RESEARCH Revista Mexicana dédica62 (2016) 144—-154 MARCH-APRIL 2016

Electrical circuits described by a fractional derivative with regular Kernel
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In this paper we presented the electrical circuits LC, RC, RL and RLC using a novel fractional derivative with regular kernel called Caputo-
Fabrizio fractional derivative. The fractional equations in the time domain considers derivatives of@rtethe analysis is performed

in the frequency domain and the conversion in the time domain is performed using the numerical inverse Laplace transform algorithm;
furthermore, analytical solutions are presented for these circuits considering different source terms introduced in the fractional equation. The
numerical results for different values of the fractional orglexxhibits fluctuations or fractality of time in different scales and the existence

of heterogeneities in the electrical components causing irreversible dissipative effects. The classical behaviors are recovered when the order
of the temporal derivative is equal to 1 and the system exhibit the Markovian nature.
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1. Introduction source-wire circuit has been studied fractionally using direct
and alternating current source. It was shown that the wire

Classical electrical circuits consist of resistors, inductors an@cduires an inducting behavior as the current is initiated in
capacitors. However, these electrical components have a noft-2nd gradually recovers its resisting behavior, recently, the
conservative feature that involve irreversible dissipative ef2uthors of [22] considered theoretically and experimentally
fects such as ohmic friction or internal friction, thermal mem-the charging and discharging processes of different capaci-
ory and nonlinearities due to the effects of the electric and©"S In electrical RC circuits, the measured experimental re-
magnetic fields, these dissipative effects are not consideredt/Its could be exactly obtained within the fractional calculus
in the standard theoretical calculations [1-3]. These dissipa2PProach.

tive effects originate non-conservative systems and equations Some fundamental definitions in the context of FC
to describe the behavior of these systems must be non-locate Erdelyi-Kober, Riesz, Riemann-Liouville, Hadamard,
differential equations in time; with this purpose, in the lastGriinwald-Letnikov, Weyl, Jumarie, Caputo [26]- [31]. Some
decades the Fractional Calculus (FC) allows the investigaadvantages and disadvantages of these fractional derivatives
tion of the nonlocal response of multiple phenomena [4-10]are reviewed by Abdon in [27]. The Riemann-Liouville defi-
the fractional derivatives are memory operators which usunition entails physically unacceptable initial conditions (frac-
ally represent dissipative effects or damage. FC considersonal order initial conditions) [28]; convesely for the Caputo
the history and non-local distributed effects of any physicakepresentation, the initial conditions are expressed in terms
system, particulary in electrical circuits, the use of fractionalof integer-order derivatives having direct physical signifi-
order operators allows us to generalize the propagation afance [29], these definitions have the disadvantage that their
electrical signals in devices, circuits and networks [11-20] kernel present singularity, this kernel include memory effects
as well, the modeling of electrical components (capaci-and therefore both definitions cannot accurately describe the
tors, coils, memristors, domino ladders, tree structures)ull effect of the memory [32]. Due to this inconvenience,
see [16-24]. In this context, Rousan in Ref. [25] has sug-Michele Caputo and Mauro Fabrizio in [33] present a new
gested a fractional differential equation that combines thelefinition of fractional derivative without singular kernel,
simple harmonic oscillations of a LC circuit with the dis- the Caputo-Fabrizio (CF) fractional derivative, this derivative
charging of a RC circuit. In Ref. [20] the simple current possesses very interesting properties, for instance, the pos-
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sibility to describe fluctuations and structures with different
scales. Furthermore, this definition allows for the description CF ) £y =CF g0 (CF (™ f(1)). 2
of mechanical properties related with damage, fatigue, mate-
rial heterogeneities and structures at different scales. Prop-
erties of this new fractional derivative are reviewed in de- [SF g0rtn) F0)] = R g[ Form) t}
tail in Lozada and Nieto [34]. Atangana in Ref. [35] ob- o -t 1—79
tained the numerical approximation of the RLC circuit model v
considering the Caputo-Fabrizio fractional derivative, the au- xZ [eXP ( - ﬁt”
thor applied the Crank-Nicholson numerical scheme to solve
the model proposed. Other applications of the CF fractional _ 5" "Z[f(t)]=s"f(0)—s"""f'(0) ... —f™(0) 3)
derivative are given in Refs. [36-38]. s+y(1-s) ’

