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Simulation of cylindrical Poiseuille flow in multiparticle collision
dynamics using explicit fluid-wall confining forces
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Multiparticle collision dynamics (MPC) is a numerical technique that has been extensively used in recent years to simulate fluids supporting
hydrodynamic interactions and thermal fluctuations. In this paper, we describe a method that allows MPC fluids to be confined in cavities
with a complex geometry. This method is based on the introduction of an explicit repulsive interaction between the particles of the MPC
fluid and the walls of the confining cavities. We apply the proposed technique in simulations of MPC fluids confined in cylindrical channels
and subjected to uniform pressure gradients. We show that our method yields the correct hydrodynamic cylindrical Poiseuille flow for stick
boundary conditions. We conduct an extensive numerical analysis of the method to determine the kinematic viscosity of the simulated fluid,
to study finite size effects and to establish the limits for its applicability. We conclude that this technique is reliable to simulate cylindrical
Poiseuille flow for a wide range of system sizes, applied pressure gradients, and viscosities and densities of the simulated fluids.
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1. Introduction well as from kinetic theory models [9, 17]. In all the studied
cases, the simulation results have been found to be in very
Multiparticle Collision Dynamics (MPC) was introduced by good agreement with the theoretical expressions.
Malevanets and Kapral, as a method for simulating fluids that Up to the present day, MPC has been used to simulate
obey the Navier-Stokes equations and possess hydrodynangolloids and polymer suspensions [2, 5, 18], polymers under
fluctuations [1, 2]. It was designed as an algorithm based ofiow [13, 19, 20], flow around objects [21, 22], vesicles un-
particles that can be combined with usual Molecular Dynamder flow [23], particle sedimentation [24, 25], backtracking
ics (MD) [3,4]. Hybrid MD-MPC simulations are used to in- of colloidal particles [26], and tracking of colloids in steady
vestigate complex systems with widely separated time scaleshear flows [27-29]. Some reviews are available in the liter-
e.g colloidal suspensions and polymer solutions [5-8]. Inature that describe the principles, main variations and appli-
these cases, the dynamics of the suspended phase is followeations of MPC [9, 13, 30].
at the microscopic scale by using MD, while MPC is used |0 most of these applications, systems are considered to
to mimic the behavior of the solvent on the hydrodynamiche unbounded and simulations are carried out using either
level [2,5,9-11]. MPC simulates correctly the flow aroundthe usual periodic boundary conditions or, in order to incor-
the embedded particles and gives rise to the proper hydrodysorate the presence of shear flow, Lees-Edwards boundary
namic interactions in between them [5]. Furthermore, MPCeonditions [31]. However, increasing interest has been given
incorporates hydrodynamic fluctuations that yield Browniantg extend the applications of MPC to the simulation of fluids
forces on the suspended particles [5, 12, 13]. Consequently; restricted geometries [23, 32, 33]. This extension would
fluids simulated by MPC can be used as thermal baths suggjow, e.g, to simulate some of the afore mentioned systems
porting hydrodynamic interactions. confined in microscopic porous or channels. So far, confined
An excellent understanding of MPC has been achievedMPC fluids have been simulated by including the presence
thanks to the analytical description that has been given of thef hard walls that simply reflect the incoming fluid particles
method. Since the MPC algorithm is relatively simple, it hasback into the bulk system. Such hard walls are incorporated
been possible to calculate closed expressions for the tranthrough the application of the so-called bounce-back bound-
port coefficients of MPC fluids in terms of the independentary conditions [1]. Variations of this method that also use
simulation parameters. In particular, explicit expressions fobounce-back rules, have been recently proposggdthe so-
the viscosity and thermal conductivity of MPC fluids have called stochastic and mixed boundary conditions [24,32, 34].
been obtained from projection operator methods [14-16], a8 comparison of the performance of such implementations
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can be found in Ref. [34]. In simple geometriesg, flu- This paper is organized as follows. In Sec. 2, we will
ids confined by large plane walls, bounce-back conditions arpresent a theoretical description of the problem of confining
easy to implement. However, they must be applied carefullyan MPC fluid by means of physical walls. We will obtain
in more complicated situations. For instance, in order to sima mathematical expression for the fluid-wall interaction. In
ulate particles close to corners or small features, it could b&ec. 3, we will discuss in detail how the theoretical frame-
necessary to reduce considerably the simulation time step. lyork is translated into MPC simulations. Special attention
in addition, particles interact with multiple surfaces during awill be paid to discuss how the the derived fluid-wall forces
single time step, it could be necessary to apply the bouncezan be implemented in simulations of rough surfaces. Sub-
back rules iteratively [34]. sequently, in Sec. 4 we will present the results obtained
In this paper, we follow an alternative approach in whichfrom a large number of numerical experiments of cylindri-
boundary conditions in MPC are produced by incorporatingcal Poiseuille flow. These experiments will allow us to obtain
physical walls that exert explicit forces on the particles ofempirically the viscosity of the confined fluids. In addition,
the fluid. Our approach could be preferable to those basede will study finite-size effects and determine the range of
on hard walls in some special casesy, when the confin- applicability of the simulation method. Finally, in Sec. 5 we
ing walls have a curvature such that iterative applications ofwill state our conclusions, and summarize the advantages and
the bounce-back rules are required. The explicit form of thdimitations of our approach.
forces to be used in our simulations is obtained from the
assumption that the constraining walls are constituted by a
continuous surface distribution of particles that interact with2. ~ Fluid-wall interaction
the MPC particles through a repulsive potential. The perfor-
mance of our method will be studied in simulations of MPC MPC fluids consist of point particles with mass The po-
fluids confined in a cylindrical channel and in the presence ofitions and velocities of these particles are continuous func-
a uniform external pressure gradient that generates the welpns of time that will be represented here with the symbols
known cylindrical Poiseuille flow. Some difficulties that are &; and;, respectively, foi = 1,2,...,\, where\ is the
present in simulations of MPC fluids with boundary condi- total number of fluid particles. In Flg. 1, we schematically il-
tions of the hard wall type, in particular, the need for incorpo-lustrate some MPC particles moving close to a physical wall
rating virtual fluid particles [33] and the problem of removing consisting of a continuous surface distribution of particles.
partial slip at the confining walls [34], are also encountered/Vall particles and MPC particles will be considered to inter-
in our implementation. Through this paper we will carefully act through a repulsive potential. SpecificallyAif repre-
discuss how our method can be used to reproduce the veloci§ents the position of a wall particle (see Fig. 1), the energy

