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Simulation of cylindrical Poiseuille flow in multiparticle collision
dynamics using explicit fluid-wall confining forces
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Multiparticle collision dynamics (MPC) is a numerical technique that has been extensively used in recent years to simulate fluids supporting
hydrodynamic interactions and thermal fluctuations. In this paper, we describe a method that allows MPC fluids to be confined in cavities
with a complex geometry. This method is based on the introduction of an explicit repulsive interaction between the particles of the MPC
fluid and the walls of the confining cavities. We apply the proposed technique in simulations of MPC fluids confined in cylindrical channels
and subjected to uniform pressure gradients. We show that our method yields the correct hydrodynamic cylindrical Poiseuille flow for stick
boundary conditions. We conduct an extensive numerical analysis of the method to determine the kinematic viscosity of the simulated fluid,
to study finite size effects and to establish the limits for its applicability. We conclude that this technique is reliable to simulate cylindrical
Poiseuille flow for a wide range of system sizes, applied pressure gradients, and viscosities and densities of the simulated fluids.
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1. Introduction

Multiparticle Collision Dynamics (MPC) was introduced by
Malevanets and Kapral, as a method for simulating fluids that
obey the Navier-Stokes equations and possess hydrodynamic
fluctuations [1, 2]. It was designed as an algorithm based on
particles that can be combined with usual Molecular Dynam-
ics (MD) [3,4]. Hybrid MD-MPC simulations are used to in-
vestigate complex systems with widely separated time scales,
e.g. colloidal suspensions and polymer solutions [5–8]. In
these cases, the dynamics of the suspended phase is followed
at the microscopic scale by using MD, while MPC is used
to mimic the behavior of the solvent on the hydrodynamic
level [2, 5, 9–11]. MPC simulates correctly the flow around
the embedded particles and gives rise to the proper hydrody-
namic interactions in between them [5]. Furthermore, MPC
incorporates hydrodynamic fluctuations that yield Brownian
forces on the suspended particles [5, 12, 13]. Consequently,
fluids simulated by MPC can be used as thermal baths sup-
porting hydrodynamic interactions.

An excellent understanding of MPC has been achieved
thanks to the analytical description that has been given of the
method. Since the MPC algorithm is relatively simple, it has
been possible to calculate closed expressions for the trans-
port coefficients of MPC fluids in terms of the independent
simulation parameters. In particular, explicit expressions for
the viscosity and thermal conductivity of MPC fluids have
been obtained from projection operator methods [14–16], as

well as from kinetic theory models [9, 17]. In all the studied
cases, the simulation results have been found to be in very
good agreement with the theoretical expressions.

Up to the present day, MPC has been used to simulate
colloids and polymer suspensions [2, 5, 18], polymers under
flow [13, 19, 20], flow around objects [21, 22], vesicles un-
der flow [23], particle sedimentation [24, 25], backtracking
of colloidal particles [26], and tracking of colloids in steady
shear flows [27–29]. Some reviews are available in the liter-
ature that describe the principles, main variations and appli-
cations of MPC [9,13,30].

In most of these applications, systems are considered to
be unbounded and simulations are carried out using either
the usual periodic boundary conditions or, in order to incor-
porate the presence of shear flow, Lees-Edwards boundary
conditions [31]. However, increasing interest has been given
to extend the applications of MPC to the simulation of fluids
in restricted geometries [23, 32, 33]. This extension would
allow, e.g., to simulate some of the afore mentioned systems
confined in microscopic porous or channels. So far, confined
MPC fluids have been simulated by including the presence
of hard walls, that simply reflect the incoming fluid particles
back into the bulk system. Such hard walls are incorporated
through the application of the so-called bounce-back bound-
ary conditions [1]. Variations of this method that also use
bounce-back rules, have been recently proposed,e.g. the so-
called stochastic and mixed boundary conditions [24,32,34].
A comparison of the performance of such implementations
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can be found in Ref. [34]. In simple geometries,e.g., flu-
ids confined by large plane walls, bounce-back conditions are
easy to implement. However, they must be applied carefully
in more complicated situations. For instance, in order to sim-
ulate particles close to corners or small features, it could be
necessary to reduce considerably the simulation time step. If,
in addition, particles interact with multiple surfaces during a
single time step, it could be necessary to apply the bounce-
back rules iteratively [34].

In this paper, we follow an alternative approach in which
boundary conditions in MPC are produced by incorporating
physical walls that exert explicit forces on the particles of
the fluid. Our approach could be preferable to those based
on hard walls in some special cases,e.g., when the confin-
ing walls have a curvature such that iterative applications of
the bounce-back rules are required. The explicit form of the
forces to be used in our simulations is obtained from the
assumption that the constraining walls are constituted by a
continuous surface distribution of particles that interact with
the MPC particles through a repulsive potential. The perfor-
mance of our method will be studied in simulations of MPC
fluids confined in a cylindrical channel and in the presence of
a uniform external pressure gradient that generates the well
known cylindrical Poiseuille flow. Some difficulties that are
present in simulations of MPC fluids with boundary condi-
tions of the hard wall type, in particular, the need for incorpo-
rating virtual fluid particles [33] and the problem of removing
partial slip at the confining walls [34], are also encountered
in our implementation. Through this paper we will carefully
discuss how our method can be used to reproduce the velocity
profile expected from hydrodynamics with no slip boundary
conditions.