The Numerical Laplace Transform (NLT) is essentially ¢, s representation in the time domain is suitable to use
a mo_dn‘led discrete Fourier transform throug_h a wm_dov_vmgthe Laplace transform [33,34].
function [39]. Development of the NLT and its application
to the analysis of systems has been well documented over
the past years [40,41]. The use of fast Fourier transform re- LT (1) = sZ[f(t)] — f(0)
duces the necessary time for computation and as a result the 0T s+v(1—9)
techniques of analysis in the frequency domain become an at- .
tractive option. The results in the frequency domain are then g[gF@t(V“)f(t)} = s> Z[f(B)] = s£(0) = /(0)
transformed in the time domain by numerical inverse Laplace s+7(1—s)
transform (NILT) algorithm which can be numerically evalu- n=1. (5)
ated by the discretized Fourier transform. The truncation of
the frequency spectrum can be reduced by the introductiog . L
of some suitable data window: Blackman, Hanning, Lanc-"" Electrical circuits

zos or any window function from the literature [41]. In this According to [43] an auxiliary parameteris introduced in

pontext, Sheng in Ref. [42] investigated the Va“d'ty of ".’lpply'order to preserve the physical dimensionality of the fractional
ing numerical inverse Laplace transform algorithms in Fc'temporal operator

the author shows the effectiveness and reliability of applying
NILT algorithms for fractional-order differential equations. d 1

The Laplace transform of (1) is defined as follows [33,34]

From this expression we have

, n=0, (4

)

N _CF@’Y m
In the present work we present the numerical solutions dt ogl=y O TE70
of the electrical circuits LC, RC, RL and RLC using Caputo- m—1<~< meM=1,2,3,... (6)
Fabrizio fractional derivative for different sources terms, the
idea proposed in Ref. [43] is applied in order to preserve thend
physical dimensionality of the fractional temporal operator. a2 1 oF
The manuscript is organized as follows: in Sec. 2, we p7u R ey I 78

recall the Caputo-Fabrizio derivative. Section 3 is dedicated
to the electrical circuits equations within the Caputo-Fabrizio m—1<y<m, meM=1,23,... (7)

derivative. Finally, Sec. 4 is devoted to our conclusions. where~ represents the order of the fractional time derivative

ando must have dimension of seconds. The parametsr
2. Basic Concepts associated with the temporal components in the system (these
components change the time constant of the system and ex-
The CF definition of fractional derivative is defined as fol- hibits fractality of time) [21], when, = 1 the expressions (6)
lows [33,34] and (7) are recovered in the traditional sense. From now on,
we will apply this idea to generalize the case of the fractional

(t—a) electrical circuits.

t
M .
gF@gf(t) = lgi/f(@) €xp {— %} da, (1)
0 3.1. LC electrical circuit

whered” /dt" =§F 2, is a CF derivative with respectto  Considering (7), the fractional equation for the electrical cir-
M () is a normalization function such thaf (0)=M (1)=1,  cuit LC is given by

in this fractional derivative the exponential function helps to
reduce the risk of singularity, furthermore, the derivative of a LgFgqu(t) + lq(t) =V({t), 0<vy<1, (8

constant is equal to zero and the kernel does not have singu- o2(1=) c
larity for t = a. where the inductance 15, the capacitance € andV/ (¢) rep-

If n > 1andy € [0,1], the CF fractional derivative, resents the source. Now we obtain the numerical simulation
gF@t(w")f(t) of order(n + ~) is defined by of Eq. (8) for different source terms.
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FIGURE 1. LC electrical circuit with different sources.

