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Chaotic synchronization of irregular complex network with hysteretic
circuit-like oscillators in hamiltonian form and its application
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In this paper, a study on chaotic synchronization of an irregular network is made. Synchronization is achieved by using a modified Hamil-
tonian approach in a bidirectional irregular arrayed network made of 20 chaotic oscillators. The chaotic oscillator used as example is the
Hysteretic circuit. Afterwards the concept is used in chaotic encryption to send secured confidential analog information. As a result, an
image is encrypted using additive chaotic encrytion with two channels.
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En este trabajo, un estudio de la sincronización cáotica de una red irregular es realizada. La sincronización es alcanzada al usar una modi-
ficación al enfoque Hamiltoniano sobre una red bidireccional irregular creada por 20 osciladores caóticos. El oscilador cáotico usado como
ejemplo es el circuito de Histeresis. Después, este concepto es usado en encriptamiento caótico para enviar información ańaloga confidencial
de manera segura. Como resultado, una imagen es encriptada usando encriptamiento caótico aditivo de dos canales.

Descriptores: Sincronizacíon cáotica; circuito de hist́eresis; sistema hamiltoniano generalizado; comunicaciones privadas; redes complejas.
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1. Introduction

In recent years, chaotic synchronization has received a spe-
cial attention from the scientific community, due to the large
number of applications and benefits that offers this phe-
nomenon in human affairs. Many master-slave chaotic syn-
chronization have been reported in the scientific literature,
seee.g. [1-4] and references therein. However many systems
in nature and in technology are composed by a large number
of highly interconnected dynamical units, where their collec-
tive behaviors are completely different to the individual be-
havior of each dynamical units. Such systems generate very
complicated dynamics, the so-called complex network sys-
tems, seee.g. [5,6]. In fact this behavior has been found
in scientific article network [7,8], social relationships [9,10],
ecology [11], metabolic networks [12], neural networks [13],
among others. Due to this intrinsical properties, it has been
used in secure communication systems as well, as seen in
Refs. 14 to 17. However, the security level had to be in-
creased due to recent investigations in decryption, which had
made lots of these cryptosystems obsolete, [18,19].

To increase the security level, many of the cryptosys-
tems turn into more complex systems or use a combination
of techniques. Other approach can be by choosing a chaotic
oscillator with a higher number of positive Lyapunov expo-
nents, also called hyperchaotic [20-22], multi-scroll attrac-

tors [23,24], fractional order chaotic oscillators [25-27], or
even systems in a generalized Hamiltonian form [28,29]. The
Hamiltonian approach have been extended to networks in
Ref. 30, by modelling the couplings as a complex network
and having a coupling force as a scalar. Instead, we aim for a
full Hamiltonian estimate-like model in which the gain of the
network is described as a vector. This way each state has its
own individual gain over the network.

The main goals of this paper are:i) to synchronize Hys-
teretic chaotic oscillators in their generalized Hamiltonian
form. This chaotic oscillators are coupled in an irregular
arrayed network using bidirectional connections (undirected
graph). This objective is achieved using a modified Hamil-
tonian approach based on [31] and [32]. And,ii ) to transmit
an encrypted image message based on chaos synchronization
using additive encryption.

The paper is organized as follows: Section 2 shows a brief
summary on synchronization of complex networks. Sec-
tion 3, describes synchronization via the Generalized Hamil-
tonian form and observer design. In Sec. 4 describes synchro-
nization in complex networks using the Generalized Hamilto-
nian approach. By using computer simulations, the approach
used is explained by means of the Hysteretic chaotic circuit
in Sec. 5. In Sec. 6, a brief introduction on additive encryp-
tion with two channels is given; plus specifics on the image
reconstruction algorithm. In Sec. 7 the results on the chaotic
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encryption scheme are shown. Finally, some conclusions are
given in Sec. 8.