This paper is organized as follows. In Sec. 2, we will
present a theoretical description of the problem of confining
an MPC fluid by means of physical walls. We will obtain
a mathematical expression for the fluid-wall interaction. In
Sec. 3, we will discuss in detail how the theoretical frame-
work is translated into MPC simulations. Special attention
will be paid to discuss how the the derived fluid-wall forces
can be implemented in simulations of rough surfaces. Sub-
sequently, in Sec. 4 we will present the results obtained
from a large number of numerical experiments of cylindri-
cal Poiseuille flow. These experiments will allow us to obtain
empirically the viscosity of the confined fluids. In addition,
we will study finite-size effects and determine the range of
applicability of the simulation method. Finally, in Sec. 5 we
will state our conclusions, and summarize the advantages and
limitations of our approach.

2. Fluid-wall interaction

MPC fluids consist of point particles with massm. The po-
sitions and velocities of these particles are continuous func-
tions of time that will be represented here with the symbols
~Ri and~vi, respectively, fori = 1, 2, . . . ,N , whereN is the
total number of fluid particles. In Fig. 1, we schematically il-
lustrate some MPC particles moving close to a physical wall
consisting of a continuous surface distribution of particles.
Wall particles and MPC particles will be considered to inter-
act through a repulsive potential. Specifically, if~R ′ repre-
sents the position of a wall particle (see Fig. 1), the energy
associated with its interaction with the fluid particle at~Ri,
will be given by the generalized Weeks-Chandler-Andersen
(WCA) potential [35]
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whereε is the interaction strength,n is a positive integer,σ is
the effective diameter of the interaction, andσ̃ = 21/6nσ is
the cutoff distance represented by the circles around the wall
particles in Fig. 1. It should be noticed that the use of the
WCA potential as the basic expression that will allow us to
describe the effects of a solid wall on the MPC fluid, is indeed
inspired in previous studies of colloids, where such potential
has been used for simulating the interaction of MPC fluids
with solid suspended particles [1,5,7,27–29].

Let ρS be the numerical surface density of particles in the
wall, which hereafter will be assumed to be uniform. Then,
the total potential at position~Ri will be

Φ
(

~Ri

)
= ρS

∫

S∗
dS′φ

(
~Ri, ~R ′

)
, (2)

whereS∗ denotes the set of all those points at the surface wall
satisfying the condition|~Ri − ~R ′| < σ̃.

Provided that the wall surface has no abrupt changes,
i.e., that its curvature is not significant in comparison with
the interaction radius, the integral in the right hand side of
Eq. (2) can be approximated by the mean valueΦ(~Ri) '
ρSS∗φ(~Ri, ~R∗), where~R∗ is the closest point of the surface
to the fluid particle. Notice that~R∗ is indeed a function of
~Ri, and that the geometry of the wall determines the spe-
cific form of this function. In the same limiting case,S∗

can be approximated at first order as the cross section result-
ing from the intersection of a solid sphere of radiusσ̃ with
a plane located at a distance|~Ri − ~R∗| from its center,i.e.,
S∗ ' π(σ̃2 − |~Ri − ~R∗|2). Using these approximations the
interaction potential between the wall and the MPC particle
located at~Ri, takes the form
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FIGURE 1. Schematic illustration of MPC particles (small circles)
moving close to a physical wall (black broad curve). The latter
consists of a surface distribution of particles. Vectors~Ri and ~R ′

represent, respectively, the position of an MPC and a wall particle.
The diameter of the interaction between fluid and wall particles
is σ̃.

and the force exerted by the wall on the MPC particle,
~F (~Ri) = −~∇Φ, can be written as

~F
(

~Ri

)
= −2

dΦ

d|~Ri − ~R∗|2

[ (
~Ri − ~R∗

)
− (xi − x∗) ~∇x∗

− (yi − y∗) ~∇y∗ − (zi − z∗) ~∇z∗
]
, (4)

which is, indeed, a continuous function of~Ri.
In the previous expression, the term proportional to

~Ri− ~R∗, represents the force exerted by a plane surface on the
fluid particle at~Ri, while the terms involving the derivatives
~∇x∗, ~∇y∗, and~∇z∗, represent contributions arising from the
curvature of the wall. When the latter is not significant,i.e.,
when the curvature radius of the wall is much larger than the
interaction diameter̃σ, those terms in Eq. (4) involving space
derivatives of the components of~R∗ can be neglected in com-
parison with the term~R− ~R∗, and Eq. (4) reduces to

~F
(

~Ri

)
= −2

dΦ

d|~Ri − ~R∗|2
(

~Ri − ~R∗
)

. (5)