First Case Considering the constant sourdé(t) = wvy,
q(0) = qo, (g0 > 0), ¢(0) = 0, the Eq. (8) can be written as

follows
gF@qu(t) = w?Cvy — Wiq(t),

9)

where
o2(1—=)

LC

is the fractional angular frequency angd = 1/v LC is the
natural frequency in the classical case.
Applying the Laplace transform (3) to (9) yields

_ _ 2. 2(1-
w2 = _wo.g( ",

(10)

4 w?[s+ (1 - )]

s+7(1—s)
CE A sm) @D

applying NILT algorithm [42] to (11) we obtain the time re-
sponse. The plots for different values of the fractional order
~ are shown in Fig. (1a).

Second Case Considering the periodic source,
V(t) = vocos(it), q(0) = o, (g0 > 0), 4(0) = 0, the

Eqg. (8) can be written as follows

Q(s) = qo

+ w?Cy (
s

67 227q(t) = w*Cug cos(pt) —w?q(t),  (12)

wherew? is given by (10).
Applying the Laplace transform (3) to (12) yields
Q(s) =qo-

4w (1= 5)]

s(s + (1 — 8))
(82+¢2)(82+w2[8+7(1—8)]))’ 13)

applying NILT algorithm [42] to (13) we obtain the time re-
sponse. The plots for different values of the fractional order
~ are shown in Fig. (1b).

Third Case. Considering the periodic source,
V(t) = vosin(et), ¢(0) = g0, (@0 > 0), 4(0) = 0, the
Eq. (8) can be written as follows

+ WQC’U() (

CF 927q(t) = w?Cupsin(pt) — w?q(t),  (14)

wherew? is given by (10).
Applying the Laplace transform (3) to (14) yields

Qs) =qo- 52 4+ w2[s + (1 — s)]
) p(s+(1—3))
tw C'”O((s2 +¢?)(52 + w?[s + (1 - S)]))’ )

applying NILT algorithm [42] to (45) we obtain the time re-
sponse. The plots for different values of the fractional order
~ are shown in Fig. (1c).

Now, we obtain the analytical solutions for the frac-
tional Eq. (8), two sources are considerédt) = 0 and
V(t) = vo - u(t).

First Case ConsideringV (t) = 0, ¢(0) = qo, (g0 > 0),
¢(0) = 0, Eq. (8) can be written as follows

ST 27 q(t) = w?Cuy — wiq(t), (16)

wherew? is given by (10).
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Applying the Laplace transform (3) to (21) yields
2{§7 gt} = 2{ ~wav)}, (17)
due to the linearity of the Laplace transform we have

T = ) "

applying inverse Laplace transform to the above equation yields

o) =2 ) -

finally, the analytical solution is given by

e=FCTFD (4 w(—1 + a)) + eFo- T (§ + w — wa)

t) = 20
alt) = ao 21+ iw(—1 + )i + w(—1 + a)) (20)
Second CaseConsideringV (t) = v, ¢(0) = qo. (g0 > 0), ¢(0) = 0, Eq. (8) can be written as follows
67 27q(t) = W Cuo — wPq(t), (21)
wherew? is given by (10).
Applying the Laplace transform (3) to (21) yields
.i”{gFDfo‘q(t)} = f{wQC’vo - qu(t)}, (22)
due to the linearity of the Laplace transform we have
s(sq(s) — qo) 2 1 9~
—— = =w Cvyy— — ) 23
applying inverse Laplace transform in the above equation yields
w?Cuo(s +a(l —s))? 1 sqo
1) = 1 z -1 24
a(t) {52+w2(8+a(1—s))25} {52+w2(s—|—a(1—5))2}’ (24)
finally, the analytical solution is given by
2 le —’i—’[fuofi»wat —+ iei—{fﬁwat — we—i—fuﬁwat + wieqﬂ—:yﬁwat wae%t — wae%t 1
q(t) = —w=Cuy 5 - . _ 5 i : i C=
2w? (=1 —iw + iwa) (= — w + wa) 2w?(—1 — fw + iwa)(—i —w + wa) w
e=FCTFD ({4 w(—1 + ) + eFoC- T (i + w — wa
. (i +w(-1+a)+ ( ) 25)
21 +iw(—=14+ )i+ w(-1+ )
3.2. RC electrical circuit
N . . . . Wwhere
Considering (6), the fractional equation for the electrical cir- ol
cuit RC is given by T= T =T o', (28)
1}: ST ) q(t) + lq(lt) =V(t), 0<~vy<1, (26) 7 isthe fractional time constant angd = 1/RC is the time
g ¢ constant in the classical case.
where the resistance B, the capacitance 8 andV (¢) rep- Applying the Laplace transform (3) to (27) yields
resents the source. Now we obtain the numerical simulation
of Eq. (26) for different source terms. Q(s) = go - 1
First Case Considering the constant sourdé(t) = vy, ©° 5T Tls + (1 — s)]

