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Deformation of an elastic cylindrical tube filled
with water and a dry granular material

A. Medina
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The deformation of a vertical thin-walled tube filled with a liquid or a non-cohesive granular material is investigated theoretically and
experimentally. Experiments using latex tubes filled with water or spherical glass beads have been conducted and the results were compared to
theoretical results derived from the Janssen model. The results obtained suggest that soft elastic tubes could provide a simple and convenient
means to investigate the forces that arise within different materials.
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1. Introduction

In 1895, H. A. Janssen, a German engineer concerned with
the structural design of silos for corn storage, found the laws
giving the pressures of dry, non-cohesive granular media on
the vertical walls and the base of a vertical bin [1]. These
pressures are not the same, contrary to the case a normal
liquid. The model put forward by Janssen, and extensions
thereof, is widely used today for the design of silos contain-
ing granular materials [2-5].

Pressures in quiescent liquids and in granular materials
at rest are quite different. Consider a vertical cylindrical con-
tainer filled with a granular material. The vertical pressure on
an horizontal plane at a certain depth below the surface of the
material does not increase linearly with depth, as it would do
for a normal liquid. Instead, the Janssen’s model predicts that
this pressure tends to a constant value independent of depth.
The origin of this behavior is in the static friction between the
grains and the walls of the container. Due to this friction, the
container walls can support part of the weight of the material.

The validity and possible shortcomings of the simple the-
ory underlying the original Janssen model have been exten-
sively tested experimentally and numerically, but, essentially,
in the context of the pressure and force measurements [2,4-6].

The purpose of this work is to explore the possibility of
using the elastic deformation of the wall of a container to
probe the distribution of pressure in the material filling the

container. Specifically, we analyze how an elastic, latex-
walled vertical tube is deformed by the pressure of a column
of liquid or by the pressure of a column of granular material
that fills the tube up to a certain heightH.

Latex is well suited for our purposes because it is a soft
elastic material with a very wide regime of linear elastic de-
formation [7]. This property allows visualizing, in a non de-
structive testing, the deformations originated by the hydro-
static pressure of a liquid or the stresses of a granular ma-
terial. Comparison between both deformations clarifies the
way the pressure distributes in each material.

The determination of deformations is also a preliminary
step toward an analysis of the dynamic pressures and wall
deformations arising during the flow of a granular material
under the action of gravity. This is a very difficult problem
due to the strong interaction between the silo structure and
the moving granular material [8] and it will not be tackled
here.

The paper is organized as follows. In next section the
Janssen’s original description of the pressures in a vertical
tube is presented. Section 3 is devoted to the analysis of the
elastic deformation of a thin-walled tube made of an elastic
material due to a hydrostatic or granular load. Section 4 re-
ports a series of experiments where the deformation of elastic
tubes filled with water or with spherical glass beads is mea-
sured and compared with the theoretical results. Finally, the
main conclusions of the work are summarized in Sec. 5.
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FIGURE 1. Schematic of the tube filled with a granular material.
The dimensions of the tube and the vertical (pz(z)) and horizontal
(pr(z)) pressures are indicated.

2. Pressures of a granular medium in a verti-
cal container

Consider a cylindrical vertical tube of radiusr0 filled with a
dry granular material to a certain heightH (Fig. 1). Take a
horizontal section of the tube at a depthz in the granular ma-
terial. According to Janssen’s model, the force exerted per
unit area of this section by the material above it on the ma-
terial below is a vertical pressurepz(z). This pressure is not
equal to the horizontal pressurepr(z) of the material on the
wall of the tube at the same depth, but the two pressures are
linearly related [1-5]:

pr(z) = Kpz(z), (1)

whereK, named the Janssen parameter, is a constant in-
dependent ofz that characterizes the conversion of vertical
stress into horizontal stress within the granulate.

The horizontal pressure acting on the wall of the tube
causes a friction stressτ between the wall and the granular
material. A simple balance of the forces acting on a slab of
the granular material reads

πr2
0

dpz

dz
= πr2

0ρg − 2πr0τ, (2)

whereρ is the bulk density of the granular material, assumed
to be independent ofz, andg is the acceleration due to grav-
ity.

