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dCentro Nacional de Investigación y Desarrollo Tecnológico Tecnoĺogico Nacional de Ḿexico,
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In this paper we presented the electrical circuits LC, RC, RL and RLC using a novel fractional derivative with regular kernel called Caputo-
Fabrizio fractional derivative. The fractional equations in the time domain considers derivatives of order(0; 1], the analysis is performed
in the frequency domain and the conversion in the time domain is performed using the numerical inverse Laplace transform algorithm;
furthermore, analytical solutions are presented for these circuits considering different source terms introduced in the fractional equation. The
numerical results for different values of the fractional orderγ exhibits fluctuations or fractality of time in different scales and the existence
of heterogeneities in the electrical components causing irreversible dissipative effects. The classical behaviors are recovered when the order
of the temporal derivative is equal to 1 and the system exhibit the Markovian nature.
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1. Introduction

Classical electrical circuits consist of resistors, inductors and
capacitors. However, these electrical components have a non-
conservative feature that involve irreversible dissipative ef-
fects such as ohmic friction or internal friction, thermal mem-
ory and nonlinearities due to the effects of the electric and
magnetic fields, these dissipative effects are not considered
in the standard theoretical calculations [1-3]. These dissipa-
tive effects originate non-conservative systems and equations
to describe the behavior of these systems must be non-local
differential equations in time; with this purpose, in the last
decades the Fractional Calculus (FC) allows the investiga-
tion of the nonlocal response of multiple phenomena [4-10],
the fractional derivatives are memory operators which usu-
ally represent dissipative effects or damage. FC considers
the history and non-local distributed effects of any physical
system, particulary in electrical circuits, the use of fractional
order operators allows us to generalize the propagation of
electrical signals in devices, circuits and networks [11-20],
as well, the modeling of electrical components (capaci-
tors, coils, memristors, domino ladders, tree structures),
see [16-24]. In this context, Rousan in Ref. [25] has sug-
gested a fractional differential equation that combines the
simple harmonic oscillations of a LC circuit with the dis-
charging of a RC circuit. In Ref. [20] the simple current

source-wire circuit has been studied fractionally using direct
and alternating current source. It was shown that the wire
acquires an inducting behavior as the current is initiated in
it and gradually recovers its resisting behavior, recently, the
authors of [22] considered theoretically and experimentally
the charging and discharging processes of different capaci-
tors in electrical RC circuits, the measured experimental re-
sults could be exactly obtained within the fractional calculus
approach.

Some fundamental definitions in the context of FC
are Erdelyi-Kober, Riesz, Riemann-Liouville, Hadamard,
Grünwald-Letnikov, Weyl, Jumarie, Caputo [26]- [31]. Some
advantages and disadvantages of these fractional derivatives
are reviewed by Abdon in [27]. The Riemann-Liouville defi-
nition entails physically unacceptable initial conditions (frac-
tional order initial conditions) [28]; convesely for the Caputo
representation, the initial conditions are expressed in terms
of integer-order derivatives having direct physical signifi-
cance [29], these definitions have the disadvantage that their
kernel present singularity, this kernel include memory effects
and therefore both definitions cannot accurately describe the
full effect of the memory [32]. Due to this inconvenience,
Michele Caputo and Mauro Fabrizio in [33] present a new
definition of fractional derivative without singular kernel,
the Caputo-Fabrizio (CF) fractional derivative, this derivative
possesses very interesting properties, for instance, the pos-
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sibility to describe fluctuations and structures with different
scales. Furthermore, this definition allows for the description
of mechanical properties related with damage, fatigue, mate-
rial heterogeneities and structures at different scales. Prop-
erties of this new fractional derivative are reviewed in de-
tail in Lozada and Nieto [34]. Atangana in Ref. [35] ob-
tained the numerical approximation of the RLC circuit model
considering the Caputo-Fabrizio fractional derivative, the au-
thor applied the Crank-Nicholson numerical scheme to solve
the model proposed. Other applications of the CF fractional
derivative are given in Refs. [36-38].