q(0) = qo, (g0 > 0), Eq. (26) can be written as follows

+ch0< s+n(1—s) > (29)

6727 a(t) = TCuo — 74(t), (27) s(s+ 7[5 + (1 —5)])
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q(t)

q(t
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‘Charge in the RC circuwt‘ OCF@t'yq(t) — TC’UO COS(gOt) _ Tq(t), (30)

22

wherer is given by (28).
Applying the Laplace transform (3) to (30) yields

1
s+ 7[s+ (1 -9)]

s(s (1 )
rCu <<s2 P [P P s>]>) 1)

Q(s) =qo-

applying NILT algorithm [42] to (31) we obtain the time re-
sponse. The plots for different values of the fractional order

a8 1 ~ are shown in Fig. (2b).
04 : - " Third Case. Considering the periodic source,
. V(t) = vosin(et), ¢(0) = qo, (0 > 0), Eq. (26) can

Charge in the RC circuit be written as follows

SE27q(t) = 7Cvysin(pt) — q(t), (32)

wherer is given by (28).
Applying the Laplace transform (3) to (32) yields

1
Q) = T o)
(s + (1 —s))
i (@2 )| PR P sm) - (39)

applying NILT algorithm [42] to (33) we obtain the time re-
sponse. The plots for different values of the fractional order
~ are shown in Fig. (2c).

Considering (6), the fractional equation for the voltage
Shaige Mfie L ARl across the capacitor is given by

1 cr 1 -
0_1_70 @t V:i(t)—i_%vc(t)_v(t)v 0<’7§17 (34)

whereR is the resistance and is the capacitance.
] First Case. ConsideringV (t) = 0, V.(0) = Vb, (Vo > 0),
os} f Eqg. (34) can be written as follows

SEDRV(t) +TVe(t) =0,  0<~y<1, (35)

wherer is given by (28).
In this case, the analytical solution is given by

T

Second Case Considering the constant sourdé(t) = vy,

FIGURE 2. RC electrical circuit with different sources. V.(0) =V, (Vo > 0), Eq. (34) can be written as follows

applying NILT algorithm [42] to (29) we obtain the time re-
sponse. The plots for different values of the fractional orde(/vherer
~ are shown in Fig. (2a).

SEDIV.(t)+ 7Ve(t) =TRvy, 0<y<1, (37)

is given by (28).
In this case, the analytical solution is given by

Second Case Considering the periodic source,

V(t)

be written as follows

= wgcos(pt), ¢(0) = qo, (g0 > 0), Eq. (26) can Ve(t) = Rup + [VEJ - Rvo} exXp <_ %t) (38)
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Charge in the RL circuit
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FIGURE 3. RL electrical circuit with different sources.

3.3. RL electrical circuit

15

L 2
0_2(1_,},) OCF‘@t ’YQ(t)

R
+ =Tl = V),

— 0<y<1, (39)

where the inductance B, the resistance i& andV () rep-
resents the source. Now we obtain the numerical simulation
of Eq. (39) for different source terms.