In this approximation, the MPC particles are assumed to
interact with a wall that at the local level is a plane whose
normal points along~Ri − ~R∗. Although Eq. (4) is, in fact,
more general than Eq. (5), it is important to notice that for
the specific case of a cylindrical wall to be studied in this pa-
per, these two expressions coincide. This can be verified by
noticing that in this casex∗ = R0xi/ri, y∗ = R0yi/ri,

and z∗ = zi, where R0 is the radius of the cavity and
ri = (x2

i +y2
i )1/2. It is worth mentioning that Eqs. (4) and (5)

represent purely repulsive conservative forces. Thus, when
they are applied, the confining wall acts as a smooth surface,
because any incoming fluid particle is reflected back into the
bulk system with reversed momentum along the normal vec-
tor, but unchanged tangential momentum. Consequently, if
the confining wall has no irregularities, Eqs. (4) and (5) can
be used to simulate only surfaces with slip boundary con-
ditions [32, 36, 37]. It has been shown in Refs. 36 and 37
that rough surfaces can be simulated by including a tangen-
tial component of the force. With this purpose, forces given
by Eqs. (4) or (5), are applied in the opposite direction to
that of the velocities of the incoming particles. This method
is equivalent to produce local imperfections in the confining
wall. With this modification, the MPC particles that come
into the region of interaction with the wall, face local barriers
whose orientations depend on the velocities of the particles
themselves. In this new scheme, the confining wall is re-
placed by the surface defining the interaction region and the
force applied on the incoming particles is calculated from

~F = −F
(

~Ri

)
v̂in, (6)

whereF (~Ri) is the magnitude of the force given by Eqs. (3)
and (4), or (5), and̂vin is the unitary vector in the direction
of the incoming velocity. It should be remarked that since
forces given by Eqs. (4) and (5) are conservative, the veloc-
ities of the particles after the interaction with the wall will
have the same magnitude than the incoming velocities, but
opposite direction. Thus, this procedure will yield similar re-
sults to those given by the use the simple bounce-back rule in
hard-wall methods, where surfaces with partial slip are simu-
lated. Therefore, with the purpose of obtaining fluid-wall in-
teractions with no slip boundary conditions, it is necessary to
incorporate in the simulation scheme a procedure for increas-
ing the tangential stress at the surface. In Ref. 37, this has
been done by explicitly including forces parallel to the con-
fining walls. Here, we will follow an alternative approach,
by applying wall forces just as they are given by Eq. (6), and
allowing the extra needed tangential stress to be incorporated
during the collision step with virtual MPC particles, which
will be described in detail in the following section.

3. MPC algorithm for simulation of cylindri-
cal Poiseuille flow

We conducted a series of simulations in which, under studied
conditions, the resulting behavior of the flow was found to
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be steady and isothermal. We considered a total ofN MPC
point particles of massm, confined in a cylindrical channel of
radiusR0. The long axis of this channel coincides with the
z axis of a Cartesian reference frame. In the following,Lz

will represent the length of the cylinder. In order to suit this
geometry to the requirements of the MPC algorithm,R0 and
Lz were chosen asR0 = nra, andLz = nza, respectively,
where bothnr andnz are integers, anda is the unitary dis-
tance. The boundary particles that conformed the confining
wall, were distributed along the cylinder, at a radial distance
R0 + σ̃. In this manner, the set of MPC particles that do
not interact with the wall particles, occupied a total volume
πR2

0Lz. Finally, an external uniform axial pressure gradient
with magnitudeP ′, was considered to exert a force on each
fluid particle inside this volume.

The fluid evolved in time according to a hybrid scheme
combining MD and MPC. The former allowed us to simu-
late the detailed motion of the fluid particles and took care
of their interaction with the confining wall. The latter con-
sidered the interaction between the fluid particles in a coarse-
grained fashion allowing us to incorporate collective hydro-
dynamic effects. Due to the presence of the confining cavity,
our simulation scheme had particular features differing from
usual implementations of MPC that will be discussed in de-
tail now.

It should be remembered that typical MD-MPC simula-
tions proceed in two main steps, commonly referred as the
streaming and collision steps. During streaming, the posi-
tions and velocities of the MPC particles are updated accord-
ing to the velocity Sẗormer-Verlet scheme, applied on a short
time step of size∆tMD [4]. Thus, if vectors~Ri and~vi, for
i = 1, 2, . . . ,N , represent the positions and velocities of the
MPC particles, respectively, we have

~Ri (t + ∆tMD)=~Ri (t)

+∆tMD ~vi (t) +
(∆tMD)2

2m
~Fi (t) , (7)

and

~vi (t + ∆tMD) = ~vi (t)

+
∆tMD

2m

[
~Fi (t + ∆tMD) + ~Fi (t)

]
, (8)

where ~Fi denotes the total force on theith particle, i.e.,
the sum of the external pressure gradient and the confin-
ing forces. In order to calculate the latter, we applied
Eqs. (3) and (5) where the quantitiesv̂in and ~R∗ were nu-
merically determined according to the procedure illustrated
in Fig. 2. There, we show an MPC particle located in
the bulk system at timet − ∆tMD , which is observed to
get into the interaction region at timet. First, the ve-
locity of such particle is approximated as the difference,
~vi(t) = (~Ri(t)− ~Ri(t−∆tMD))∆tMD , from which the direc-
tion of the force can be determined asv̂in = ~vi (t) / |~vi (t)|.