In the Janssen’s model, the vertical friction stress is as-
sumed to be given by Coulomb’s law,τ = µwpr, with a con-
stant static friction coefficientµw. The solution of Eq. (2)
with the conditionpz(0) = 0 is then [1–4]

pz(z) = PJ (z) (3)

with

P
J

(z) = ρgλ
[
1− exp

(
− z

λ

)]
and λ =

r0

2µwK
. (4)

Equation (4) shows that the vertical pressure first in-
creases linearly withz, aspz(z) ≈ ρgz for z/λ ¿ 1, and
tends to the limiting valueλρg for z/λ À 1. The lengthλ
is the characteristic size of the region where the pressure un-
dergoes this transition. In laboratory columnsλ ∼= 1 cm [9],
so that the wall of the container supports most of the weight
of the grains whenH À 1 cm.

3. Deformation of the elastic wall

The deformations caused by the horizontal pressurepr(z)
and the vertical shear stressτ depend on the mechanical prop-
erties of the wall of the tube. These deformations are com-
puted here for a thin-walled open tube in the framework of
the linear theory of elasticity. Lete ¿ r0 be the thick-
ness of the wall. The radial pressurepr produces an ap-
proximately uniaxial state of stress in which the only nonzero
stress component is the circumferential tractionprr0/e; see,
e.g., Ref. 10. Hence, by Hooke’s law,E δr/r0 = prr0/e,
whereE is the elasticity modulus of the material of the wall
andδr = r(z)− r0 is the variation of the tube radius. Thus,

r(z) = r0

(
1 +

pr(z)
eE/r0

)
. (5)

When the tube is filled with a liquid, the hydrostatic pres-
sure referred to the pressure of the gas outside the tube is
pr(z) = ρgz [11], which leads to a linear variation of the
dimensionless radius,r(z)/r0, of the tube with depth,

r(z)
r0

=
(
1 +

ρgr0z

eE

)
. (6)

The volume of the deformed tube filled with liquid is

V =

H∫

0

πr2dz =
πr0eE

3ρg

[(
1 +

ρgr0H

eE

)3

− 1

]
, (7)

which is a relation between the volume of liquid and its
height.

When the tube is filled with a granular medium, the
Janssen model (1) and (3) predicts the exponentially varying
dimensionless radius

r(z)
r0

=
[
1 +

Kr0

eE
P

J
(z)

]

=
(

1 +
Kr0ρgλ

eE
[1− exp (−z/λ)]

)
, (8)
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For large values ofz/λ, the non dimensional radius tends to
the constant value

r(z)
r0

→
[
1 +

ρgr2
0

2µwEe

]
. (9)

The volume of the deformed tube can be easily computed but
its analytical expression is rather cumbersome and will not
be reproduced here.

4. Experiments

In this section we describe and analyze some experiments
performed to characterize the deformation of soft elastic
tubes filled with water or with spherical glass beads, and to
measure the compression force acting on the wall in the sec-
ond case. The experimental results are compared with the
theoretical results of the previous sections. Latex tubes were
used because of the very wide range of linear deformation
displayed by this material [7]. The tubes used in the experi-
ments are 0.20 m long with wall thicknesse = 7 × 10−5 m
and internal radiusr0 = 1.48× 10−2 m. The elasticity mod-
ulus isE = 874.5 kPa [7]. The tubes are closed at the bot-
tom and open at the top. They were filled with water or with
spherical glass beads of mean diameterdg = 1 mm by gen-
tly pouring these materials from top. Solid toroidal disks of
radius slightly larger thanr0 were fitted at the two ends of
the tubes to allow clamping them to external supports and
stretching them (see Fig. 2). These disks cause deformations
near the ends of the tubes that are not accounted for in the
previous section. The region where the experimental results
can be meaningfully compared to the theoretical predictions

FIGURE 2. Pictures of deformed latex tubes filled with (a) water
and (b) spherical glass beads. Red-coloured vertical lines were de-
picted to show the approximately symmetric shape of the pipe and
its relatively small deformation.

