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Symmetries of the hamiltonian operator and constants of motion
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It is shown that, in the framework of non-relativistic quantum mechanics, any conserved Hermitian operator (which may depend explicitly
on the time) is the generator of a one-parameter group of unitary symmetries of the Hamiltonian and that, conversely, any one-paramete!
family of unitary symmetries of the Hamiltonian is generated by a conserved Hermitian operator.
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Se muestra que, en el marco de la aréca céntica no relativista, cualquier operador hermitiano conservado (el cual puede depender
explicitamente del tiempo) es el generador de un grupo uniggtramo de simefas unitarias del hamiltoniano y que, i@ocamente,
cualquier familia uniparaétrica de simetas unitarias del hamiltoniano es generada por un operador hermitiano conservado.

Descriptores: Cantidades conservadas; sinnest

PACS: 03.65.-w

1. Introduction Eq. (2) one finds thatt commutes with/7 and, therefore, if

A does not depend on the time, théris conserved. It should
The existence of a relationship between continuous sympe pointed out that Refs. 8 and 9 also consider the Galilean
metries and conservation laws is known in various areas ofansformations, which are related to a constant of motion
physics such as classical mechanics, field theory and quagnat depends explicitly on the time (see Sec. 3.1, below).
tum mechanics. The most widely known version of this rela- The aim of this paper is to show that, with an appropriate

tionship appears in the Lagrangian formulation, but its mosEjefinition of the invariance of a Hamiltonian [that generalizes

c?mp}letiar\;ersrl]or:“ls fc\’/\lljr?dr'n tEe Har:’nltlt?]rtlla? rfr?r?uriat\;\(/)i:]h()f g. (2)], any conserved operator is associated with a group
classical mechanics where any constant ol motion, ou f unitary transformations that leave the Hamiltonian invari-

exc_ept|on, is associated W'Fh a group OT canonical transforént, and to give illustrative examples of this relationship. In
mations that leave the Hamiltonian invariant.

. N Sec. 2 we give the definition of the invariance of a Hamilto-
Iatitgmwg:‘gtr:g tr:]gnsrlggfil\r/liiits: biz\:\etﬁrm trrfeiaar:]?fsrdaﬁ;nlz'nian under a unitary transformation that may depend on the
Hamiltonian formulation of clagsical mechanics, one can e;—tlme and -then we demoqstrate the main results of this paper,
: . . ' ~~establishing the connection between conserved operators and
pect a relat|ons_h_|p between an a_rblt_rary constan_t_of rnOt'orEBne—parameter families of unitary transformations that leave
(thatis, a Hermitian operaton, satisfying the condition the Hamiltonian invariant. Section 3 contains several exam-
., 0A ples related to constants of motion that depend explicitly on
ih—=r + [4,H] =0, @ the time.

whereH is the Hamiltonian operator of the system) and some

group of transformations that leave the Hamiltonian invari-

ant. 2. Invariance of a Hamiltonian under a uni-

The constants of motion considered in most of the text- tary transformation
books on quantum mechanics do not depend explicitly on the

time (seeg.g, Refs. 1to 7). In that case, Eq. (1) reduces to : .
[A, H] — 0, which implies that We shall say that the unitary operatdiis a symmetry of the

HamiltonianH (or thatH is invariant undet)) if
exp(isA/h) H exp(—isA/h) = H, (2) ou
-1 _ : -1
for all s € R; that is,H is invariant under the one-parameter UTHU = H +ihU ot ©)
group of transformations generated Aythe transformation
exp(—isA/h) is unitary if A is Hermitian). Conversely, tak- so that if¢ is a solution of the Sclkdinger equation, then

ing the derivative with respect tg ats = 0, of both sides of U+ is also a solution
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L _ |
ihzy (UY) — H(UY) =ik <at YU~ HU Y

3U> oY [see Eq. (4)], which imply that
(U A=ma —pt+ [ (1), ©)
=ih B Y+UHY—HUy
where f(t) is a real-valued function of only [cf. Ref. 8,
U (ih -1 8U+H—U‘1HU> i Sec. 7.3, Eq. (61)]. The functioﬁ is notdetermingd by
ot Egs. (5), and can be chosen in such a way that the invariance
—0. condition (3) is satisfied, once the Hamiltonian is chosen. For
instance, in the case of a free particle, one readily finds that
Note that, whert/ does not depend on the time, condition (3) A is conserved if we také = 0.
reduces taU = UH [cf. Eq. (2)]. . On the other hand, if we look for the most general Hamil-
Proposition. If H is invariant under a one-parameter family tgnian of the form

of unitary transformationd/,, then, assuming thdfj is the

identity operator, 2
yop H=2 4 v, @)
AU, 2m
A=ih (U;l 5 ) (4)
5/ ls=o0 that is invariant under the Galilean transformations, substitut-

is a constant of motion. (Note that the operaidgmeed not  ing (6) and (7) into Eq. (1), we find that
form a group.)