On the other hand,~R∗ can be written in the form
~R∗ = ~Rp + σ̃v̂in, where~Rp denotes the point where the par-

FIGURE 2. Quantities used to calculate the force exerted by the
confining cylindrical surface and the fluid particles.

ticle crosses the interaction surface, which is written as
~Rp = h(~Ri(t) − ~Ri(t − ∆tMD)). Finally, the factorh in
the last equality is determined from the condition that~Rp is a
point of the cylindrical surface,i.e. R2

p,x + R2
p,y = R2

0.
The characteristic collision step of MPC was applied pe-

riodically after performingnMD MD integration steps,i.e., at
time intervals of size∆t = nMD∆tMD , wherenMD is an in-
teger. The collision step required to subdivide the simulation
box in cells of volumea3, where interparticle collisions were
simulated. With this purpose, the center of mass velocity of
each cell was calculated and particles within the same cell
were forced to exchange their velocities according to

~v ′i = ~vc.m. + R (α; n̂) · [~vi − ~vc.m.] , (9)

where~v ′i and~vi denote the velocities of theith particle after
and before collision, respectively;~vc.m. the center of mass ve-
locity of the cell; andR (α; n̂) a stochastic rotation matrix,
which rotates velocities by an angleα around a random axis
n̂. It is worth stressing thatα is a parameter whose value
is fixed through the whole simulation, whilên is sampled in
each cell at every collision step by randomly selecting a point
on the surface of a sphere with unit radius. It was noticed by
Ihle and Kroll that the presence of collision cells introduce an
artificially fixed frame of reference, which breaks the prop-
erty of Galilean invariance and leads to a breakdown of the
molecular chaos assumption [15,16]. Thus, in order to restore
this property, a uniform random displacement of the cells
should be implemented, before collisions take place [15,16].

In the presence of confining surfaces, both the division
of the system into cells and the subsequent random displace-
ment of these cells, must be implemented with caution. The
reason is that cells near the surfaces might be partially empty
and collisions inside them might take place as in a fluid
with lower density, thus yielding different physical properties
than in the interior cells [33]. This problem could be solved
by introducingvirtual particles that fill the partially empty
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FIGURE 3. Schematic illustration of the procedure used to intro-
duce virtual particles. The system is extended to a prism of vol-
ume(2nx + 1) (2ny + 1) nza3, and the space left by real particles
(black filled circles) is filled with virtual particles (empty circles).
Virtual particles are introduced at random positions in the empty
space. The number of virtual particles is chosen such that the den-
sity is continuous over the whole extended system.

cells and help collisions to be performed at the right average
density. In order to introduce virtual particles in our simu-
lations, we followed the procedure schematically shown in
Fig. 3. First, we extended the system to a rectangular prism
with volume (2nr + 1)2 nza

3. Then, the space outside the
cylindrical cavity was filled with virtual particles of massm.
Virtual particles were uniformly distributed in the space out-
side the cylinder using a Monte Carlo sampling scheme. In
this work, we decided to incorporate the virtual particles with
velocities selected according to two different schemes, here-
after referred as the simulation schemes I and II.

In scheme I, the velocity of each virtual particle was sam-
pled from a Gaussian distribution with zero mean and the
standard deviation dictated by the equipartition law. We will
show in Sec. 4 that this procedure yields flow inside the cylin-
der with partial slip boundary conditions.

In the simulation scheme II, we calculated first the center
of mass velocity of the bulk particles enclosed in the region
between the radiiR0 − a/2 andR0. As it could be expected,
this average velocity was found to vanish in thex andy direc-
tion, but to be different from zero,̄v, along thez axis. Then,
virtual particles were introduced with velocities taken from a
Gaussian distribution with the same standard deviation as in
scheme I, centered at the velocity(0, 0,−κv̄). The quantity
κ will be considered an adjustable parameter and, indeed, it
will be shown in Sec. 4 that it can be tuned to obtain simula-
tions of flow with stick boundary conditions.

At this point it is convenient to notice that spatially un-
restricted MPC fluids have a total kinematic viscosity that
can be written in the formν = νcol + νkin, whereνcol and

νkin represent contributions due to the streaming (kinetic) and
collisional steps of MPC, respectively. In terms of the inde-
pendent simulation parameters these quantities read as

νcol =
a2

18N∆t

(
N − 1 + e−N

)
(1− cos (α)) , (10)

νkin =
kBT∆t

2m

×
[

5N

(N−1+e−N ) (2− cos (α)− cos (2α))
− 1

]
, (11)

respectively, whereN is the numerical density of MPC parti-
cles,kB is the Boltzmann constant, andT is the temperature
of the simulated fluid. In the case of our implementation,
in which the MPC fluid is confined, the stress tensor should
have contributions arising from the interaction with the wall
and from the collision with the virtual particles. The former
should modify the kinetic viscosity coefficient, while the lat-
ter should change the collisional viscosity of the fluid.