The Numerical Laplace Transform (NLT) is essentially
a modified discrete Fourier transform through a windowing
function [39]. Development of the NLT and its application
to the analysis of systems has been well documented over
the past years [40,41]. The use of fast Fourier transform re-
duces the necessary time for computation and as a result the
techniques of analysis in the frequency domain become an at-
tractive option. The results in the frequency domain are then
transformed in the time domain by numerical inverse Laplace
transform (NILT) algorithm which can be numerically evalu-
ated by the discretized Fourier transform. The truncation of
the frequency spectrum can be reduced by the introduction
of some suitable data window: Blackman, Hanning, Lanc-
zos or any window function from the literature [41]. In this
context, Sheng in Ref. [42] investigated the validity of apply-
ing numerical inverse Laplace transform algorithms in FC,
the author shows the effectiveness and reliability of applying
NILT algorithms for fractional-order differential equations.

In the present work we present the numerical solutions
of the electrical circuits LC, RC, RL and RLC using Caputo-
Fabrizio fractional derivative for different sources terms, the
idea proposed in Ref. [43] is applied in order to preserve the
physical dimensionality of the fractional temporal operator.

The manuscript is organized as follows: in Sec. 2, we
recall the Caputo-Fabrizio derivative. Section 3 is dedicated
to the electrical circuits equations within the Caputo-Fabrizio
derivative. Finally, Sec. 4 is devoted to our conclusions.

2. Basic Concepts

The CF definition of fractional derivative is defined as fol-
lows [33,34]

CF
0 Dγ

t f(t) =
M(γ)
1− γ

t∫

0

ḟ(α) exp
[
− γ(t− α)

1− γ

]
dα, (1)

wheredγ/dtγ =CF
0 Dγ

t is a CF derivative with respect tot,
M(γ) is a normalization function such thatM(0)=M(1)=1,
in this fractional derivative the exponential function helps to
reduce the risk of singularity, furthermore, the derivative of a
constant is equal to zero and the kernel does not have singu-
larity for t = α.

If n ≥ 1 and γ ∈ [0, 1], the CF fractional derivative,
CF
0 D

(γ+n)
t f(t) of order(n + γ) is defined by

CF
0 D

(γ+n)
t f(t) =CF

0 D
(γ)
t (CF

0 D
(n)
t f(t)). (2)

The Laplace transform of (1) is defined as follows [33,34]

L [CF
0 D

(γ+n)
t f(t)] =

1
1− γ

L
[
f (γ+n)t

]

×L
[
exp

(
− γ

1− γ
t
)]

=
sn+1L [f(t)]−snf(0)−sn−1f ′(0) . . .−f (n)(0)

s+γ(1−s)
, (3)

for this representation in the time domain is suitable to use
the Laplace transform [33,34].

From this expression we have

L [CF
0 Dγ

t f(t)] =
sL [f(t)]− f(0)

s + γ(1− s)
, n = 0, (4)

L [CF
0 D

(γ+1)
t f(t)] =

s2L [f(t)]− sf(0)− ḟ(0)
s + γ(1− s)

,

n = 1. (5)

3. Electrical circuits

According to [43] an auxiliary parameterσ is introduced in
order to preserve the physical dimensionality of the fractional
temporal operator

d

dt
→ 1

σ1−γ
· CF
0 Dγ

t ,m,

m− 1 < γ ≤ m ∈ M = 1, 2, 3, . . . (6)

and

d2

dt2
→ 1

σ2(1−γ)
· CF
0 D2γ

t ,

m− 1 < γ ≤ m, m ∈ M = 1, 2, 3, . . . (7)

whereγ represents the order of the fractional time derivative
andσ must have dimension of seconds. The parameterσ is
associated with the temporal components in the system (these
components change the time constant of the system and ex-
hibits fractality of time) [21], whenγ = 1 the expressions (6)
and (7) are recovered in the traditional sense. From now on,
we will apply this idea to generalize the case of the fractional
electrical circuits.

3.1. LC electrical circuit

Considering (7), the fractional equation for the electrical cir-
cuit LC is given by

L

σ2(1−γ)
CF
0 D2γ

t q(t) +
1
C

q(t) = V (t), 0 < γ ≤ 1, (8)

where the inductance isL, the capacitance isC andV (t) rep-
resents the source. Now we obtain the numerical simulation
of Eq. (8) for different source terms.
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FIGURE 1. LC electrical circuit with different sources.