profile expected from hydrodynamics with no slip boundary@ssociated with its interaction with the fluid particle /&,
conditions. will be given by the generalized Weeks-Chandler-Andersen

|  (WCA) potential [35]

o (Ruit) ={ [( éi”m)m -(

0, otherwise

if ‘in—é’ <

@)

wheree is the interaction strength, is a positive integeis is
the effective diameter of the interaction, afid= 2'/"¢ is k/vhereS* denotes the set of all those points at the surface wall
the cutoff distance represented by the circles around the wadlatisfying the conditiomﬁi — ﬁ’| < G.

particles in Fig. 1. It should be noticed that the use of the Provided that the wall surface has no abrupt changes,
WCA potential as the basic expression that will allow us toi.e., that its curvature is not significant in comparison with
describe the effects of a solid wall on the MPC fluid, is indeedthe interaction radius, the integral in the right hand side of
inspired in previous studies of colloids, where such potentiaEq. (2) can be approximated by the mean vai(&;) ~

has been used for simulating the interaction of MPC fluidSpSS*qS(éi,ﬁ*), whereR* is the closest point of the surface
with solid suspended patrticles [1,5,7,27-29]. to the fluid particle. Notice thaf* is indeed a function of

Let pg be the numerical surface density of particles in thefZ;, and that the geometry of the wall determines the spe-
wall, which hereafter will be assumed to be uniform. Then,cific form of this function. In the same limiting case;
the total potential at positioft; will be can be approximated at first order as the cross section result-
ing from the intersection of a solid sphere of radiusvith
. L a plane located at a distan{®; — £*| from its centerj.e.,
P (Rz> = ps/ ds’'¢ (Rq:,R') , (2) S* ~ n(62 —|R; — R*|?). Using these approximations the
: interaction potential between the wall and the MPC patrticle
located atR;, takes the form
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12n 6n
. Wéps(&Q—ﬁi—é* > <q q*) —(0> +1|, if |Ri—R| <&
@ () = e el ®)
0, otherwise
£ . ¢ .« MPC particles and 2 — z;, where R, is the radius of the cavity and

r; = (x2+y2)'/2. Itis worth mentioning that Egs. (4) and (5)
represent purely repulsive conservative forces. Thus, when
they are applied, the confining wall acts as a smooth surface,
because any incoming fluid particle is reflected back into the
bulk system with reversed momentum along the normal vec-
tor, but unchanged tangential momentum. Consequently, if
the confining wall has no irregularities, Egs. (4) and (5) can
be used to simulate only surfaces with slip boundary con-
ditions [32, 36, 37]. It has been shown in Refs. 36 and 37
that rough surfaces can be simulated by including a tangen-
tial component of the force. With this purpose, forces given
by Egs. (4) or (5), are applied in the opposite direction to
FIGURE 1. Schematic illustration of MPC particles (small circles) that of the velocities of the incoming particles. This method
moving close to a physical wall (black broad curve). The latter is equivalent to produce local imperfections in the confining
consists of a surface distribution of particles. Vect&sand R’ wall. With this modification, the MPC particles that come
represent, respectively, the position of an MPC and a wall particle.into the region of interaction with the wall, face local barriers
The diameter of the interaction between fluid and wall particles whose orientations depend on the velocities of the particles
is g themselves. In this new scheme, the confining wall is re-
placed by the surface defining the interaction region and the

and the force exerted by the wall on the MPC partICIe'force applied on the incoming particles is calculated from
F(R;) = —V®, can be written as
F = —F () i, )