The precise form of the changes in the viscosity of the
MPC fluid induced by confinement, could be obtained from
a kinetic model similar to the one that has been carried out in
Ref. 33 for the case of a fluid confined between two parallel
plates. In this paper we will follow an alternative approach
and obtain the viscosity of the confined fluid empirically from
the results of our numerical experiments. We will show that
corrections to Eqs. (10) and (11), due to interaction with the
wall and collisions with the virtual particles are small indeed.

In addition, it is important to mention that particles inter-
acting with the cylindrical confining wall, i.e. those withx
andy coordinates satisfyingx2 + y2 > R2

0, were excluded
from participation in the collision step, since their trajectories
would be deflected by collisions and they would escape from
the simulation box through the confining walls.

We implemented periodic boundary conditions along the
z axis. In addition, in order order to prevent viscous heating
of the simulated system under flow, we applied a thermostat-
ting procedure after each collision step. This thermostat was
based on a local velocity rescale that fixed the temperature of
the system at the valueT [27–29].

Numerical experiments were performed by sorting the
MPC particles into the cylindrical cavity with uniformly dis-
tributed random positions and velocities. No initial overlap-
ping existed between the fluid particles and the confining sur-
face, the total momentum of the system was fixed to zero,
and its total energy was adjusted to the value dictated by the
equipartition law at temperatureT . Then, the hybrid MD-
MPC algorithm was applied to the ensemble of fluid particles
subjected to the external fieldP ′ and to the constraining sur-
face forces. This thermalization process was applied over105

steps of the MD-MPC algorithm after which we observed that
the proper distribution of velocities and hydrodynamic fields
were established. Finally, a simulation stage was conducted
over2× 105 steps, that allowed us to calculate the stationary
hydrodynamic fields in the system. In this work, we will
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FIGURE 4. Velocity profiles obtained from simulations of confined MPC fluids in a cylindrical cavity, performed according with scheme I at
collision anglesα = 15◦, a, andα = 180◦, b. Symbols correspond to numerical results while continuous surfaces have been obtained from
a least squares fit based on Eq. (12).

restrict the analysis to the study of the velocity field which
will be calculated as the time average of the center of mass
velocity of the MPC collision cells.

The independent parameters of the simulations were the
length of the MPC cells,a; the time-step between MPC col-
lisions,∆t; the average number of particles per cell,N ; the
thermal energy,kBT ; the MPC rotation angle,α; and the
mass of the individual MPC particles,m. All our simula-
tions were performed by fixing these parameters ata = 1,
kBT = 1, ∆t = 0.05, andm = 1. Notice that here, as well
in the rest of the paper, we will use simulation units (s.u.)
instead of physical units. The parameters characterizing the
interaction between the particles and the confining walls were
chosen asε = kBT/2, σ = a/2, andρS = 1/2a2. The MD
time-step was chosen as∆tMD = 0.005, for which no insta-
bilities of the simulations were observed.

4. Results

We shall present here the results obtained from the applica-
tion of the algorithm described in Sec. 3. First, in Sec. 4.1, we
will present the results obtained from the simulation scheme
I, in which virtual particles are introduced with zero mean ve-
locity, and show that this scheme yields cylindrical Poiseuille
flow with partial slip boundary conditions. Afterwards, in
Sec. 4.2, we will describe how this method can be modified
by introducing virtual particles with nonzero mean velocity
(simulation scheme II), in order to simulate flow with stick
boundary conditions.

4.1. Simulation of cylindrical Poiseuille flow with slip
boundary conditions

The velocity profile expected for the simulation geometry
introduced in Sec. 3, is the classical cylindrical Poiseuille
flow [38], which can be written in the form

vz (x, y) = v0 +
P ′

4ρν

(
R2

0 − r2
)
, (12)

wherev0 is the velocity at the boundary surface,ν is the kine-
matic viscosity of the fluid, andr =

(
x2 + y2

)1/2
, is the ra-

dial polar coordinate. Due to the symmetry of the system,
velocity components in thex and y directions vanish,i.e.,
vx = vy = 0. These equations, together with the condition
of uniform density and temperature, are the solutions of the
hydrodynamic equations for a viscous fluid moving through a
cylinder due to the pressure gradientP ′, and kept at constant
temperature by an external thermostat.