First Case Considering the constant sourdé(t) = vy,

q(0) = qo, (g0 > 0), ¢(0) = 0, Eq. (39) can be written as
follows

6§72 q(t) + A-§T 2] q(t) = Buo, (40)
where R
A= fal—n (41)
and ) o
B =207, (42)

Applying the Laplace transform (3) to (40) yields

s+ A s+v(1—s)
= —_— B _ 4
Q=i () +pa (S @)
applying NILT algorithm [42] to (43) we obtain the time re-
sponse. The plots for different values of the fractional order
~ are shown in Fig. (3a).
Second Case Considering the periodic source,

V(t) = wvo cos(¢t), q(0) = qo, (90 > 0), ¢(0) = 0, Eq. (39)
can be written as follows

S22 q(t) + A-§F 2] q(t) = Bugcos(pt),  (44)

where A and B are given by (41) and (42).
Applying the Laplace transform (3) to (44) yields

o () o (e ) @9

applying NILT algorithm [42] to (45) we obtain the time re-
sponse. The plots for different values of the fractional order
~ are shown in Fig. (3b).

Third Case. Considering the periodic source,
V(t) = vosin(et), 4(0) = go, (a0 > 0), 4(0) = 0, Eq. (39)
can be written as follows

ST 2q(t) + A-§F 2] q(t) = Bugsin(pt),  (46)

where A and B are given by (41) and (42).
Applying the Laplace transform (3) to (46) yields

Qs) = a0 <S§1js) + Buo ((sf(—i ZJ)((132+522)> ’

(47)
applying NILT algorithm [42] to (47) we obtain the time re-

Considering (6) and (7), the fractional equation for the elecsponse. The plots for different values of the fractional order

trical circuit RL is given by

~ are shown in Fig. (3c).
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Charge in the RLC circuit
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Considering (6), the fractional equation for the current

across the inductor is given by

UlL_ SE@YI(t) + RI(t) =V (1),

~0

wherelL is the inductance ang is the resistance.

0<y<1, (48)

First Case ConsideringV (t) = 0, I(0) = Iy, (Ip > 0),
Eqg. (48) can be written as follows
§F21 1) +nl(t)=0,  0<y<1,  (49)

where

n= ; (50)
Mo

7 is the fractional time constant and = L/R is the time
constant in the classical case.
In this case, the analytical solution is given by

I(t) = Iyexp (1_777(]3_1)

Second Case Considering the constant sourdét) = v,
1(0) = Iy, (I > 0), Eq. (48) can be written as follows

t), 0<~y<1. (51)

s
SEGII(t) +nl(t) = ~Lu,

0 <1 52
7 <y <1, (52)

wheren is given by (50).
In this case, the analytical solution is given by

3.4. RLC electrical circuit

Considering (6) and (7), the fractional equation for the elec-
trical circuit RLC is given by

L R
mgF@fv(J(t) + F(?F@?Q(t)

o) = V@),
where the inductance 15, the resistance iB, the capacitance
is C andV (t) represents the source. Now we obtain the nu-
merical simulation of Eq. (54) for different source terms.
First Case Considering the constant sourdé(t) = vy,
q(0) = qo, (g0 > 0), ¢(0) = 0, Eq. (54) can be written as
follows

0<vy<1, (54)

6720 a(t) + A-§T 9] q(t) + Da(t) = Buo,  (55)
where A and B are given by (41), (42), respectively and

1)::1%5020*WX (56)

Applying the Laplace transform (3) to (62) yields

Q(s) = s+ A
o= 24+ As+ D(s+7(1—9))
s+9(1—s)
+ Buo (8[82 + As+ D(s +~(1 — s))]> - 6D
applying NILT algorithm [42] to (57) we obtain the time re-

sponse. The plots for different values of the fractional order
~ are shown in Fig. (4a).
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Second Case Considering the periodic source, applying NILT algorithm [42] to (61) we obtain the time re-
V(t) = vg cos(pt), ¢(0) = qo, (g0 > 0), ¢(0) = 0, Eq. (54) sponse. The plots for different values of the fractional order
can be written as follows ~ are shown in Fig. (4c).