2. Synchronization of complex networks

2.1. Synchronization analysis

Synchronization is a process where many systems adjust a
given property of their motion to a common behavior, due to
coupling or forcing [33]. Consider a set of identical systems,
defined by

ẋi = f(xi), (1)

whereẋi = [xi1, xi2, ..., xin]ᵀ ∈ <n, is the state variables
of the oscillatori, f is a vector field defined in<n and
i = 1, 2, ..., N defines the different systems. The systems
synchronize if

lim
t→∞

||xi(t)− xj(t)|| = 0, ∀t ≥ τ, (2)

where i, j = 1, 2, ..., N represents all chaotic oscillators
and i 6= j, xi(t) and xj(t) represents the states of the
pair of chaotic oscillatorsi and j, where initial conditions
xi(0) 6= xj(0), andτ is the synchronization time. It is also
said that the error vector of synchronization is defined with
the expression:

e(t) = xi(t)− xj(t), xi, xj ∈ <n, (3)

synchrony exists ife(t) = 0. Although, it is possible that the
error vector is not zero, but stays uniformly below a positive
value ofρ ∈ <, as expressed by:

lim
t→∞

||xi(t)− xj(t)|| ≤ ρ. (4)

For this paper, a set of identical systems are used coupled
in a network. As such, it is possible to obtain all possible er-
rors between any given oscillators in the network using (3),
and by further inspection, observe if the network is fully syn-
chronized. A better way to look at complete synchronization
of the entire network is to use the root mean squared error
eRMS . This error provide a characteristic value for a quan-
tity that is continuously changing. The aim in this paper is to
synchronize all states of the oscillators in the network. Ad-
justing to it, the root mean squared erroreRMS is defined
by [34]

eRMS=
1∑N−1

l−1 (N − l)

√√√√
N−1∑

i=1

N∑

j=i+1

n∑

h=1

(xi,h−xj,h)2, (5)

where N is the amount of oscillators in the network,
h = 1, 2, ..., n represents then states of the oscillators,
l, i = 1, 2, ..., N − 1, andj = 2, 3, ..., N represent all os-
cillators in the network wherei 6= j. The network is fully
synchronized in all states if

eRMS = 0, (6)

therefore Eq. (2) holds.

2.2. Complex dynamical network

Consider a dynamical network [32], that is made ofN identi-
cal linearly and diffusively coupled n-dimensional oscillators
as (1). The state equations of the network is defined as

ẋi = f(xi) + c

N∑

j=1

aijΓxj , i = 1, 2, ..., N, (7)

where the constantc > 0 is the coupling strenght of the net-
work. Γ ∈ <n×n is a constant matrix and it is assumed that
Γ = diag(r1, r2, ..., rn) is a diagonal matrix withri = 1 for
a particulari andrj = 0 for j 6= i. This means that the cou-
pled oscillators are linked through theiri-th state variables.
The coupling matrixA = (aij) ∈ <N×N represents the cou-
pling configuration of the network. If there is a connection
between oscillatori and oscillatorj, thenaij = 1; otherwise,
aij = 0 (i 6= j). The diagonal elements ofA are defined as:

aij=−
N∑

j=1,j 6=i

aij=−
N∑

j=1,j 6=i

aji, i = 1, 2, ..., N. (8)

If the degree of oscillatori is ki, then

aii = −ki, i = 1, 2, ..., N. (9)

The complex dynamical network in (7), can achieve synchro-
nization, if

x1(t) = x2(t) = . . . = xN (t), as t →∞, (10)

this as portrait in the definition of synchronization in (2).

3. Hamiltonian systems

The dynamical systems problem can be approach using an
energy based model, such as the Hamiltonian systems the-
ory. In previews works, it has been shown chaotic oscillators
configured in a master-slave arrangement, can achieve syn-
chronization using a Hamiltonian method [31]. Consider one
dynamical system like (1), it can be rewritten as its General-
ized Hamiltonian canonical form as [31]

ẋ = J(y)
∂H

∂x
+ (I + S)

∂H

∂x
+ F(y),

y = C
∂H

∂x
, (11)

whereJ(y)∂H/∂x exhibits the conservative part of the sys-
tem.S is a constant symmetric matrix, not necessarily of def-
inite sign.I is a constant skew symmetric matrix.F(y) repre-
sents a locally destabilizing vector field. The vector variable
y is referred to as the system output. The matrixC is a con-
stant matrix.H(x) denotes a smooth energy function which
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is globally positive<n. The columns gradient vector ofH,
denoted by∂H/∂x, is assumed to exist everywhere.