First Case. Considering the constant source,V (t) = v0,
q(0) = q0, (q0 > 0), q̇(0) = 0, the Eq. (8) can be written as
follows

CF
0 D2γ

t q(t) = ω2Cv0 − ω2q(t), (9)

where

ω2 =
σ2(1−γ)

LC
= ω2

0 · σ2(1−γ), (10)

is the fractional angular frequency andω0 = 1/
√

LC is the
natural frequency in the classical case.

Applying the Laplace transform (3) to (9) yields

Q(s) = q0 · s

s2 + ω2[s + γ(1− s)]

+ ω2Cv0

(
s + γ(1− s)

s(s2 + ω2[s + γ(1− s)])

)
, (11)

applying NILT algorithm [42] to (11) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (1a).
Second Case. Considering the periodic source,
V (t) = v0 cos(ϕt), q(0) = q0, (q0 > 0), q̇(0) = 0, the
Eq. (8) can be written as follows

CF
0 D2γ

t q(t) = ω2Cv0 cos(ϕt)− ω2q(t), (12)

whereω2 is given by (10).
Applying the Laplace transform (3) to (12) yields

Q(s) = q0 · s

s2 + ω2[s + γ(1− s)]

+ ω2Cv0

(
s(s + γ(1− s))

(s2 + ϕ2)(s2 + ω2[s + γ(1− s)])

)
, (13)

applying NILT algorithm [42] to (13) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (1b).
Third Case. Considering the periodic source,
V (t) = v0 sin(ϕt), q(0) = q0, (q0 > 0), q̇(0) = 0, the
Eq. (8) can be written as follows

CF
0 D2γ

t q(t) = ω2Cv0 sin(ϕt)− ω2q(t), (14)

whereω2 is given by (10).
Applying the Laplace transform (3) to (14) yields

Q(s) = q0 · s

s2 + ω2[s + γ(1− s)]

+ ω2Cv0

( ϕ(s + γ(1− s))
(s2 + ϕ2)(s2 + ω2[s + γ(1− s)])

)
, (15)

applying NILT algorithm [42] to (45) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (1c).

Now, we obtain the analytical solutions for the frac-
tional Eq. (8), two sources are consideredV (t) = 0 and
V (t) = v0 · u(t).
First Case. Considering,V (t) = 0, q(0) = q0, (q0 > 0),
q̇(0) = 0, Eq. (8) can be written as follows

CF
0 D2γ

t q(t) = ω2Cv0 − ω2q(t), (16)

whereω2 is given by (10).
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Applying the Laplace transform (3) to (21) yields

L
{

CF
0 D2α

t q(t)
}

= L
{
− w2q(t)

}
, (17)

due to the linearity of the Laplace transform we have

s(sq̃(s)− q0)
(s + α(1− s))2

= −w2q̃(s), (18)

applying inverse Laplace transform to the above equation yields

q(t) = L −1

{
sq0

s2 + w2(s + α(1− s))2

}
, (19)

finally, the analytical solution is given by

q(t) = q0
e

wα
−i+w(−1+α) t(i + w(−1 + α)) + e

wα
i+w(−1+α) t(i + w − wα)

2(1 + iw(−1 + α))(i + w(−1 + α))
. (20)

Second Case. Considering,V (t) = v0, q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (8) can be written as follows

CF
0 D2γ

t q(t) = ω2Cv0 − ω2q(t), (21)

whereω2 is given by (10).
Applying the Laplace transform (3) to (21) yields

L
{

CF
0 D2α

t q(t)
}

= L
{

w2Cv0 − w2q(t)
}

, (22)

due to the linearity of the Laplace transform we have

s(sq̃(s)− q0)
(s + α(1− s))2

= w2Cv0
1
s
− w2q̃(s), (23)

applying inverse Laplace transform in the above equation yields

q(t) = L −1
{ w2Cv0(s + α(1− s))2

s2 + w2(s + α(1− s))2
1
s

}
+ L −1

{ sq0

s2 + w2(s + α(1− s))2
}

, (24)

finally, the analytical solution is given by

q(t) = −w2Cv0

[
ie

wα
−i−w+wα t + ie

wα
i−w+wα t − we

wα
−i−w+wα t + wie

wα
i−w+wα t

2w2(−1− iw + iwα)(−i− w + wα)
+

wαe
wα

−i−w+wα t − wαe
wα

i−w+wα t

2w2(−1− iw + iwα)(−i− w + wα)
· 1
w2

]