SEP2q(t)+ A-§T 27 q(t) + Dq(t) = Bug cos(pt), (58) First Caseé C%rllsiderinbg,V(ti) = 0, %‘(?3 = qo, (o > 0),
where A, B and D are given by (41), (42) and (56), respec-q(o) = 0, Eq. (54) can be written as follows

tively.
prlying the Laplace transform (3) to (58) yields S22 qt)+ A-§F 2] q(t) + Da(t) =0,  (62)
s+ A
Q) = a <52 +As+ D(s+~(1 — s))> where A and D are given by (41) and (56), respectively.
B, ( s(s+ (1 —s)) ) 9 Applying the Laplace transform to (62) yields
(s2+ ¢?)[s?2+ As+ D(s+v(1 — 5))]
applying NILT algorithm [42] to (59) we obtain the time re- f{gFthWQ(t) + ASFD]q(t) = *DQ(t)}

sponse. The plots for different values of the fractional order
~ are shown in Fig. (4b).
Third Case. Considering the periodic source,
}:/a(r?be vl\)/(;lftlgrgggfgl(lg)ws o (> 0).4(0) = 0 Eq. (54 s(54(s) = a0) | Als4(s) = o) _ —Dg(s),  (63)
or o o , +r(1—5)2  (5+7(1-9) ’
o D7Tqt)+A -G D q(t)+Dq(t)=Bug sin(pt), (60)

where A, B and D are given by (41), (42) and (56), respecthe chargej(s) is given by

considering (3) and the ordinary Laplace transform we have

tively.
Applying the Laplace transform (3) to (60) yields o 5qo
oA 1) = BT A 1700 =) + DG + 101 = 57
) = (5 —)
2+ As+ D(s+ (1 —s)) Agqo(s +7(1 - 5)) (64)
B ( pls +(1—s)) ) - TP Ass 11— 9) + D(s + 71— )]’
N\ (2 +¢2) 2+ As+ D(s+~(1—s))] )’

| Applying the inverse Laplace transform to (64) we have

21+ A+ D(y—1)%) — Ay 1+A+D(y—1)%— Ay

+ A? (—1+exp< VA — 4Dty ))('y—l)—w (—Hexp( 4 A ))(7—1)

1+ A+D(y—1)2— Ay 1+ A+D(y—1)2— Ay

o6 = (exp <t+ (A+VAZ 4D — 2D(y — 1))7> .q0< JAT~1D <1 + e ( VAZ — 4Dty ))

/A2 —
+A<1—\/A2—4D+\/A2—4D7+exp< A* — 4Dty )

1+ A+D(y—-1)2 - Ay

x(—l—\/A2—4D+\/A2—4D>>>>>2 A2—4D(—1+A(7—1)—D(7—1)2), 0<~y<1. (65)

The inverse Laplace transform can be easily solved, especially by means of symbolic computation software such as Math-
ematica, Maple, Matlab, etc.
Second CaseConsideringV (t) = vg, ¢(0) = qo, (¢0 > 0), ¢(0) = 0, Eq. (54) can be written as follows

ST 27 q(t) + A-§F 2] q(t) + Dq(t) = Bug — Dq(t), (66)

where A and D are given by (41) and (56), respectively.
Applying the Laplace transform to (66) yields

2{§7 DY q(t) + AT¥ D} g(t) = Buo — Da(t) }
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considering (3) and the ordinary Laplace transform we have

S(5(5) — a0) | A(s) —a0) _ pvo
Gral—s)P  ral-s) s P ©D
the chargey(s) is given by
[s2+ As(s+~v(1—s))+D(s+~v(1—5s)2)] s
sq0 Ago(s +(1 —s))

TP A1) 4 Do 0 — 9] | P At al- )+ Distad—s)A O

Applying the inverse Laplace transform to (68) we have

@ = 1 By [ —HA+VAZ=AD —2D(y - )y |
MW= \ovaz—app2y P\ 20+ A+ D -1)2— Ay) vo

JAZ Z JAZ —
A2<—1+exp< A — 4Dty 1 >+A\/A2—4D<1+exp< A* — 4Dty )
.