F (ﬁz) = 2d|ﬁid—@é*2

Wall particles

(El — E*) — (x; — 2*) Va*
whereF( ;) is the magnitude of the force given by Egs. (3)
and (4), or (5), andy, is the unitary vector in the direction
(4) of the incoming velocity. It should be remarked that since
forces given by Egs. (4) and (5) are conservative, the veloc-
- ities of the particles after the interaction with the wall will
which is, indeed, a continuous function Bf. have the same magnitude than the incoming velocities, but
_ In_the previous expression, the term proportional toopposite direction. Thus, this procedure will yield similar re-
R,—FR*, represents the force exerted by a plane surface on thaults to those given by the use the simple bounce-back rule in
fluid particle atRZ, while the terms involving the derivatives hard-wall methods, where surfaces with partial slip are simu-
AV Vy andVz*, represent contributions arising from the lated. Therefore, with the purpose of obtaining fluid-wall in-
curvature of the WaII. When the latter is not significdre,,  teractions with no slip boundary conditions, it is necessary to
when the curvature radius of the wall is much larger than théncorporate in the simulation scheme a procedure for increas-
interaction diamete#, those terms in Eq. (4) involving space ing the tangential stress at the surface. In Ref. 37, this has
derivatives of the componentst‘ can be neglected in com- been done by explicitly including forces parallel to the con-

—(yi —y") ﬁy* — (2 —2") V"

)

parison with the tern? — R*, and Eq. (4) reduces to fining walls. Here, we will follow an alternative approach,
o I o by applying wall forces just as they are given by Eq. (6), and
F ( Ri) S P — ( R, — R*) ) (5) allowing the extra needed tangential stress to be incorporated
d|R; — R*|? during the collision step with virtual MPC particles, which

In this approximation, the MPC particles are assumed t(yvill be described in detail in the following section.

interact with a wall that at the local level is a plane whose

normal points along?; — R*. Although Eq. (4) is, in fact, 3. MPC algorithm for simulation of cylindri-

more general than Eq. (5), it is important to notice that for cal Poiseuille flow

the specific case of a cylindrical wall to be studied in this pa-

per, these two expressions coincide. This can be verified bWe conducted a series of simulations in which, under studied
noticing that in this case* = Rox; /1, y* = Royi /T4, conditions, the resulting behavior of the flow was found to
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be steady and isothermal. We considered a total'df1PC
point particles of mass:, confined in a cylindrical channel of
radiusRy. The long axis of this channel coincides with the
z axis of a Cartesian reference frame. In the followirg,
will represent the length of the cylinder. In order to suit this
geometry to the requirements of the MPC algorithig,and

L, were chosen agy = n,a, andL, = n,a, respectively,
where bothn,. andn, are integers, and is the unitary dis-
tance. The boundary particles that conformed the confining
wall, were distributed along the cylinder, at a radial distance
Ry + &. In this manner, the set of MPC particles that do
not interact with the wall particles, occupied a total volume
wR2L .. Finally, an external uniform axial pressure gradient
with magnitudeP’, was considered to exert a force on each
fluid particle inside this volume.

The fluid evolved in time according to a hybrid scheme
combining M.D and MPC' The for_mer al_lowed us fo simu- FIGURE 2. Quantities used to calculate the force exerted by the
late the detailed motion of the fluid particles and took careConfining oylindrical surface and the fluid particles
of their interaction with the confining wall. The latter con- '
sidered the interaction between the fluid particles in a coarsgjcje crosses the interaction surface, which is written as
grained fashion allowing us to incorporate collective hydro—ﬁp _ h(ﬁi(t) _ ﬁi(t — Atwp))
dynamic effects. Due to the presence of the confining cavitythe last e
our simulation scheme had particular features differing fronboint of t
usual implementations of MPC that will be discussed in de-
tail now.

. Finally, the factorh in

quality is determined from the condition tRgtis a

he cylindrical surfacé.e. R; , + R3, = Rg.

The characteristic collision step of MPC was applied pe-
riodically after performin MD integration stepg,e., at