FIGURE 3. Theoretical deformation profiles,r(z)/r0 as a func-
tion of z, for a latex tube filled with water (dotted straight line)
obtained from Eq. (6) and glass beads (dashed curve) obtained
from Eq. (8). Symbols© correspond to the mean values of mea-
surements of the shape of tubes filled with water and symbols×
correspond to mean values of measurements of the shape of tubes
filled with glass beads. The line(r(z)/r0) = 1 corresponds to the
undeformed tube. Errors are of the size symbols.

extents from the upper level of the material (z = 0) to about
z = 0.12 m in the case of water andz = 0.09 m in the case
of glass beads. These points are marked by arrows in Fig. 2.

Typical pictures of tubes filled with water and with glass
beads are shown in Figs. 2(a) and 2(b), where clear differ-
ences between the two cases are apparent. Water causes a
radial deformation that increases approximately linearly with
depth, while the profile of a tube filled with glass beads is
nearly uniform over most of its length. The explanation of
this difference lies in the different manners in which the two
material distribute the pressures.

Figure 3 shows the experimental profiles of the deformed
tubes extracted from Fig. 2(a) and compares them with the
theoretical predictions (6) and (8). In the case of water
(ρ = 1000 kg/m3; circles in Fig. 3), the agreement between
the theoretical (Eq. (6)) and the experimental results is excel-
lent (we consider the fit as valid up toz = 12.00 cm because
no far from this point the deformation induced by the clamp
may affect the pipes shape), showing that the linear theory
of elasticity gives a good approximation to the deformation
induced by the hydrostatic pressure.

In the case of glass beads, some properties of the gran-
ular material must be determined or be specified before
Eq. (8) can be used. The beads are made of glass of density
ρg = 2500 kg/m3. The bulk density isρ = ηρg, where
η is a packing factor which for a granular column has been
reported to be aboutη = 0.64 for the case of dense pack-
ing of monodisperse spherical grains poured from top [12].
Consequently, the bulk density used in the calculation is
ρ = 1600 kg/m3. The friction coefficient between the glass
beads and the latex wall was measured with the tilting plate
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method,i.e., by laid a thin layer of the glass beads onto a hor-
izontal plate covered with latex and after the plate is slowly
tilted and the angle recorded at which the layer of grains
slides off [13]. It was found thatµw = 1. 27. Finally, the
value of the Janssen parameter is determined from the corre-
lation K = 1.1(1 − sin φ), whereφ is the angle of internal
friction [5]. In our experiment we found thatφ = 32◦ [14]
which was measured with the heap poured on flat surface
method [13], thereforeK = 0.51 and thusλ = 1.14 cm.

Figure 3 shows that the experimental deformation mea-
sured (by using a commercial software of digital pictures to
compute the shape) on Fig. 2(b) compares reasonably with
the theoretical prediction (8), when the aforementioned val-
ues of the properties of the medium are used. In Fig. 2(b)
the red-coloured vertical lines were depicted to show visu-
ally the approximately symmetric shape and the small defor-
mation of the elastic pipe. In this latest case a slight pixela-
tion (individual pixels are clearly discernible along the verti-
cal direction) is observed on the latex pipe image, however,
on average, mean values of measurements fit reasonably the
theoretical profile (dashed line), which we consider as valid
up toz = 9.00 cm due to presence of the clamp no far from

this point. Other possible origin of the apparent non uniform
deformation of the tube could be due to the inhomogeneity of
the thickness along its length, which is inherent to the man-
ufacture process of this type of commercial material (latex
condom).

5. Summary

An experimental and theoretical study has been presented of
the deformation of a vertical tube made of a soft elastic mate-
rial and filled with a liquid or a dry granular material. When
the tube is filled with a liquid, the measured deformation in-
creases linearly with depth in the liquid, in good agreement
with the prediction based on Hooke’s law. When the tube is
filled with a granular material, the deformation rapidly levels
to a constant value with increasing depth. This result is in
line with the prediction of Janssen’s model.
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