+ q0
e

wα
−i+w(−1+α) t(i + w(−1 + α)) + e

wα
i+w(−1+α) t(i + w − wα)

2(1 + iw(−1 + α))(i + w(−1 + α))
. (25)

3.2. RC electrical circuit

Considering (6), the fractional equation for the electrical cir-
cuit RC is given by

R

σ1−γ
CF
0 Dγ

t q(t) +
1
C

q(t) = V (t), 0 < γ ≤ 1, (26)

where the resistance isR, the capacitance isC andV (t) rep-
resents the source. Now we obtain the numerical simulation
of Eq. (26) for different source terms.
First Case. Considering the constant source,V (t) = v0,
q(0) = q0, (q0 > 0), Eq. (26) can be written as follows

CF
0 Dγ

t q(t) = τCv0 − τq(t), (27)

where

τ =
σ1−γ

RC
= τ0 · σ1−γ , (28)

τ is the fractional time constant andτ0 = 1/RC is the time
constant in the classical case.

Applying the Laplace transform (3) to (27) yields

Q(s) = q0 · 1
s + τ [s + γ(1− s)]

+ τCv0

(
s + γ(1− s)

s(s + τ [s + γ(1− s)])

)
, (29)

Rev. Mex. Fis.62 (2016) 144–154
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FIGURE 2. RC electrical circuit with different sources.

applying NILT algorithm [42] to (29) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (2a).

Second Case. Considering the periodic source,
V (t) = v0 cos(ϕt), q(0) = q0, (q0 > 0), Eq. (26) can
be written as follows

CF
0 Dγ

t q(t) = τCv0 cos(ϕt)− τq(t), (30)

whereτ is given by (28).
Applying the Laplace transform (3) to (30) yields

Q(s) = q0 · 1
s + τ [s + γ(1− s)]

+ τCv0

(
s(s + γ(1− s))

(s2 + ϕ2)(s + τ [s + γ(1− s)])

)
, (31)

applying NILT algorithm [42] to (31) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (2b).
Third Case. Considering the periodic source,
V (t) = v0 sin(ϕt), q(0) = q0, (q0 > 0), Eq. (26) can
be written as follows

CF
0 Dγ

t q(t) = τCv0 sin(ϕt)− τq(t), (32)

whereτ is given by (28).
Applying the Laplace transform (3) to (32) yields

Q(s) = q0 · 1
s + τ [s + γ(1− s)]

+ τCv0

(
ϕ(s + γ(1− s))

(s2 + ϕ2)(s + τ [s + γ(1− s)])

)
, (33)

applying NILT algorithm [42] to (33) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (2c).

Considering (6), the fractional equation for the voltage
across the capacitor is given by

1
σ1−γ

CF
0 Dγ

t Vc(t) +
1

RC
Vc(t) = V (t), 0 < γ ≤ 1, (34)

whereR is the resistance andC is the capacitance.
First Case. Considering,V (t) = 0, Vc(0) = V0, (V0 > 0),
Eq. (34) can be written as follows

CF
0 Dγ

t Vc(t) + τVc(t) = 0, 0 < γ ≤ 1, (35)

whereτ is given by (28).
In this case, the analytical solution is given by

Vc(t) = V0 exp
(
− τγ

1 + τ(1− γ)
t
)
, 0 < γ ≤ 1. (36)

Second Case. Considering the constant source,V (t) = v0,
Vc(0) = V0, (V0 > 0), Eq. (34) can be written as follows

CF
0 Dγ

t Vc(t) + τVc(t) = τRv0, 0 < γ ≤ 1, (37)

whereτ is given by (28).
In this case, the analytical solution is given by

Vc(t) = Rv0 +
[
V0 −Rv0

]
exp

(
− τγ

1− τ(γ − 1)
t
)
. (38)
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FIGURE 3. RL electrical circuit with different sources.