It is denoted that the estimate of the state vectorx by ξ,
and the Hamiltonian energy functionH(ξ) to the particular-
ization of H in terms ofξ. η is denoted as the estimated
output, computed in terms of the estimated stateξ. The dy-
namic nonlinear state observer for the system (11) will be as
follows:

ξ̇ = J(y)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F(y) + K(y − η),

η = C
∂H

∂ξ
, (12)

whereK is a constant vector, known as the observer gain. For
the following theoremsI + S = W, when needed.
Theorem 3.1[31] The statex of the nonlinear system(11)
can be globally, exponentially, asymptotically estimated by
the stateξ of an observer of the form(12), if the pair of ma-
trices (C, W), or the pair (C, S), is either observable or, at
least, detectable. An observability condition on either of the
pairs (C, W), or (C, S), is a sufficient but not necessary con-
dition for asymptotic state reconstruction.
Theorem 3.2[31] The statex of the nonlinear system(11)
can be globally, exponentially, asymptotically estimated by
the stateξ of an observer of the form(12), if and only if there
exist a constant matrixK such that the symmetric matrix

[W − KC ] + [W − KC ]ᵀ = [S− KC ] + [S− KC ]ᵀ

= 2
[
S− 1

2
(KC + CᵀKᵀ)

]
, (13)

is negative definite.

4. Hamiltonian networks

One of the objectives of this paper, is to extend said approach
in Sec. 3 to a network of multiple oscillators. Based on the
model (7) in Ref. 32 as a framework for the notation, a model
of a Hamiltonian network has been obtained. The dynam-
ics of a complex network where the oscillators are given in
Hamiltonian form are determined as follows:

ẋi = J(yi)
∂H

∂xi
+ (I + S)

∂H

∂xi
+ F(yi) + K

N∑

j=1

aijyj ,

yi = +C
∂H

∂xi
, (14)

wherei = 1, 2, ..., N represents all the chaotic oscillators,
ẋi = (xi1, xi2, ..., xin)ᵀ ∈ <n is the state vector of thei-th
oscillator,K = [K1 K2 K3]ᵀ is a constant vector∈ Rn

and is the gain of the network,A = (aij) ∈ <N×N is called
coupling matrix and represents the coupling configuration of
the network,∂H/∂xi is the columns gradient vector∈ <n

and is assumed to exist everywhere. For the network case,
the following notation will be used:

∂H

∂xi
=

[
∂H

∂xi,1

∂H

∂xi,2
. . .

∂H

∂xi,n

]ᵀ
. (15)

To easily note the difference between the oscillator num-
beri and the states, a comma will be placed.

5. Hysteretic chaotic circuit in an irregular
network

Consider the following nonlinear equations for a hysteretic
chaotic circuit described by





ẋ1 = x2 + γx1 + gx3,
ẋ2 = −ωx1 − δx2,
εẋ3 = (1− x2

3)(sx1 + x3)− βx3.

A chaotic dynamic is achieved, if the parameters used are:
γ = 0.2, g = 2, ω = 10, δ = 0.001, s = 1.667, β = 0.001,
ε = 0.3 [31]. The chaotic attractor is shown in Fig. 1.

The generalized Hamiltonian form of the Hysteretic
chaotic circuit (16) is expressed as [31]:



ẋ1

ẋ2

ẋ3


 =




0 1
2 (1 + ω) 1

2ε (g − s)
− 1

2 (1 + ω) 0 0
− 1

2ε (g − s) 0 0


 ∂H

∂x

+




γ 1
2 (1− ω) 1

2ε (g + s)
1
2 (1− ω) −δ 0
1
2ε (g + s) 0 − 1

ε2 (β − 1)


 ∂H

∂x

+




0
0

−x2
3(x3 + sx1)


 ,

y = [1 0 0]
∂H

∂x
. (16)

TheC andS matrices are given by

C = [1 0 0],

S =




γ 1
2 (1− ω) 1

2ε (g + s)
1
2 (1− ω) −δ 0
1
2ε (g + s) 0 − 1

ε2 (β − 1)


 .