It should be remembered that typical MD-MPC simula- Y P o g b

. di ) v referred htime intervals of sizeAt = nypAtmp, Wherenyp is an in-
tions proceed in two main steps, commonly referred as t ,?eger. The collision step required to subdivide the simulation

s_treamw:jg alnd _90”'3'](0?] 5’:\725(-: D”r'r;g streamgg, ;[jhe pos{'ﬁox in cells of volume:®, where interparticle collisions were
tions and velocities of the particles are updated accortg;, ateqd. With this purpose, the center of mass velocity of

ing to the velocity Sirmer-Verlet scheme, applied ona short ., ce)l was calculated and particles within the same cell

yme step of sizeAtyp [4]. Thus, |_f.vectorsRi and.v_i, for were forced to exchange their velocities according to
i=1,2,...,MN, represent the positions and velocities of the
MPC particles, respectively, we have 7! = Gem + R (s ) - [ — Tem)] » 9)
B (¢ + Atwp)=Fi (1) whered; and#; denote the velocities of thigh particle after
(AtMD)2 o and before collision, respectively; m. the center of mass ve-
TFZ'( ). (D locity of the cell; andR (a;7) a stochastic rotation matrix,
which rotates velocities by an anglearound a random axis
n. It is worth stressing that is a parameter whose value
¥; (t+ Atmp) = U5 (t) is fixed through the whole simulation, whifeis sampled in
Atyp T = B each cell at every collision step by randomly selecting a point
F; (t+ Atwp) + F; (t)} ,  (8) onthe surface of a sphere with unit radius. It was noticed by
Ihle and Kroll that the presence of collision cells introduce an
where F,; denotes the total force on thih particle,i.e., artificially fixed frame of reference, which breaks the prop-
the sum of the external pressure gradient and the confirerty of Galilean invariance and leads to a breakdown of the
ing forces. In order to calculate the latter, we appliedmolecular chaos assumption [15,16]. Thus, in order to restore
Egs. (3) and (5) where the quantitiés and R* were nu- this property, a uniform random displacement of the cells
merically determined according to the procedure illustratedshould be implemented, before collisions take place [15, 16].
in Fig. 2. There, we show an MPC particle located in  In the presence of confining surfaces, both the division
the bulk system at time¢ — Atyp, which is observed to of the system into cells and the subsequent random displace-
get into the interaction region at time First, the ve- ment of these cells, must be implemented with caution. The
locity of such particle is approximated as the difference reason is that cells near the surfaces might be partially empty
() = (R;(t) — Ri(t— Atwp)) Atwp, from which the direc-  and collisions inside them might take place as in a fluid
tion of the force can be determined@s= v; (¢t) / |¥; (¢)|. with lower density, thus yielding different physical properties
On the other hand,?* can be written in the form than in the interior cells [33]. This problem could be solved
R = Ep + G0in, Whereﬁp denotes the point where the par- by introducingvirtual particlesthat fill the partially empty

+Atmp 7 (t) +

and

+
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4 . VX" represent contributions due to the streaming (kinetic) and
a °9 04 ° ° ° o collisional steps of MPC, respectively. In terms of the inde-
e T . G pendent simulation parameters these quantities read as
° y . e . . . ° a2
NESE I .. SN ° v = SNAT (N—14+eN)(1—cos(a), (10)
» ‘ L] L L[] . ° 5 Z l/klﬂ _ kBTAt
& o . o Z @ . . ° 2m
° . D ° Y e B, 5N
. ° X -1 5 11
° \, el o [ o (N—1+e=N) (2—cos (a) — cos (2a)) (1)
. ) I ° respectively, wheréV is the numerical density of MPC parti-
. P . U * . ° cles,k is the Boltzmann constant, afidis the temperature
° . ° o lg .o of the simulated fluid. In the case of our implementation,
al2 B oo ° wBE o 3 in which the MPC fluid is confined, the stress tensor should
$ ° 2 have contributions arising from the interaction with the wall
—alzv ., and from the collision with the virtual particles. The former
-a/l2'al2 should modify the kinetic viscosity coefficient, while the lat-

FIGURE 3. Schemaitic illustration of the procedure used to intro- ter should change the collisional viscosity of the fluid.

duce virtual particles. The system is extended to a prism of vol- The precise form of the changes in the viscosity of the
ume(2n, + 1) (2n, + 1) n-a®, and the space left by real particles  MPC fluid induced by confinement, could be obtained from
(black filled circles) is filled with virtual particles (empty circles). 5 kinetic model similar to the one that has been carried out in

Virtual particles are introduced at random positions in the émpty pat 33 for the case of a fluid confined between two parallel
space. Thg number of virtual particles is chosen such that the denblates. In this paper we will follow an alternative approach
sity is continuous over the whole extended system.

and obtain the viscosity of the confined fluid empirically from

cells and help collisions to be performed at the right averagd€ results of our numerical experiments. We will show that
density. In order to introduce virtual particles in our simu- €Orrections to Egs. (10) and (11), due to interaction with the
lations, we followed the procedure schematically shown inwall and collisions with the virtual particles are small indeed.