As a first result, we notice that our numerical imple-
mentation produces flows that can be very well adjusted by
Eq. (12). In order to illustrate the validity of this assertion,
we present the results from a first series of experiments for
MPC fluids confined in a cylinder with fixed size defined
by R0 = 8 a, andLz = 32 a. The numerical experiments
were carried out with a total number of16384 MPC parti-
cles acted by a pressure gradient of magnitudeP ′ = 0.4.
We performed simulations varying the MPC collision angle,
α, at twelve different values uniformly distributed from15◦

to 180◦. This numerical setup was intended to test the va-
lidity of the method for small, as well as large, values ofα.
In the former case, the simulated fluid is expected to be in
the so-called gas regime, where contributions to the material
properties of the fluid arising from streaming dynamics (ki-
netic), dominate over contributions due to collisions [9, 30].
In the opposite case,i.e., whenα is large, the interaction be-
tween MPC particles is stronger and the fluid behaves in the
so-called liquid regime, where collisional effects are larger
and dominate over kinetic effects. Figures 4 a) and b) show
the velocity profiles obtained for the extreme casesα = 15◦

andα = 180◦, respectively. There, points correspond to the
results from simulations while the continuous surfaces were
obtained from a simple least squares fit of the results, based
on Eq. (12), usingv0 andν as the adjustable parameters.

Rev. Mex. Fis.62 (2016) 73–82



SIMULATION OF CYLINDRICAL POISEUILLE FLOW IN MULTIPARTICLE COLLISION DYNAMICS USING. . . 79

FIGURE 5. Estimated viscosity of the simulated MPC fluid con-
fined in cylinders with different radiiR0, as function of the col-
lision angleα. Symbols represent results from numerical simula-
tions while the continuous line corresponds to the analytical vis-
cosity obtained from Eqs. (10) and (11).

TABLE I. Estimated values ofv0 andν for simulations of cylindri-
cal Poiseuille flow in MPC fluids with different collision angles,α.
Fluids were confined in a pipe with radiusR0 = 8 a, and subjected
to an external pressure gradientP ′ = 0.4. The complete set of
remaining simulation parameters is described through the text.

Collision Slip Kinematic

angle,α velocity,v0 viscosity,ν

15◦ 0.0126 0.692

30◦ 0.0019 0.361

45◦ 0.0309 0.379

60◦ 0.0399 0.489

75◦ 0.0337 0.639

90◦ 0.0292 0.805

105◦ 0.0267 0.987

120◦ 0.0223 1.146

135◦ 0.0220 1.303

150◦ 0.0201 1.422

165◦ 0.0180 1.486

180◦ 0.0178 1.510

In all the experiments of this series, the established sta-
tionary velocity profiles could be very well adjusted in this
manner. In Table I, we summarize the results of the fitting
procedure. There, we present the estimated values ofv0 andν
as function of the collision angleα. Our results show that the
scheme I simulates fluids with partial slip boundary condi-
tions since, in general,v0 was found to be different from zero.
More importantly, this procedure allowed us to obtain an em-
pirical estimation of the viscosity of the confined MPC fluid,
which is plotted in Fig. 5 as function ofα. In Fig. 5, we com-
pare the results from our numerical experiments with the ana-
lytical value of the kinematic viscosity,ν = νcol+νkin, where

νcol and νkin are given in terms of the simulation parame-
ters by Eqs. (10) and (11), respectively. In Fig. 5, we have
also included the results from60 additional experiments car-
ried with the same parameters described above but in systems
with different sizes defined byR0 = 4, 12, 16, 20, and24.
We notice that the numerical and theoretical results are in
very good qualitative agreement. Indeed, the viscosity of the
simulated systems fits very well the analytical expressions for
large values of the collision angleα & 120◦, but exhibits de-
viations in simulations carried out in the gas regime. This
suggests that the confining cylindrical surface modifies the
kinematic viscosity of the simulated MPC fluid but has no
appreciable effect on the collisional contribution.

The hydrodynamic regime corresponding to the set of
simulations presented so far, can be identified more clearly in
terms of the Reynolds number, Re, which, for a given flow,
quantifies the relevance of the inertial forces with respect to
the viscous effects. For flow in a circular pipe, Re can be
defined as

Re=
v̄zDH

ν
, (13)

where v̄z is the average flow velocity along the pipe and
DH = 2R0, is the so-called hydraulic diameter. In our sim-
ulations,v̄z can be calculated straightforwardly allowing us
to estimate the values of Re corresponding to each produced
flow. It was observed that Re varied in a rather wide range
of values, from Re= 0.3872, for α = 180◦ andR0 = 4, to
Re = 952.17, for α = 30◦ andR0 = 24. Thus, we notice
that our simulations covered flows with Reynolds number ex-
tending over three orders of magnitude and, since turbulence
in a cylindrical pipe is expected for Re' 2000 [39], we con-
clude that our simulations were performed in the laminar flow
regime.

Another dimensionless number that can be used to char-
acterize the hydrodynamic regime is the Schmidt number, Sc,
defined as Sc= ν/D, whereD is the diffusion coefficient.
This quantity represents the ratio of the rate of diffusive mo-
mentum transfer to the rate of diffusive mass transfer and,
therefore, indicates whether momentum transfer in a flow oc-
curs by mass transport, Sc∼ 1, or by molecular collisions,
Sc > 1. In MPC,D can be obtained in terms of the simula-
tion parameters from the equation [30]

D =
kBT∆t

2m

[
3N

(1− cos (α)) (N − 1 + e−N )
− 1

]
. (14)

This equation, together with the estimated values of the kine-
matic viscosity can be used to determine the values of Sc.
We found that our experiments covered flows with Schmidt
numbers ranging from Sc= 0.2021, for α = 15◦, to
Sc= 44.7134, whenα = 180◦.