The pair (C,S) is observable, and hence detectable.
Therefore Theorem 3.1 holds. The energy function of the
Hysteretic chaotic circuit is defined by

H(x) =
1
2
(x2

1 + x2
2 + εx2

3). (17)

Consider an irregular network of 20 Hysteretic chaotic
oscillators in generalized Hamiltonian form as in Eq. (16),
see Fig. 1. By using (16) and (17) with the connection topol-
ogy like is shown in Fig. 2, the corresponding coupling ma-
trix is given by
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FIGURE 1. Chaotic attractor of the Hysteretic circuit chaotic oscil-
lator projected onto the (x1, x2, x3)-space.

FIGURE 2. An irregular arrayed network connection topology con-
sisting of 20 oscillators that will be used for the synchronization.
The oscillators were arbitrary coupled.

A =




−3 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 −3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 −2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 −4 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 −3 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −4 1 0 0 0 1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 −4 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 −4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −2 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 −3 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 −3 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 −5 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 −3 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 −2 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 −4 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −2




.

To construct the proposed arrangement shown in Fig. 2 (with 29 connections), we have used the coupling signalsyi,
i = 1, 2, ..., 20 for the 20 oscillators. For this purpose, we have designed the input signalsui, i = 1, 2, ..., 20 that explicitly
are given byu1 = (−3y1,1 + y2,1 + y7,1 + y11,1), u2 = (y1,1 − 3y2,1 + y8,1 + y16,1), u3 = (−2y3,1 + y9,1 + y13,1),
u4 = (−2y4,1 + y9,1 + y14,1), u5 = (−4y5,1 + y6,1 + y9,1 + y10,1 + y15,1), u6 = (y5,1 − 3y6,1 + y12,1 + y19,1),
u7 = (y1,1−4y7,1 + y8,1 + y12,1 + y14,1), u8 = (y2,1 + y7,1−4y8,1 + y9,1 + y18,1), u9 = (y3,1 + y4,1 + y5,1 + y8,1−4y9,1),
u10 = (y5,1−2y10,1+y14,1), u11 = (y1,1−2y11,1+y17,1), u12 = (y6,1+y7,1−3y12,1+y13,1), u13 = (y3,1+y12,1−3y13,1+
y16,1), u14 = (y4,1+y7,1+y10,1−5y14,1+y17,1+y19,1), u15 = (y5,1−3y15,1+y19,1+y20,1), u16 = (y2,1+y13,1−2y16,1),
u17 = (y11,1+y14,1−2y17,1), u18 = (y8,1−y18,1), u19 = (y6,1+y14,1+y15,1−4y19,1+y20,1), u20 = (y15,1+y19,1−2y20,1).

Using (14), the network is written as:

N1








ẋ1,1

ẋ1,2

ẋ1,3


 =




0 1
2 (1 + ω) 1

2ε (g − s)
− 1

2 (1 + ω) 0 0
− 1

2ε (g − s) 0 0


 ∂H

∂x1

+




γ 1
2 (1− ω) 1

2ε (g + s)
1
2 (1− ω) −δ 0
1
2ε (g + s) 0 − 1

ε2 (β − 1)


 ∂H

∂x1
+




0
0

−x2
1,3(x1,3) + sx1,1)


 + Ku1,
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N2








ẋ2,1

ẋ2,2

ẋ2,3


 =




0 1
2 (1 + ω) 1

2ε (g − s)
− 1

2 (1 + ω) 0 0
− 1

2ε (g − s) 0 0


 ∂H

∂x2

+




γ 1
2 (1− ω) 1

2ε (g + s)
1
2 (1− ω) −δ 0
1
2ε (g + s) 0 − 1

ε2 (β − 1)


 ∂H

∂x2
+




0
0

−x2
2,3(x2,3) + sx2,1)


 + Ku2,

...

N20








ẋ20,1

ẋ20,2

ẋ20,3


 =




0 1
2 (1 + ω) 1

2ε (g − s)
− 1

2 (1 + ω) 0 0
− 1

2ε (g − s) 0 0


 ∂H

∂x20

+




γ 1
2 (1− ω) 1

2ε (g + s)
1
2 (1− ω) −δ 0
1
2ε (g + s) 0 − 1

ε2 (β − 1)


 ∂H

∂x20
+




0
0

−x2
20,3(x20,3) + sx20,1)


 + Ku20.