Proof. If H is invariant under the transformatiobg then, V. t) = 7}%96
taking the derivatives with respect ¢@f both sides of O tadt”
U YHU, = H+ih Us‘lgUS which corresponds to a, possibly time-dependent, uniform
) ot field. For instance, for a constant, uniform field = —eEx,
ats = 0 [see Eq. (3)] we obtain wheree and E are constants,
1 1 0 (1
——AH+H-A=ih— | A
TR T (ih ) f=LeEr?
which means tha# is conserved [see Eq. (1)].
Conversely, any constant of motion generates a one2nd: therefore,
parameter group of symmetries Bf. Lo
Proposition. If the Hermitian operator! is conserved, then A=mz —pt+ jeEl
H is invariant under the one-parameter group of unitary
transformationd/, = exp(—isA/h). is, in this case, the (conserved) generator of the Galilean

Proof. If A is conserved, so it is any power dfand, there- transformations.
fore, U, = exp(—isA/h) also satisfies Eq. (1), for any value

of the parametes, which amounts to say thdf, satisfies ,
Eq. (3). 3.2. The symmetry transformations generated by a

given constant of motion

3. Examples A straightforward computation shows that the operator

In this section we give some examples related to the Proposi-

tions proved above. In these examples, the symmetry trans-  A=—(zp + px)+
formations and the corresponding constants of motion de- 2

pend explicitly on the time.

3eEt?p  tp? 2E2%¢3
€ p—i—eEtm—e
2m m

®)

is a constant of motion if the Hamiltonian is chosen as

3.1. Galilean transformations p?
H=— —c¢FEx,
The action of a Galilean transformation on the position and 2m

momentum operators of a particle of masss given by wheree and E are constants. We can compute the action of

U, ‘22U, = x — vt, U, 'pU,=p—mv (5) Us=exp(—isA/h)on the operators andp with the aid of

) the well-known formula
where the parametarhas been replaced hy which repre-

sents 'th.e relative veloplty between two inertial fram_es. Dif- Xye X =YV 4 [X,Y]
ferentiating Egs. (5) with respect toatv = 0, we obtain
1

1
%[A’m]:_t %[A7p}:_m +§[X7[XaYH+§[X7[Xa[X7Y]H+7

Rev. Mex. Fis62(2016) 135-137



SYMMETRIES OF THE HAMILTONIAN OPER

which yields,e.g,
is 1 [is\?
mlwgzp+h%ﬂ+m<h>VHAM
L1 (15)3 A, [4, A4, p]]] +
'\ h

By means of a straightforward computation one obtains
[A, p] = ih(p — eEl),
[A, [A,pl] = (ih)*(p — eBY),
[A,[A[A,p]]] = (ih)°(p — eEY),
and so on. Hence,
U 'pUs=p+(e* —1)(p — eEt).

In a similar manner, we obtain

E? ¢
Us 11U9$+<x+e p>(e51)
2m m
tp  eEt?
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is a constant of motion and we can find the explicit expression
of Us = exp(—isA/h), namely,

Us = cos(s/2) —isin(s/2) 2A/h.

The state~'“*/2 |+), where|+) is an eigenket of’, with
eigenvalugi/2, is a Gtationary solution of the Schirdinger
equation and, thereforé], e~'“*/2 |4-) must be also a solu-
tion, for any value of. We obtain

Us e U2 | 4) = cos(s/2) e !/? |4)
— isin(s/2) e“t2|-),

which is indeed a solution of the Sduinger equation for
all values ofs. Only fors = 0, &7, +27,..., one obtains a
stationary state.

4. Final remarks

It is noteworthy that the proofs of the Propositions presented
in Sec. 2 are simpler than their analogs in classical mechan-
ics. Part of this simplification comes from the fact that, in the

formalism of quantum mechanics, both the conserved quanti-
ties and the transformations correspond to operators. In fact,

According to the second Proposition of Section 2, these tranghe form of Eq. (1) coincides with that of Eq. (3) for an in-

formations must be a symmetry group of the Hamiltonian.

3.3.  An example involving spin

In the case of the spin of an electron in a static, uniform mag
netic field in thez-direction, the Hamiltonian is taken as (see,
e.g, Ref. 6, Sec. 2.1)

H=wSs,,

wherew = |e| B/mec, e is the electric charge of the electron,
m is its mass, and, is the z-component of its spin. Then,
the operator

A = coswtSy + sinwtSy,

vertible operator.

As pointed out in Sec. 2, the action of a symmetry opera-
tor U on a solution of the Scbdinger equation yields another
solution of the same equation, but whgrdepends explicitly
on the time the image of a stationary state will not always be
a stationary state.
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