4.2. Simulation of cylindrical Poiseuille flow with stick
boundary conditions

It has been described in Sec. 3 that in the simulation
scheme II, virtual particles at partially empty cells are intro-
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TABLE II. Parameterκ estimated from simulations performed with different values ofα, R0 andP ′. This parameter was obtained from a
steepest descendant method that stopped when simulations produced flows with velocities at the boundaries smaller that0.001. All quantities
are given in simulation units.

P ′ = 0.4

Collision angle,α R0 = 8a R0 = 12a R0 = 16a R0 = 20a R0 = 24a

135◦ 0.52 0.68 0.56 0.41 0.45

150◦ 0.51 0.66 0.58 0.41 0.42

165◦ 0.54 0.67 0.56 0.41 0.43

180◦ 0.53 0.67 0.56 0.41 0.41

P ′ = 1.2

Collision angle,α R0 = 8a R0 = 12a R0 = 16a R0 = 20a R0 = 24a

135◦ 0.49 0.66 0.59 0.61 0.89

150◦ 0.48 0.65 0.56 0.53 0.73

165◦ 0.48 0.64 0.55 0.49 0.64

180◦ 0.47 0.64 0.54 0.48 0.61

duced with a mean velocity in thez direction given by−κv̄,
whereκ 6= 0. The momentum exchange due to collisions be-
tween fluid particles and virtual particles close to the cylin-
drical wall, can be controlled by varying the value of the pa-
rameterκ. This helps to reduce or increase the velocity of the
fluid particles near the surface and, thus, to adjust the value
of the velocity field at the boundary. In this work, we adopt
an empirical approach to find the values of the parameterκ
that fit the flow velocity at the boundary,v0, close to0. With
this purpose, we implemented a simple steepest descent pro-
cedure and, for given values ofα, R0, andP ′, we carried out
simulations varyingκ in increments of size∆κ = ±0.01, un-
til |v0| was found to be smaller than an error parameter with
fixed magnitude0.001.

In a first series of experiments, we observed thatκ ex-
hibited strong variations for small values of the MPC col-
lision angle, more precisely forα . 120◦. Thus, in or-
der to simplify the analysis, we restricted ourselves to es-
timateκ only in the case of MPC dynamics dominated by
collisional effects and considered solely simulations with
α = 135◦, 150◦, 165◦, and 180◦. The dependence ofκ
on the size of the system and the external pressure gradient
was explored by performing simulations with the parameters
R0 = 8, 12, 16, 20, and24; andP ′ = 0.4 and1.2. This
gave a total of40 additional experiments performed to de-
termineκ as function ofα, R0 andP ′. The results of these
experiments are summarized in Table II. There, it can be seen
thatκ does not show a strong dependence onα for small val-
ues ofP ′ (∼ 0.4), but changes considerably as function of
the collision angle whenP ′ is large (∼ 1.2). In a first ap-
proximation, in order to obtain a simplified description of the
problem, we consideredκ to be independent ofα, and the
resulting functionκ = κ (R0, P

′), was approximated by tak-
ing the average over the results obtained at different collision
angles. This procedure yielded eight numerical estimations

FIGURE 6. Parameterκ used in simulation scheme II to fix the av-
erage velocity of virtual particles as function the size of the system,
R0, and the imposed pressure gradientP ′. Symbols correspond to
the values obtained from simulations as they are given in Table II,
after averaging over the collision angle,α. The continuous sur-
face corresponds to the fit of the experimental data represented by
Eq.(16).

of κ (R0, P
′), which are shown as symbols in the plot of

Fig. 6. There, it can be observed that the behavior ofκ at
the constant valuesP ′ = 0.4, andP ′ = 1.2, is very similar,
and since in both casesκ has two local extrema with respect
to R0, it was suggested to approximate it as

κ = a0 (P ′)+a1 (P ′)R0+a2 (P ′)R2
0+a3 (P ′)R3

0, (15)

where the parametersai, for i = 1, 2, 3, 4, for fixed
P ′ = 0.4 andP ′ = 1.2, were obtained from a nonlinear
curve fitting procedure, although their explicit values are not
presented her for brevity. In the simplest case, the
general functionsai(P ′), can be assumed to be linear,i.e.,
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FIGURE 7. Velocity profiles obtained from simulations of confined MPC fluids in a cylindrical cavity, performed according with scheme II.
Caseacorresponds to simulation parameters{α = 140◦, R0 = 14, P ′ = 0.6}, while in caseb we have used{α = 155◦, R0 = 18, P ′ = 0.8}.
Symbols represent the numerical results while continuous surfaces correspond to the cylindrical Poiseuille flow with no slip boundary con-
ditions.