FIGURE 3. Phase plane of the statex1 of the oscillators 3, 5, 7, 10, 13, 15, 17, 19, and 20 compared to statex1 of oscillator 1. The phase
plane depicts synchronization among the oscillators. Note that only a fraction of the oscillators were compared. These were picked arbitrary
and for space purposes. Also note that the synchronization transitory was omitted.
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FIGURE 4. Root mean squared erroreRMS of the dynamics of every oscillator on the network. Note that only the first 100 seconds are
shown.

FIGURE 5. Example of encryption, were an intruder cannot make sense of the message.

The initial conditions were selected arbitrary, and can be
seen in Table I. In order for the dynamics of the oscillators to
achieve synchronization as in Eq. (2), the vectorK was de-
termined as in Theorem 3.2. As a result the parameter gains
are: K1 = 5.27, K2 = −1.1002, K3 = 0.00122. The fol-
lowing gradient vectors were used as well:

∂H

∂x1
=




xi,1

xi,2

εxi,3


 , i = 1, 2, ..., 20. (18)

A diagonal line in the phase graph, as shown in the
Fig. 3, means that synchronization is achieved after a finite
period of time. This shows that synchronization in every
xi,1, i = 1, 2, ..., 20 is obtained, hence Eq. (2) holds. The
Fig. 4 shows the root mean squared erroreRMS , expressed
in Eq. (5), of all the states (xi,1, xi,2, xi,3) of every oscillator
i in the network. It can be seen that all states synchronize
and the network experience complete synchronization after a
finite period of time. The statesx1(t), x2(t), andx3(t) of all
oscillators can be shown in Fig. 8 in sections e), f), and g)
respectively, in which only the first 120 seconds are shown
for representative purposes.

TABLE I. Initial conditions of each oscillator.

x1(0)=(5,−7.2, 1.5) x11(0)=(0,−0.09, 0)

x2(0)=(8, 2.5,−1.2) x12(0)=(−1.9, 3.22, 3.75)

x3(0)=(0.53, 0.1, 0.26) x13(0)=(0.5, 1.12, 6.62)

x4(0)=(1, 0, 1) x14(0)=(1, 0,−1)

x5(0)=(6.5, 4.9, 3.1) x15(0)=(−1, 1, 0.4)

x6(0)=(−9,−1.2,−3.7) x16(0)=(0.9,−3.712, 4.07)

x7(0)=(17,−2.1, 1) x17(0)=(−0.9, 0.8, 1.31)

x8(0)=(5.5,−1.451, 3.6) x18(0)=(0.8, 1.1, 6.61)

x9(0)=(1,−9.01, 0.1) x19(0)=(1,−0.1, 0.1)

x10(0)=(−6.57, 2.479,−0.31) x20(0)=(0.8,−0.8, 3.9)

6. Chaotic encryption

Whether is used by the military or securing bank accounts,
many forms of encryption have been developed throughout
history. Decryption developed as a way of finding out what
the encrypted data meant, see Fig. 5. As a result, the newest
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FIGURE 6. General diagram for the chaotic communication scheme with two transmission channels. Note that for the simulation 20
oscillators is used.m(t) is the message to be transmitted, which will be added a chaotic dynamicx1,2(t). Now the encrypted signals(t) is
obtained. A chaotic dynamic from a different oscillatorx2,2(t) will be subtracted tos(t), as a means to retrieve a messagem∗(t). To ensure
that the dynamicx1,2(t) andx2,2(t) are the same, a coupling signal is send from one oscillator to the other to synchronize them.

cryptosystem must be better that the previous one by “out-
smarting” decryption; and vice-versa. Chaotic synchroniza-
tion can be used as a technique for encrypting data. Masking
signal with chaotic synchronization was suggested by Cuomo
in 1992 [4].