3.3. RL electrical circuit

Considering (6) and (7), the fractional equation for the elec-
trical circuit RL is given by

L

σ2(1−γ)
CF
0 D2γ

t q(t)

+
R

σ1−γ
CF
0 Dγ

t q(t) = V (t), 0 < γ ≤ 1, (39)

where the inductance isL, the resistance isR andV (t) rep-
resents the source. Now we obtain the numerical simulation
of Eq. (39) for different source terms.
First Case. Considering the constant source,V (t) = v0,
q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (39) can be written as
follows

CF
0 D2γ

t q(t) + A · CF
0 Dγ

t q(t) = Bv0, (40)

where

A =
R

L
σ1−γ , (41)

and

B =
1
L

σ2(1−γ). (42)

Applying the Laplace transform (3) to (40) yields

Q(s)=q0

(
s + A

s2 + As

)
+Bv0

(
s + γ(1− s)
s(s2 + As)

)
, (43)

applying NILT algorithm [42] to (43) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (3a).
Second Case. Considering the periodic source,
V (t) = v0 cos(ϕt), q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (39)
can be written as follows

CF
0 D2γ

t q(t) + A · CF
0 Dγ

t q(t) = Bv0 cos(ϕt), (44)

where A and B are given by (41) and (42).
Applying the Laplace transform (3) to (44) yields

Q(s)=q0

(
s + A

s2 + As

)
+Bv0

(
s(s + γ(1− s))

(s2 + As)(s2 + ϕ2)

)
, (45)

applying NILT algorithm [42] to (45) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (3b).
Third Case. Considering the periodic source,
V (t) = v0 sin(ϕt), q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (39)
can be written as follows

CF
0 D2γ

t q(t) + A · CF
0 Dγ

t q(t) = Bv0 sin(ϕt), (46)

where A and B are given by (41) and (42).
Applying the Laplace transform (3) to (46) yields

Q(s) = q0

(
s + A

s2 + As

)
+ Bv0

(
ϕ(s + γ(1− s))

(s2 + As)(s2 + ϕ2)

)
,

(47)
applying NILT algorithm [42] to (47) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (3c).
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FIGURE 4. RLC electrical circuit with different sources.

Considering (6), the fractional equation for the current
across the inductor is given by

L

σ1−γ
CF
0 Dγ

t I(t) + RI(t) = V (t), 0 < γ ≤ 1, (48)

whereL is the inductance andR is the resistance.

First Case. Considering,V (t) = 0, I(0) = I0, (I0 > 0),
Eq. (48) can be written as follows

CF
0 Dγ

t I(t) + ηI(t) = 0, 0 < γ ≤ 1, (49)

where

η =
σ1−γ

η0
, (50)

η is the fractional time constant andη0 = L/R is the time
constant in the classical case.

In this case, the analytical solution is given by

I(t) = I0 exp
(
− ηγ

1− η(γ − 1)
t

)
, 0 < γ ≤ 1. (51)

Second Case. Considering the constant source,V (t) = v0,
I(0) = I0, (I0 > 0), Eq. (48) can be written as follows

CF
0 Dγ

t I(t) + ηI(t) =
η

R
v0, 0 < γ ≤ 1, (52)

whereη is given by (50).
In this case, the analytical solution is given by

I(t) =
v0

R
+

[
I0 − v0

R

]
exp

(
− ηγ

1− η(γ − 1)
t

)
. (53)

3.4. RLC electrical circuit

Considering (6) and (7), the fractional equation for the elec-
trical circuit RLC is given by

L

σ2(1−γ)
CF
0 D2γ

t q(t) +
R

σ1−γ
CF
0 Dγ

t q(t)

+
1
C

q(t) = V (t), 0 < γ ≤ 1, (54)

where the inductance isL, the resistance isR, the capacitance
is C andV (t) represents the source. Now we obtain the nu-
merical simulation of Eq. (54) for different source terms.
First Case. Considering the constant source,V (t) = v0,
q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (54) can be written as
follows

CF
0 D2γ

t q(t) + A · CF
0 Dγ

t q(t) + Dq(t) = Bv0, (55)

where A and B are given by (41), (42), respectively and

D =
1

LC
σ2(1−γ). (56)

Applying the Laplace transform (3) to (62) yields

Q(s) = q0

(
s + A

s2 + As + D(s + γ(1− s))

)

+ Bv0

(
s + γ(1− s)

s[s2 + As + D(s + γ(1− s))]

)
, (57)

applying NILT algorithm [42] to (57) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (4a).
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Second Case. Considering the periodic source,
V (t) = v0 cos(ϕt), q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (54)
can be written as follows

CF
0 D2γ

t q(t)+A ·CF
0 Dγ

t q(t)+Dq(t) = Bv0 cos(ϕt), (58)

where A, B and D are given by (41), (42) and (56), respec-
tively.

