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Symmetries of the hamiltonian operator and constants of motion
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It is shown that, in the framework of non-relativistic quantum mechanics, any conserved Hermitian operator (which may depend explicitly
on the time) is the generator of a one-parameter group of unitary symmetries of the Hamiltonian and that, conversely, any one-parameter
family of unitary symmetries of the Hamiltonian is generated by a conserved Hermitian operator.
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Se muestra que, en el marco de la mecánica cúantica no relativista, cualquier operador hermitiano conservado (el cual puede depender
expĺıcitamente del tiempo) es el generador de un grupo uniparamétrico de simetŕıas unitarias del hamiltoniano y que, recı́procamente,
cualquier familia uniparaḿetrica de simetrı́as unitarias del hamiltoniano es generada por un operador hermitiano conservado.

Descriptores: Cantidades conservadas; simetrı́as.
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1. Introduction

The existence of a relationship between continuous sym-
metries and conservation laws is known in various areas of
physics such as classical mechanics, field theory and quan-
tum mechanics. The most widely known version of this rela-
tionship appears in the Lagrangian formulation, but its most
complete version is found in the Hamiltonian formulation of
classical mechanics where any constant of motion, without
exception, is associated with a group of canonical transfor-
mations that leave the Hamiltonian invariant.

Owing to the similarities between the standard formu-
lation of the non-relativistic quantum mechanics and the
Hamiltonian formulation of classical mechanics, one can ex-
pect a relationship between an arbitrary constant of motion
(that is, a Hermitian operator,A, satisfying the condition

i~
∂A

∂t
+ [A,H] = 0, (1)

whereH is the Hamiltonian operator of the system) and some
group of transformations that leave the Hamiltonian invari-
ant.

The constants of motion considered in most of the text-
books on quantum mechanics do not depend explicitly on the
time (see,e.g., Refs. 1 to 7). In that case, Eq. (1) reduces to
[A,H] = 0, which implies that

exp(isA/~) H exp(−isA/~) = H, (2)

for all s ∈ R; that is,H is invariant under the one-parameter
group of transformations generated byA (the transformation
exp(−isA/~) is unitary if A is Hermitian). Conversely, tak-
ing the derivative with respect tos, ats = 0, of both sides of

Eq. (2) one finds thatA commutes withH and, therefore, if
A does not depend on the time, thenA is conserved. It should
be pointed out that Refs. 8 and 9 also consider the Galilean
transformations, which are related to a constant of motion
that depends explicitly on the time (see Sec. 3.1, below).

The aim of this paper is to show that, with an appropriate
definition of the invariance of a Hamiltonian [that generalizes
Eq. (2)], any conserved operator is associated with a group
of unitary transformations that leave the Hamiltonian invari-
ant, and to give illustrative examples of this relationship. In
Sec. 2 we give the definition of the invariance of a Hamilto-
nian under a unitary transformation that may depend on the
time and then we demonstrate the main results of this paper,
establishing the connection between conserved operators and
one-parameter families of unitary transformations that leave
the Hamiltonian invariant. Section 3 contains several exam-
ples related to constants of motion that depend explicitly on
the time.

2. Invariance of a Hamiltonian under a uni-
tary transformation

We shall say that the unitary operatorU is a symmetry of the
HamiltonianH (or thatH is invariant underU ) if

U−1HU = H + i~U−1 ∂U

∂t
, (3)

so that ifψ is a solution of the Schrödinger equation, then
Uψ is also a solution
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i~
∂

∂t
(Uψ)−H(Uψ) =i~

(
∂U

∂t

)
ψ+U i~

∂ψ

∂t
−HUψ

=i~
(

∂U

∂t

)
ψ+UHψ−HUψ

=U

(
i~U−1 ∂U

∂t
+H−U−1HU

)
ψ

=0.

Note that, whenU does not depend on the time, condition (3)
reduces toHU = UH [cf. Eq. (2)].
Proposition. If H is invariant under a one-parameter family
of unitary transformations,Us, then, assuming thatU0 is the
identity operator,

A ≡ i~
(

Us
−1 ∂Us

∂s

)∣∣∣∣
s=0

(4)

is a constant of motion. (Note that the operatorsUs need not
form a group.)
Proof. If H is invariant under the transformationsUs then,
taking the derivatives with respect tos of both sides of

Us
−1 HUs = H + i~Us

−1 ∂

∂t
Us

ats = 0 [see Eq. (3)] we obtain

− 1
i~

AH + H
1
i~

A = i~
∂

∂t

(
1
i~

A

)
,

which means thatA is conserved [see Eq. (1)].
Conversely, any constant of motion generates a one-

parameter group of symmetries ofH.
Proposition. If the Hermitian operatorA is conserved, then
H is invariant under the one-parameter group of unitary
transformationsUs = exp(−isA/~).
Proof. If A is conserved, so it is any power ofA and, there-
fore,Us = exp(−isA/~) also satisfies Eq. (1), for any value
of the parameters, which amounts to say thatUs satisfies
Eq. (3).

