractals20 (2004) 1.

P. Grigolini, P. Allegrini, and B. J. WestChaos, Solitons &
Fractals34(2007) 3.

M.E. NewmanPhys. Rev. B4 (2001) 016131.

8. S. RednerEPJ B4 (1998) 131.
9. J. ScottSociology22 (1988) 109.

10.

11.

12.

13.

14.

15.

16.

17.
18.

J. Galaskiewicz and S. Wasserm&uciological Methods &
Researclt22 (1993) 3.

J. Cohen, T. Jonsson, and S. R. Carpeftarc. Nat. Acad. Sc.
100(2003) 1781.

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L.
Baralasi,Science?97 (2002) 1551.

J. White, E. Southgate, J. Thomson, and S. Breritel, Trans.
R. Soc. Lon814(1986) 1.

L. Kocarev, K. Halle, K. Eckert, L.O. Chua, and U. Parlitat.
J. Bifurc. Chaog (1992) 709.

L. Cardoza-Avendanet al., Rev. Mex. Fi$8(2012) 472.

J.L. Mata-Machuca, R. Mdrtez-Guerra, R. Aguilarpez,
and C. Aguilar-lba nezZZommun. Nonlinear Sci. Numer. Simu-
lat. 17 (2012) 1706.

R. NUfez-Ferez,Rev. Mex. Fis52 (2006) 464.
C. Tao and G. Duint. J. Bifurc. Chaos 132003) 2689.

19
20

21.

22.

23.
24.

25.

26.

27.

28.

30.

31.

32.
33.

34

59

. G. Ferez and H. A. Cerdeir&hys. Rev. Letf74 (1995) 1970.

. A. Aguilar-Bustos and C. Cruz-Heéindez,Chaos, Solitons &
Fractals41(2009) 1301.

J.-P. Goedgebuer, L. Larger, and H. PoRays. Rev. Leti80
(1998) 2249.

N. Smaoui, A. Karouma, and M. ZribCommun. Nonlinear
Sci. Numer. Simulafl6 (2011) 3279.

J. L and G. Cherint. J. Bifurc. Chaosl6 (2006) 775.

L. Gamez-Guzran, C. Cruz-Herandez, R. bpez-Gutérrez,
and E. Gara-GuerreroRev. Mex. Fi299(2008) 54.

Y. Tang and J. Fangzommun. Nonlinear Sci. Numer. Simulat.
15(2010) 401.

X. Wu, H. Wang, and H. LuNonlinear. Anal. Real Appl3
(2012) 1441.

A. Kiani-B, K. Fallahi, N. Pariz, and H. Leung;ommun. Non-
linear Sci. Numer. Simulai4 (2009) 863.

C. Cruz-Herandez, inProcs. of the IASTED on Circuits, Sig-
nal, and System@002).

. D. Lopez-Mancilla, C. Cruz-Heandez, and C. Posadas-
Castillo, inJournal of Physics: Conference Seri&3 (IOP-
ublishing, 2005) p. 267.

C. Posadas-Castillo, E. Garza-Galez, D. Diaz-Romero, E.
Alcorta-Garéa, and C. Cruz-Heiamdez,J. Appl. Res. Technol
12(2014) 782.

H. Sira-Ramirez and C. Cruz-Hémdez,Int. J. Bifurc. Chaos
11(2001) 1381.

X. F. Wang,Int. J. Bifurc. Chaosl2 (2002) 885.

S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou,
Phys. Rep366(2002) 1.

. J. Wang and Y. Zhandghys. Let. A374(2010) 1464.

Rev. Mex. Fis62(2016) 51-59