Applying the Laplace transform (3) to (58) yields

Q(s) = q0

(
s + A

s2 + As + D(s + γ(1− s))

)

+ Bv0

(
s(s + γ(1− s))

(s2 + ϕ2)[s2 + As + D(s + γ(1− s))]

)
, (59)

applying NILT algorithm [42] to (59) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (4b).
Third Case. Considering the periodic source,
V (t) = v0 sin(ϕt), q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (54)
can be written as follows

CF
0 D2γ

t q(t)+A · CF
0 Dγ

t q(t)+Dq(t)=Bv0 sin(ϕt), (60)

where A, B and D are given by (41), (42) and (56), respec-
tively.

Applying the Laplace transform (3) to (60) yields

Q(s) = q0

(
s + A

s2 + As + D(s + γ(1− s))

)

+ Bv0

(
ϕ(s + γ(1− s))

(s2 + ϕ2)[s2 + As + D(s + γ(1− s))]

)
, (61)

applying NILT algorithm [42] to (61) we obtain the time re-
sponse. The plots for different values of the fractional order
γ are shown in Fig. (4c).

First Case. Considering,V (t) = 0, q(0) = q0, (q0 > 0),
q̇(0) = 0, Eq. (54) can be written as follows

CF
0 D2γ

t q(t) + A · CF
0 Dγ

t q(t) + Dq(t) = 0, (62)

where A and D are given by (41) and (56), respectively.

Applying the Laplace transform to (62) yields

L
{

CF
0 D2γ

t q(t) + ACF
0 Dγ

t q(t) = −Dq(t)
}

considering (3) and the ordinary Laplace transform we have

s(sq̃(s)− q0)
(s + γ(1− s))2

+
A(sq̃(s)− q0)
(s + γ(1− s))

= −Dq̃(s), (63)

the chargẽq(s) is given by

q̃(s) =
sq0

[s2 + As(s + γ(1− s)) + D(s + γ(1− s)2)]

+
Aq0(s + γ(1− s))

[s2 + As(s + γ(1− s)) + D(s + γ(1− s))2]
. (64)

Applying the inverse Laplace transform to (64) we have

q(t) =

(
exp

(
t + (A +

√
A2 − 4D − 2D(γ − 1))γ

2(1 + A + D(γ − 1)2)−Aγ

)
· q0

(
−

√
A2 − 4D

(
1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

))

+ A2

(
−1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

))
(γ − 1)− 2D

(
−1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

))
(γ − 1)

+ A

(
1−

√
A2 − 4D +

√
A2 − 4Dγ + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

)

×
(
−1−

√
A2 − 4D +

√
A2 − 4D

) ))))
2
√

A2 − 4D
(
− 1 + A(γ − 1)−D(γ − 1)2

)
, 0 < γ ≤ 1. (65)

The inverse Laplace transform can be easily solved, especially by means of symbolic computation software such as Math-
ematica, Maple, Matlab, etc.
Second Case. Considering,V (t) = v0, q(0) = q0, (q0 > 0), q̇(0) = 0, Eq. (54) can be written as follows

CF
0 D2γ

t q(t) + A · CF
0 Dγ

t q(t) + Dq(t) = Bv0 −Dq(t), (66)

where A and D are given by (41) and (56), respectively.
Applying the Laplace transform to (66) yields

L
{

CF
0 D2γ

t q(t) + ACF
0 Dγ

t q(t) = Bv0 −Dq(t)
}
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considering (3) and the ordinary Laplace transform we have

s(sq̃(s)− q0)
(s + γ(1− s))2

+
A(sq̃(s)− q0)
(s + γ(1− s))

= B
v0

s
−Dq̃(s). (67)

the chargẽq(s) is given by

q̃(s) =
B(s + γ(1− s))2

[s2 + As(s + γ(1− s)) + D(s + γ(1− s)2)]
· v0

s

+
sq0

[s2 + As(s + γ(1− s)) + D(s + γ(1− s)2)]
+

Aq0(s + γ(1− s))
[s2 + As(s + γ(1− s)) + D(s + γ(1− s))2]

. (68)