3. Examples

In this section we give some examples related to the Proposi-
tions proved above. In these examples, the symmetry trans-
formations and the corresponding constants of motion de-
pend explicitly on the time.

3.1. Galilean transformations

The action of a Galilean transformation on the position and
momentum operators of a particle of massm is given by

Uv
−1xUv = x− vt, Uv

−1pUv = p−mv (5)

where the parameters has been replaced byv, which repre-
sents the relative velocity between two inertial frames. Dif-
ferentiating Eqs. (5) with respect tov atv = 0, we obtain

1
i~

[A, x] = −t,
1
i~

[A, p] = −m

[see Eq. (4)], which imply that

A = mx− pt + f(t), (6)

wheref(t) is a real-valued function oft only [cf. Ref. 8,
Sec. 7.3, Eq. (61)]. The functionf is not determined by
Eqs. (5), and can be chosen in such a way that the invariance
condition (3) is satisfied, once the Hamiltonian is chosen. For
instance, in the case of a free particle, one readily finds that
A is conserved if we takef = 0.

On the other hand, if we look for the most general Hamil-
tonian of the form

H =
p2

2m
+ V (x, t), (7)

that is invariant under the Galilean transformations, substitut-
ing (6) and (7) into Eq. (1), we find that

V (x, t) = −1
t

df

dt
x,

which corresponds to a, possibly time-dependent, uniform
field. For instance, for a constant, uniform field,V = −eEx,
wheree andE are constants,

f = 1
2eEt2

and, therefore,

A = mx− pt + 1
2eEt2

is, in this case, the (conserved) generator of the Galilean
transformations.

3.2. The symmetry transformations generated by a
given constant of motion

A straightforward computation shows that the operator

A=
1
2
(xp + px)+

3eEt2p

2m
− tp2

m
−eEtx−e2E2t3

2m
(8)

is a constant of motion if the Hamiltonian is chosen as

H =
p2

2m
− eEx,

wheree andE are constants. We can compute the action of
Us = exp(−isA/~) on the operatorsx andp with the aid of
the well-known formula

eXY e−X = Y + [X,Y ]

+
1
2!

[X, [X, Y ]] +
1
3!

[X, [X, [X, Y ]]] + · · · ,
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which yields,e.g.,

Us
−1pUs = p +

is
~

[A, p] +
1
2!

(
is
~

)2

[A, [A, p]]

+
1
3!

(
is
~

)3

[A, [A, [A, p]]] + · · · .

By means of a straightforward computation one obtains

[A, p] = i~(p− eEt),

[A, [A, p]] = (i~)2(p− eEt),

[A, [A, [A, p]]] = (i~)3(p− eEt),

and so on. Hence,

Us
−1pUs = p + (e−s − 1)(p− eEt).

In a similar manner, we obtain

Us
−1xUs = x +

(
x +

eEt2

2m
− tp

m

)
(es − 1)

+
(

tp

m
− eEt2

m

)
(e−s − 1).

According to the second Proposition of Section 2, these trans-
formations must be a symmetry group of the Hamiltonian.

3.3. An example involving spin

In the case of the spin of an electron in a static, uniform mag-
netic field in thez-direction, the Hamiltonian is taken as (see,
e.g., Ref. 6, Sec. 2.1)

H = ωSz,

whereω ≡ |e|B/mc, e is the electric charge of the electron,
m is its mass, andSz is thez-component of its spin. Then,
the operator

A = cos ωtSx + sin ωtSy

is a constant of motion and we can find the explicit expression
of Us = exp(−isA/~), namely,

Us = cos(s/2)− i sin(s/2) 2A/~.

The statee−iωt/2 |+〉, where|+〉 is an eigenket ofSz with
eigenvalue~/2, is a (stationary) solution of the Schr̈odinger
equation and, therefore,Us e−iωt/2 |+〉 must be also a solu-
tion, for any value ofs. We obtain

Us e−iωt/2 |+〉 = cos(s/2) e−iωt/2 |+〉
− i sin(s/2) eiωt/2 |−〉,

which is indeed a solution of the Schrödinger equation for
all values ofs. Only for s = 0,±π,±2π, . . . , one obtains a
stationary state.

4. Final remarks

It is noteworthy that the proofs of the Propositions presented
in Sec. 2 are simpler than their analogs in classical mechan-
ics. Part of this simplification comes from the fact that, in the
formalism of quantum mechanics, both the conserved quanti-
ties and the transformations correspond to operators. In fact,
the form of Eq. (1) coincides with that of Eq. (3) for an in-
vertible operator.

As pointed out in Sec. 2, the action of a symmetry opera-
torU on a solution of the Schrödinger equation yields another
solution of the same equation, but whenU depends explicitly
on the time the image of a stationary state will not always be
a stationary state.
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