Fig. 3. First, we extended the system to a rectangular prism In addition, it is important to mention that particles inter-
with volume (2n, + 1)2 n,a®. Then, the space outside the acting with the cylindrical confining wall, i.e. those with

. AT 5 N
cylindrical cavity was filled with virtual particles of mags. ~ @ndy coordinates satisfying® + y* > R, were excluded

Virtual particles were uniformly distributed in the space out-from participation in the co_II|_S|on step, since their trajectories
side the cylinder using a Monte Carlo sampling scheme. iyvould be deflected by collisions and they would escape from

this work, we decided to incorporate the virtual particles withth€ Simulation box through the confining walls.

velocities selected according to two different schemes, here- e implemented periodic boundary conditions along the
after referred as the simulation schemes | and II. z axis. In addition, in order order to prevent viscous heating

In scheme I, the velocity of each virtual particle was sam-°f the simulated system under flow, we applied a thermostat-
pled from a Gaussian distribution with zero mean and thding procedure after each collision step. This thermostat was

standard deviation dictated by the equipartition law. We wilbased on a local velocity rescale that fixed the temperature of

show in Sec. 4 that this procedure yields flow inside the cylin-n€ System at the valug [27-29]. _
Numerical experiments were performed by sorting the

der with partial slip boundary conditions. : ) S ) ) ’ :
In the simulation scheme I1, we calculated first the centefMPC particles into the cylindrical cavity with uniformly dis-

of mass velocity of the bulk particles enclosed in the regliontributed random positions and velocities. No initial overlap-
between the radiR, — a/2 andR,. As it could be expected ping existed between the fluid particles and the confining sur-
this average velocity was found to vanish in thandy direc- &€, the total momentum of the system was fixed to zero,
tion, but to be different from zera;, along thez axis. Then and its total energy was adjusted to the value dictated by the
virtual particles were introduced with velocities taken from a€duipartition law at temperaturg. Then, the hybrid MD-
Gaussian distribution with the same standard deviation as i¥1PC @lgorithm was applied to the ensemble of fluid particles
scheme 1, centered at the velocity, 0, — 7). The quantity subjected to the external fiefd’ and to the constraining sur-
% will be considered an adjustable parameter and, indeed, fice forces. This thermalization process was applied tver
will be shown in Sec. 4 that it can be tuned to obtain simula-StePs of the MD-MPC algorithm after which we observed that
tions of flow with stick boundary conditions. the proper distribution of velocities and hydrodynamic fields
At this point it is convenient to notice that spatially un- Were estabrlished. Finally, a simulation stage was conducted
tover2 x 10” steps, that allowed us to calculate the stationary

restricted MPC fluids have a total kinematic viscosity tha Lt ’ ! ;
hydrodynamic fields in the system. In this work, we will

can be written in the fornv = v 4+ K" wherer©® and
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FIGURE 4. Velocity profiles obtained from simulations of confined MPC fluids in a cylindrical cavity, performed according with scheme | at
collision anglesy = 15°, a, anda = 180°, b. Symbols correspond to numerical results while continuous surfaces have been obtained from
a least squares fit based on Eq. (12).

/

rgstrlct the analysis to thg study of the velocity field which v, (2,9) = vo + P (R(Q) _ 7,2) , (12)
will be calculated as the time average of the center of mass 4pv
velocity of the MPC collision cells.

The independent parameters of the simulations were th@hereu, is the velocity at the boundary surfaeds the kine-
length of the MPC cellsg; the time-step between MPC col- matic viscosity of the fluid, and = (2% + y2)1/2, is the ra-
lisions, At; the average number of particles per call, the  dial polar coordinate. Due to the symmetry of the system,
thermal energykgT; the MPC rotation angleq; and the velocity components in the andy directions vanishj.e.,
mass of the individual MPC particles;. All our simula- v, = v, = 0. These equations, together with the condition
tions were performed by fixing these parameters at 1, of uniform density and temperature, are the solutions of the
ksT = 1, At = 0.05, andm = 1. Notice that here, as well hydrodynamic equations for a viscous fluid moving through a
in the rest of the paper, we will use simulation units (s.u.)cylinder due to the pressure gradiént, and kept at constant
instead of physical units. The parameters characterizing theemperature by an external thermostat.
interaction between the particles and the confining wallswere  as 3 first result, we notice that our numerical imple-

chosen as = k5T/2, 0 = a/2, andps = 1/2a®. The MD  mentation produces flows that can be very well adjusted by
time-step was chosen @syp = 0.005, for which noinsta-  gq_ (12). In order to illustrate the validity of this assertion,
bilities of the simulations were observed. we present the results from a first series of experiments for
MPC fluids confined in a cylinder with fixed size defined
by Ry = 8a, andL, = 32a. The numerical experiments
4. Results were carried out with a total number ®6384 MPC parti-

cles acted by a pressure gradient of magnititde= 0.4.