1+ A+D(y—1)2— 1+A+D(y—1)2— Ay

t(A4+ VA2 —4D —2D(y — 1)y VA% — 4Dty
— 2exp —2D| —1+4exp
20+ A+ D(y—1)2 - Ay) 1+ A+ D(y—1)2— Ay

20+ A+D(y—-1)2 - Ay)

VA2 — ADtry 9 VA2 — ADtry
.q0<—\/A2—4D(1+exp<1+A+D(’yI)QA’Y))—FA <_1+6Xp<1+A+D(’y1)2A7>>(7_1)

ty(A+ VA2 —4D —2D(y - 1)
_ A24Dexp< >t7> 20+ A+ D(y—1)?) — Ay

e <t +(A+ VA2 —4D — 2D(y — 1))7>

2D 14 exp S apt
— - M )
1+ A+D(y—1)2 - Ay

Xexp( VA® — 4Dty )(—1—\/A2—4D+\/A2—4D>>>>/2 A2 — 4D

1+ A+D(y—1)2— Ay

>>(7—1)+A(1—\/A2—4D+\/A2—4D7

x(—l—i—A(y—l)—D(y—l)Q), 0<vy<L (69)

The inverse Laplace transform can be easily solved, es-

pecially by means of symbolic computation software such a%ance and inductance). These behaviors depend on the frac-
Mathematica, Maple, Matlab, etc. tional derivative order and modified the constant time of the
electrical circuits, particulary whenis less than 1, the sys-
tems exhibit a fast stabilization (is not as affected by past)
than it takes the integer exponent. The Caputo-Fabrizio ap-
proach allows to describe the relaxation phenomena and dis-
tional differential equations for the electrical circuits LC, RC, sipative processes that characterize the electrical circuits, the

RL and RLC using Caputo-Fabrizio fractional derivative, an-"umerical solution exhibits temporal fractality at different

alytical and numerical solutions were obtained. These fracScales as well as the existence of material heterogeneities in

tional representations were obtained preserving the dimeri€ electrical components.

sionality of the system studied for any value taken by the ex-  The results gathered in Figs. 1 to 4 briefly show that when

ponent of the fractional derivative. ~v = 1, the system displays the Markovian nature. However,
The numerical solutions show a change in the amplituddor values ofy < 1, the equations describe non-conservative

of the charge and variations in the phase exhibits fractalitysystems (non-local in time), in this context, the different

in time to different scales and shows the existence of heteroralues exhibit fractional time components (such components

geneities in the electrical components (resistance, capacthange the time constant of the system) [21]. At the range

4. Conclusion

In this work we present an alternative representation of frac
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~ € (0.85,1) the Figures show that the system presents disthat these results are useful to understand the behavior of
sipative effects that corresponds to the nonlinear situatiofractional analogical filters, transmission lines, electrical ma-
of the physical process (realistic behavior that is non-locathinery, semiconductors circuits, power electronics, commu-
in time). In these cases the systems modified the dampingication theory, equivalent circuits in description of biologi-
capacity, for example, whef = 0.85 the damping capac- cal and electrochemical systems, control theory, and model-
ity is bigger than wheny = 0.95. Furthermore, the Fig- ing of cells seen as electrical circuits.

ures demonstrate that the Caputo-Fabrizio fractional deriva-

tive shoyv a rr_:lp_u_j stgbmzatlon unlike the definition of Ca- Acknowledgments
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