6.1. Additive encryption with two channels

For this type of encryption, the original messagem(t) is
added to the coupling signal produced by a chaotic oscilla-
tor, in this casey = x1,2(t). The encrypted signal will be:

s(t) = x1,1(t) + m(t). (19)

This encrypted signal can be decrypted by other chaotic
oscillator, but only if both oscillators have exactly the same
dynamic regardless of their original initial conditions. To en-
sure this, a coupling signalx1,1 is send among oscillators
so they can synchronize as in Eq. (10), see Fig. 6. Ac-
cording to (2), the original chaotic signalx1,2(t) and the
synchronized signalx2,2(t) should have the same dynamic
x1,2(t) = x2,2(t). This means that the message can be ob-
tained by subtracting the chaotic signalx2,2(t) from the en-
crypted messages(t), as follows:

m∗(t) = s(t)− x2,2(t). (20)

So then:

m∗(t) = m(t). (21)

This same principle was used using 20 oscillators all cou-
pled as in Fig. 2. For encryption, we could have used any
kind of data; in this case we are using an image, a paint-
ing from famous author Remedios Varo, see Fig. 7. It is a
264 × 216 pixels picture, of approximately 110 KB, in PNG
format.

Before an encryption is done, a brief introduction to the
kind of data to be encrypted is explained. Digital images
are made of pixels, which are the smallest controllable ele-
ment of a picture. Each pixel contains a code referring to
color. For a colored image, a 3 dimensional information ma-
trix M ×N ×P can be obtained. In these caseP gives back

FIGURE 7. “Creacíon de las aves” (Bird creation), 1957. Author:
Remedios Varo. Original PNG image to be encrypted.

information about the color.P can be either 3 or 4 character
if the image is using a 8-bit or 16-bit color format, according
to Matlab specifics. Basically, for this encryption scheme,
the matrixM × N × P is turned into a signal, see Fig. 8d.
This signal will be used as our original messagem(t). Al-
though, signal masking or additive encryption will not work
if the masking signaly = x1,2(t) is proportionally low to
the original messagem(t). For this case, the masking signal
was multiplied 10 times. If this is not done, the resulting en-
crypted message will still be visible, but with perturbations
(resulting from the chaotic masking signal).

7. Results on the chaotic encryption

In Fig. 8 the results of the synchronization and the encryp-
tions scheme can be seen. As explained before, the image
(see Fig. 8a) is changed to a signal or messagem(t) as can
be seen in Fig. 8d. Before encrypting the image, the 20 oscil-
lators are coupled and synchronized as proved with the phase
plane in Fig. 3. Synchronization among the statesxi,1(t),
xi,2(t), andxi,3(t), is achieved in the first 120 seconds, see
Fig. 8e, 8f, and 8g. Past this transition
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FIGURE 8. a) Depicts the original painting to be encrypted; b) reconstructed image after encryptions(t) = x1,2(t) + m(t); c) image
reconstructed from oscillator 2 bym∗(t) = s(t) − x2,2(t). Note that the reconstructed image from oscillator 3 to 20 are the same as
in oscillator 2, so then they are not shown. d) Signal produced by reshaping the image,m(t); e), f), and g) show the evolution and
synchronization of the statesxi,1(t), xi,2(t), andxi,3(t) respectively, of the oscillators 1 through 20. Note that only the first 120 seconds are
shown for representative purposes and that in e) the black line represents the message to be encryptedm(t) as it starts after the synchronization
is completed.

time, the image is encrypted adding the chaotic signal as in
s(t) = x1,2(t)+m(t), and the encrypted image retrieved is in
Fig. 8b. Finally, the signal is decrypted subtracting a chaotic
signal produced by any oscillator, in this case oscillator 2, as
in m∗(t) = s(t) − x2,2(t). The image retrieved by the mes-
sagem∗(t) can be seen in Fig. 8c; revealing a perfect match
with the original.

8. Conclusion

For some time the generalized Hamiltonian approach was
used exclusively to synchronize two chaotic oscillators in a
unidirectional master-slave array. In this paper synchroniza-
tion was achieved in an irregular arrayed network in their

generalized Hamiltonian form. Then it was shown its poten-
tial in data encryption using an image. This can give new in-
sights, about the construction of the oscillators and networks.
Many other chaotic oscillators in generalized Hamiltonian
form can be used. Recent studies on synchronization of com-
plex dynamical networks may shed new light on behavior and
understanding of synchronization itself or complexity in net-
work dynamics.
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