We shall present here the results obtained from the appIicaWe performed simulations varying the MPC collision angle,

tion of the algorithm described in Sec. 3. First, in Sec. 4.1, We, at twelve different values uniformly distributed from°

will present the results obtained from the simulation scheme, 180°. This numerical setup was intended to test the va-
I, in which virtual particles are introduced with zero mean Ve'lidity of the method for small, as well as large, valueshof
locity, and show that this scheme yields cylindrical Poiseuille| ihe former case. the simulated fluid is exp’ected 10 be in

flow with partial slip boundary conditions. Afterwards, in e 5o called gas regime, where contributions to the material
Seg. 4.2, we W'”, descnbe'how th,'s method can be mOdIf_'edproperties of the fluid arising from streaming dynamics (ki-
by introducing virtual particles with nonzero mean VeloCity peicy gominate over contributions due to collisions [9, 30].
(simulation scheme Il), in order to simulate flow with stick In the opposite casée., whena is large, the interaction be-
boundary conditions. tween MPC particles is stronger and the fluid behaves in the

so-called liquid regime, where collisional effects are larger
4.1. Simulation of cylindrical Poiseuille flow with slip  and dominate over kinetic effects. Figures 4 a) and b) show

boundary conditions the velocity profiles obtained for the extreme cases 15°

anda = 180°, respectively. There, points correspond to the
The velocity profile expected for the simulation geometryresults from simulations while the continuous surfaces were
introduced in Sec. 3, is the classical cylindrical Poiseuilleobtained from a simple least squares fit of the results, based
flow [38], which can be written in the form on Eq. (12), using, andv as the adjustable parameters.
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e
=

v° and /X" are given in terms of the simulation parame-
« R=14 | ters by Egs. (10) and (11), respectively. In Fig. 5, we have
« R =28 also included the results frofit) additional experiments car-
12 ok ried with the same parameters described above but in systems
with different sizes defined bRy = 4,12, 16,20, and24.

We notice that the numerical and theoretical results are in
7 very good qualitative agreement. Indeed, the viscosity of the
simulated systems fits very well the analytical expressions for
large values of the collision angte > 120°, but exhibits de-

7 viations in simulations carried out in the gas regime. This
suggests that the confining cylindrical surface modifies the
kinematic viscosity of the simulated MPC fluid but has no
00— 30 60 900 1200 150°  180° appreciable effect on the collisional contribution.

Collision angle, o The hydrodynamic regime corresponding to the set of
simulations presented so far, can be identified more clearly in
terms of the Reynolds number, Re, which, for a given flow,
lision anglea. Symbols represent results from numerical simula- quanFifies the relevance of the' inertigl forces' with respect to
tions while the continuous line corresponds to the analytical vis- the_VIscous effects. For flow in a circular pipe, Re can be
cosity obtained from Egs. (10) and (11). defined as

—
wn
T

+
=

S O O © O ©

—
{om)
T

f=]
w
I

Kinematic viscosity, v

FIGURE 5. Estimated viscosity of the simulated MPC fluid con-
fined in cylinders with different radiRRo, as function of the col-

v,D
Re= =1 (13)
12
TABLE |. Estimated values afy andv for simulations of cylindri- where o, is _the average flow veloqlty .along the pipe ?nd
cal Poiseuille flow in MPC fluids with different collision angles, Dy = 2Ry, is the so-called hydraulic diameter. In our sim-

Fluids were confined in a pipe with radii® — 8 a, and subjected ~ Ulations, v can be calculated straightforwardly allowing us
to an external pressure gradieRf = 0.4. The complete set of t0 estimate the values of Re corresponding to each produced
remaining simulation parameters is described through the text. ~ flow. It was observed that Re varied in a rather wide range
of values, from Re= 0.3872, for « = 180° and Ry = 4, to

Collision Slip Kinematic Re = 952.17, for a = 30° and Ry = 24. Thus, we notice
angle,a velocity, vo viscosity,v that our simulations covered flows with Reynolds number ex-
15° 0.0126 0.692 tending over three orders of magnitude and, since turbulence
30° 0.0019 0.361 in a cylindrical pipe is expected for Re 2000 [39], we con-
45° 0.0309 0.379 cIuQe that our simulations were performed in the laminar flow
60° 0.0399 0.489 regime. . .

Another dimensionless number that can be used to char-
75° 0.0337 0.639 acterize the hydrodynamic regime is the Schmidt number, Sc,
90° 0.0292 0.805 defined as Se= v/D, whereD is the diffusion coefficient.
105° 0.0267 0.987 This quantity represents the ratio of the rate of diffusive mo-
120° 0.0223 1.146 mentum transfer to the rate of diffusive mass transfer and,

o therefore, indicates whether momentum transfer in a flow oc-
135 0.0220 1.303 .
curs by mass transport, Se 1, or by molecular collisions,
150° 0.0201 1.422 Sc> 1. In MPC, D can be obtained in terms of the simula-
165° 0.0180 1.486 tion parameters from the equation [30]
180° 0.0178 1.510

b _ keTAl 3N
In all the experiments of this series, the established sta- 2m (1 —cos(a)) (N —1+eN)

tionary velocity profiles could be very well adjusted in this Thjs equation, together with the estimated values of the kine-
manner. In Table I, we summarize the results of the fittingy, atic viscosity can be used to determine the values of Sc.

procedure. There, we present the estimated valuesaiidy  \we found that our experiments covered flows with Schmidt
as function of the collision angle. Our results show thatthe ;mpers ranging from Sc= 0.2021, for a = 15°, to

scheme | simulates fluids with partial slip boundary condi-g. _ 44.7134, whena = 180°.

tions since, in generab, was found to be different from zero.