ai (P ′) = bi +miP
′, and the values the quantitiesbi andmi

can be finally obtained from those ofai (0.4) andai (1.2).
The overall result of this procedure can be summarized in

the numerical approximation

κ (R0, P
′) = −1.3455− 0.08125 P ′

+ (0.4196 + 0.01292 P ′)R0

− (0.0270 + 0.00181 P ′)R2
0

+ (0.0005 + 0.00009 P ′)R3
0, (16)

and this function is represented as the continuous surface in
Fig. 6. We stress that this function is expected to work well
in the limit of large collision angles,α ∈ (135◦, 180◦), and
moderate pressure gradientsP ′ ∼ 0.4.

In order to illustrate the applicability of this approxima-
tion, we considered three final simulations performed with
the following sets of parameters{α = 140◦, R0 = 14,
P ′ = 0.6}, {α = 155◦, R0 = 18, P ′ = 0.8}, and
{α = 170◦, R0 = 22, P ′ = 1.0}. Simulations were car-
ried out following the simulation scheme II, where the fac-
tor κ that determined the velocity of the virtual particles was
calculated according to Eq. (16). The three considered cases
yielded cylindrical Poiseuille flows with boundary velocities
v0 = −1.2×10−4,−1.7×10−3 and0.18, respectively. These
results illustrate that the proposed method is reliable for pro-
ducing flow with no slip boundary conditions in the expected
range of simulation parameters. In fact, for small (P ′ = 0.4),
and medium pressure gradients (P ′ = 0.8), the simulated
flows had a velocity at the boundary surface that were just
0.006% and0.04%, respectively, of the maximum velocity in
the pipe. The velocity profiles obtained from these two sim-
ulations are presented in Figs. 7 a) and b), where they are
compared with the cylindrical Poiseuille flow, Eq. (12), eval-
uated atv0 = 0 andν given by Eqs. (10) and (11). These
figures show that the numerical results in the corresponding

range are in very good agreement with the expected cylindri-
cal Poiseuille flow with no slip boundary conditions.

For large values of the imposed gradient, the flow veloc-
ity at the boundary surface was found to be1.8% of the max-
imum velocity in the pipe. This deviation could be expected
since Eq. (16) was obtained under the assumption that the
factorκ was independent ofα, a situation that is not fulfilled
in the case of large values ofP ′.

5. Discussion

We have presented a method for simulating cylindrical
Poiseuille flow in MPC fluids. In this method, the pipe in
which the MPC fluid is kept, is modeled as a physical barrier
that interacts by means of an explicit force with the parti-
cles of the confined fluid. One important feature of the pro-
posed model is that, starting from the microscopic details of
the confinement wall, we have proposed a novel integrated
equation for its interaction with the fluid that involves its ge-
ometrical properties. This feature will be exploited in sub-
sequent publications where we will analyze MPC fluids con-
fined in complex geometries,e.g., concentric cylinders and
mirror symmetric 3D channels.

The problem of confining MPC fluids by means of ex-
plicit forces presented difficulties that are also found when
these fluids are confined by hard walls. Specifically, it was
necessary to propose an algorithm in which the integrated
scheme for the confinement force could be applied and, as
well, allowed us to incorporate virtual particles at the MPC
collision step and to eliminate partial slip at the surface of
fluid-solid interaction.

We have used two different implementations referred as
the simulation schemes I and II. In the former, virtual parti-
cles were introduced with zero mean velocity and cylindrical
Poiseuille flow was found to present partial slip at the bound-
ary. In scheme II, the velocities of the virtual particles were
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adjusted to yield flow with stick boundary conditions. The
approach followed to achieve this adjustment, summarized
in Eq. (16), was completely empirical. This restricts the ap-
plicability of our method to the range of parameters used to
derive this expression, namely, to the liquid-like regime of
MPC, and to flows driven by moderate pressure gradients.
However, we consider that this is an acceptable range of val-
ues, since most of current applications of MPC are carried
out with parameters similar to those used in the present study.
The reliability of the method was shown by performing inde-
pendent simulations where slip velocity was found to be less
than1% of the maximum flow velocity.

A major issue that we have left open in this work concerns
the study of the performance of our simulation method based
on explicit forces, with respect to the one given by other es-
tablished techniques,e.g., simulation of Poiseuille flow based
on the application of bounce-back rules. From the point of

view of the computational efficiency, the main difference be-
tween our method and those based on hard walls, is the cost
that must be paid during the streaming step by the application
of the MD integration scheme. This requires to subdivide
the MPC collision time step in smaller time intervals, where
forces on particles due to the presence of the wall must be
calculated. Thus, it is expected that, indeed, our implemen-
tation will exhibit a lower performance than methods based
on hard walls. Nevertheless, the advantage of our scheme is
that it is in fact closer to simulate a real situation since con-
finement of fluids by solids is always mediated by interaction
potentials, while hard walls are just idealizations.
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