Applying the inverse Laplace transform to (68) we have

q(t) =

(
1

2
√

A2 − 4DD2γ
B exp

(
−t(A +

√
A2 − 4D − 2D(γ − 1))γ

2(1 + A + D(γ − 1)2 −Aγ)

)
· v0

·
[
A2

(
− 1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

)
+ A

√
A2 − 4D

(
1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

)

− 2 exp

(
t(A +

√
A2 − 4D − 2D(γ − 1)γ

2(1 + A + D(γ − 1)2 −Aγ)

)
− 2D

(
− 1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

)

−
√

A2 − 4D exp

(
tγ(A +

√
A2 − 4D − 2D(γ − 1)

2(1 + A + D(γ − 1)2 −Aγ)

)
tγ

)]
+ exp

(
t + (A +

√
A2 − 4D − 2D(γ − 1))γ

2(1 + A + D(γ − 1)2)−Aγ

)

· q0

(
−

√
A2 − 4D

(
1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

))
+ A2

(
−1+ exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2−Aγ

))
(γ−1)

− 2D

(
− 1 + exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

))
(γ − 1) + A

(
1−

√
A2 − 4D +

√
A2 − 4Dγ

× exp

( √
A2 − 4Dtγ

1 + A + D(γ − 1)2 −Aγ

)(
− 1−

√
A2 − 4D +

√
A2 − 4D

))))/
2
√

A2 − 4D

×
(
− 1 + A(γ − 1)−D(γ − 1)2

)
, 0 < γ ≤ 1. (69)

The inverse Laplace transform can be easily solved, es-
pecially by means of symbolic computation software such as
Mathematica, Maple, Matlab, etc.

4. Conclusion

In this work we present an alternative representation of frac-
tional differential equations for the electrical circuits LC, RC,
RL and RLC using Caputo-Fabrizio fractional derivative, an-
alytical and numerical solutions were obtained. These frac-
tional representations were obtained preserving the dimen-
sionality of the system studied for any value taken by the ex-
ponent of the fractional derivative.

The numerical solutions show a change in the amplitude
of the charge and variations in the phase exhibits fractality
in time to different scales and shows the existence of hetero-
geneities in the electrical components (resistance, capaci-

tance and inductance). These behaviors depend on the frac-
tional derivative order and modified the constant time of the
electrical circuits, particulary whenγ is less than 1, the sys-
tems exhibit a fast stabilization (is not as affected by past)
than it takes the integer exponent. The Caputo-Fabrizio ap-
proach allows to describe the relaxation phenomena and dis-
sipative processes that characterize the electrical circuits, the
numerical solution exhibits temporal fractality at different
scales as well as the existence of material heterogeneities in
the electrical components.

The results gathered in Figs. 1 to 4 briefly show that when
γ = 1, the system displays the Markovian nature. However,
for values ofγ < 1, the equations describe non-conservative
systems (non-local in time), in this context, the differentγ
values exhibit fractional time components (such components
change the time constant of the system) [21]. At the range
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γ ∈ (0.85, 1) the Figures show that the system presents dis-
sipative effects that corresponds to the nonlinear situation
of the physical process (realistic behavior that is non-local
in time). In these cases the systems modified the damping
capacity, for example, whenγ = 0.85 the damping capac-
ity is bigger than whenγ = 0.95. Furthermore, the Fig-
ures demonstrate that the Caputo-Fabrizio fractional deriva-
tive show a rapid stabilization unlike the definition of Ca-
puto, this definition is affected more by past (memory ef-
fect) [17-23].

The resulting equations represent a generalization of the
classical electrical circuits LC, RC, RL and RLC, the pro-
posed representation can be used to describe a wide variety
of systems which had not been addressed due to the limita-
tions of the classical calculus. In this context, we consider

that these results are useful to understand the behavior of
fractional analogical filters, transmission lines, electrical ma-
chinery, semiconductors circuits, power electronics, commu-
nication theory, equivalent circuits in description of biologi-
cal and electrochemical systems, control theory, and model-
ing of cells seen as electrical circuits.
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8. J.F. Ǵomez Aguilar, D. Baleanu,Proceedings of the Romanian
Academy, Series A.1-15(2014) 27-34.

9. T.M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica,Frac-
tional Calculus with Applications in Mechanics: Vibrations and
Diffusion Processes. Wiley, London (2014).
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