More importantly, this procedure allowed us to obtainanemy 2 simulation of cylindrical Poiseuille flow with stick
pirical estimation of the viscosity of the confined MPC fluid, boundary conditions

which is plotted in Fig. 5 as function ef. In Fig. 5, we com-

pare the results from our numerical experiments with the analt has been described in Sec. 3 that in the simulation
lytical value of the kinematic viscosity, = v°°+K" where  scheme ll, virtual particles at partially empty cells are intro-

~1|. 4
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TABLE |l. Parameter estimated from simulations performed with different valuestpfzo and P’. This parameter was obtained from a
steepest descendant method that stopped when simulations produced flows with velocities at the boundaries si#llerAtiajuantities
are given in simulation units.

P =04
Collision angle o Ro = 8a Ry = 12a Ro = 16a Ro = 20a Ro = 24a
135° 0.52 0.68 0.56 0.41 0.45
150° 0.51 0.66 0.58 0.41 0.42
165° 0.54 0.67 0.56 0.41 0.43
180° 0.53 0.67 0.56 0.41 0.41
P’ =12
Collision angle o Rop =8a Ro = 12a Ro = 16a Rp = 20a Rp = 24a
135° 0.49 0.66 0.59 0.61 0.89
150° 0.48 0.65 0.56 0.53 0.73
165° 0.48 0.64 0.55 0.49 0.64
180° 0.47 0.64 0.54 0.48 0.61

duced with a mean velocity in thedirection given by—«v,
wherex # 0. The momentum exchange due to collisions be-
tween fluid particles and virtual particles close to the cylin-
drical wall, can be controlled by varying the value of the pa-
rameters. This helps to reduce or increase the velocity of the
fluid particles near the surface and, thus, to adjust the value
of the velocity field at the boundary. In this work, we adopt
an empirical approach to find the values of the parameter
that fit the flow velocity at the boundaryg, close to0. With
this purpose, we implemented a simple steepest descent prc
cedure and, for given values af Ry, andP’, we carried out
simulations varyings in increments of sizé\x = +0.01, un-

til |vp| was found to be smaller than an error parameter with
fixed magnitude).001.

In a first series of experiments, we observed thaix- 1.2
hibited strong variations for small values of the MPC col- )
lision angle, more precisely fax < 120°. Thus, in or-

der to simplify the analysis, we restricted ourselves to es

timate x only in the case of MPC dynamics dominated by : : . e
lisi | eff d idered solelv simulati - hthe values obtained from simulations as they are given in Table II,
collisional effects and considered solely simulations wit after averaging over the collision angle, The continuous sur-

o = 135°,150°,165°, and 180°. The dependence of  tace corresponds to the fit of the experimental data represented by
on the size of the system and the external pressure gradiepty (16).

was explored by performing simulations with the parameters

Ry = 8,12,16,20, and24; and P’ = 0.4 and1.2. This of «(Ry, P’), which are shown as symbols in the plot of
gave a total o#40 additional experiments performed to de- Fig. 6. There, it can be observed that the behaviox att
terminex as function ofw, Ry and P’. The results of these the constant valueB’ = 0.4, andP’ = 1.2, is very similar,
experiments are summarized in Table Il. There, it can be seesind since in both caseshas two local extrema with respect
thatx does not show a strong dependencexdar small val-  to Ry, it was suggested to approximate it as

ues of P’ (~ 0.4), but changes considerably as function of , , N 2 ,

the coIIisién ang)le wherP’ i% large ( 1.2). BI/n a first ap- = ao (P')+a1 (P") Ro+az (P') Ry +as (P) Ry, (15)
proximation, in order to obtain a simplified description of thewhere the parameters;, for : = 1,2,3,4, for fixed
problem, we considered to be independent af, and the P’ = 0.4 and P’ = 1.2, were obtained from a nonlinear
resulting functiorns = « (Ry, P’), was approximated by tak- curve fitting procedure, although their explicit values are not
ing the average over the results obtained at different collisiopresented her for brevity. In the simplest case, the
angles. This procedure yielded eight numerical estimationgeneral functions:;(P’), can be assumed to be lineae.,

FIGURE 6. Parameter used in simulation scheme Il to fix the av-
erage velocity of virtual particles as function the size of the system,
Ry, and the imposed pressure gradiért Symbols correspond to
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a

FIGURE 7. Velocity profiles obtained from simulations of confined MPC fluids in a cylindrical cavity, performed according with scheme Il.
Casea corresponds to simulation parametéss= 140°, Ry = 14, P’ = 0.6}, while in casé) we have useda = 155°, Ry = 18, P’ = 0.8}.
Symbols represent the numerical results while continuous surfaces correspond to the cylindrical Poiseuille flow with no slip boundary con-
ditions.

a; (P') = b;+m,;P’, and the values the quantitiesandm; range are in very good agreement with the expected cylindri-

can be finally obtained from those @f (0.4) anda; (1.2). cal Poiseuille flow with no slip boundary conditions.
The overall result of this procedure can be summarized in  For large values of the imposed gradient, the flow veloc-
the numerical approximation ity at the boundary surface was found to1h&% of the max-
imum velocity in the pipe. This deviation could be expected
% (Ro, P') = —1.3455 — 0.08125 P’ since Eq. (16) was obtained under the assumption that the
+(0.4196 + 0.01292 P') Ry factor x was independent ef, a situation that is not fulfilled

in the case of large values &f'.
— (0.0270 + 0.00181 P’) R?

+ (0.0005 + 0.00009 P') R, (16) 5. Discussion

and this function is represented as the continuous surface We have presented a method for simulating cylindrical
Fig. 6. We stress that this function is expected to work wellPoiseuille flow in MPC fluids. In this method, the pipe in
in the limit of large collision anglesy € (135°,180°), and  which the MPC fluid is kept, is modeled as a physical barrier
moderate pressure gradieit$ ~ 0.4. that interacts by means of an explicit force with the parti-
In order to illustrate the applicability of this approxima- cles of the confined fluid. One important feature of the pro-
tion, we considered three final simulations performed withposed model is that, starting from the microscopic details of
the following sets of parametedsx = 140°, Ry = 14, the confinement wall, we have proposed a novel integrated
P’ = 0.6}, {a« = 155°, Ry = 18, P/ = 0.8}, and  equation for its interaction with the fluid that involves its ge-
{a = 170°, Ry = 22, P’ = 1.0}. Simulations were car- ometrical properties. This feature will be exploited in sub-
ried out following the simulation scheme Il, where the fac- sequent publications where we will analyze MPC fluids con-
tor x that determined the velocity of the virtual particles wasfined in complex geometrie®.g, concentric cylinders and
calculated according to Eq. (16). The three considered casesirror symmetric 3D channels.
yielded cylindrical Poiseuille flows with boundary velocities ~ The problem of confining MPC fluids by means of ex-
vg = —1.2x1074, —1.7x 1072 and0.18, respectively. These plicit forces presented difficulties that are also found when
results illustrate that the proposed method is reliable for prothese fluids are confined by hard walls. Specifically, it was
ducing flow with no slip boundary conditions in the expectednecessary to propose an algorithm in which the integrated
range of simulation parameters. In fact, for small (= 0.4), scheme for the confinement force could be applied and, as
and medium pressure gradienf8’(= 0.8), the simulated well, allowed us to incorporate virtual particles at the MPC
flows had a velocity at the boundary surface that were jusctollision step and to eliminate partial slip at the surface of
0.006% and0.04%, respectively, of the maximum velocity in fluid-solid interaction.
the pipe. The velocity profiles obtained from these two sim-  We have used two different implementations referred as
ulations are presented in Figs. 7 a) and b), where they arhe simulation schemes | and Il. In the former, virtual parti-
compared with the cylindrical Poiseuille flow, Eq. (12), eval- cles were introduced with zero mean velocity and cylindrical
uated atvg = 0 andv given by Eqgs. (10) and (11). These Poiseuille flow was found to present partial slip at the bound-
figures show that the numerical results in the correspondingry. In scheme Il, the velocities of the virtual particles were
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adjusted to yield flow with stick boundary conditions. The view of the computational efficiency, the main difference be-
approach followed to achieve this adjustment, summarizetiveen our method and those based on hard walls, is the cost
in Eq. (16), was completely empirical. This restricts the ap-that must be paid during the streaming step by the application
plicability of our method to the range of parameters used t@f the MD integration scheme. This requires to subdivide
derive this expression, namely, to the liquid-like regime ofthe MPC collision time step in smaller time intervals, where
MPC, and to flows driven by moderate pressure gradientdorces on particles due to the presence of the wall must be
However, we consider that this is an acceptable range of vaktalculated. Thus, it is expected that, indeed, our implemen-
ues, since most of current applications of MPC are carriedation will exhibit a lower performance than methods based
out with parameters similar to those used in the present studgn hard walls. Nevertheless, the advantage of our scheme is
The reliability of the method was shown by performing inde-that it is in fact closer to simulate a real situation since con-
pendent simulations where slip velocity was found to be les§inement of fluids by solids is always mediated by interaction
than1% of the maximum flow velocity. potentials, while hard walls are just idealizations.

A major issue that we have left open in this work concerns
the study of the performance of our simulation method baseg\cknowledgments
on explicit forces, with respect to the one given by other es-
tablished techniques,g, simulation of Poiseuille flow based H. Hijar thanks Universidad La Salle for financial support
on the application of bounce-back rules. From the point ofunder grant NEC-04/15.
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