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Fractional drude model of electrons in a metal
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In the present work we analyse the behaviour of electrons in a metal placed into uniform electric field,E, from its fractional differential
equation. We show that the velocity and the current density of the electrons not only depend on the timet, but also on the order of the
fractional differential equationγ, the Drude model is a particular case. This fact could have interesting consequences in the study of
electrical properties of metals.
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1. Introduction

Fractional calculus (FC) is the generalization of the ordinary
integer calculus that deals with operators having non-integer
order: fractional derivatives and fractional integrals [1-4].
The FC provide an excellent instrument for the description
of memory and hereditary properties of various materials and
processes [5-9];. This is the main advantage of FC in com-
parison with ordinary integer calculus, in which such effects
are in fact neglected. In the last few decades the FC and frac-
tional differential equations have found applications in sci-
ence and various engineering disciplines [10-13].

Recently, at the work [14] it was shown that the fractional
order Gompertz model of order0.68 produced a better fit to
experimental dataset than the well-known Gompertz model.
On the other hand, at [15] charging and discharging processes
of different capacitors in electrical RC circuit has been con-
sidered theoretically and experimentally. It was shown that,
the measured experimental results could be exactly obtained
within the fractional calculus approach for the order 0.998.

In the present work we analyse the behaviour of electrons
in a metal placed into uniform electric field from its fractional
differential equation. We show that its behavior depends on
the fractional order of the differential equation and its solu-
tions are given by the Mittag-Leffler function. We consider
here both DC and AC electric field.

2. Basic Concepts of Fractional Calculus

In this work we use the Caputo fractional derivative defined
as [2]
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where Γ(·) denotes the Euler Gamma function,
n = 1, 2, . . . ∈ N and n − 1 < γ ≤ n, whereγ is the

fractional order derivative. In this definitionf (n) is an or-
dinary derivative. The Laplace transform of the Caputo’s
fractional derivative has the form [2]
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The classical Mittag-Leffler function is a complex function
depending on a complex parameter and was defined and stud-
ied by Mittag-Leffler [16-18], as
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This function is a generalization of the exponential function
since forα = 1 we haveez. The generalization of the func-
tion (3) is given by
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Note thatEα,1 = Eα. This generalization was studied
by Wiman [19]. The Laplace transform of the function
tβ−1Eα,β(atα) is given by
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Consequently, the inverse Laplace transform is
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FIGURE 1. Fractional Drude model.

FIGURE 2. Bode diagram of conductivity for some value ofγ.

3. Fractional DC Drude model

The first realistic model for a metal is due to Drude. He sim-
ply treated a metal as a free-electron gas and neglected the
positive-ion background. Although the model is quite sim-
ple, yet the simple ideas are still useful in the interpretation
of the optical properties of metals [20].

The one-dimensional equation of motion for a charged
particle of massm and chargee affected by an external elec-
tric field E is given by [20]

m
dv

dt
+

m

τ
v = −eE (8)

wherev is the drift velocity,t is the time andE = E0 is
a constant electric field. Besides the electrostatic force that
accelerates electrons in the electric field, the expression (8)
contains a phenomenological damping (relaxation) term that
describes how collisions hinder the free motion of electrons
and how the drift velocity relaxes to zero.

FIGURE 3. Bode diagram of the phase for different value ofγ.

In order to give a fractional character to the equation (8)
we make the following redefinition

u(t) = − m

eE0τ
v(t) (9)

Then, we have a fractional dimensionless equation

dγu

dt̄γ
+ u = 1, 0 < γ ≤ 1 (10)

wheret̄ = t/τ . Taking the conditionu(0) = 0 and using the
Laplace transform (2) we have

U(s) =
1

s[(τs)γ + 1]
(11)

To take the inverse Laplace transform we use the first equa-
tion in (7) and using the expression (9) we have

v(t̄; γ) = −eτ

m
[1− Eγ (−t̄γ)] E0 (12)

whereEγ(·) is defined in (3). This expression depends on the
time t and on the fractional parameterγ. For a conductor that
obeys the Ohm’s law with a numberN of electrons per
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FIGURA 4. Plot of the equation (23) or (24) for different values ofγ. With ωτ = 10s andt = r × τ . The value ofv(t; γ) andj(t; γ) may
be determined multiplyingz by−eE0τ/m or e2NE0τ/m, respectively.

unit volume moving at the same velocity can be written the
current density asj = −eNv. Hence, we have the fractional
current density of electrons given by

j(t̄; γ) = σ0 [1− Eγ (−t̄γ)] E0 0 < γ ≤ 1 (13)

whereσ0 = e2Nτ/m is the static Drude conductivity. We
can see that in the case whenγ = 1 the expressions (12) and
(13) become the ordinary Drude formulae. Asymptotic ap-
proximations to the Mittag-Leffler function for smallt → 0
and larget →∞ times, in the first approximation, are [21]

Eγ(−t̄) ∼ e−
t̄γ

Γ(1−γ) , t → 0 (14)

Eγ(−t̄) ∼ t̄−γ

Γ(1− γ)
, t →∞ (15)

As a consequence the Mittag-Leffler function interpolates for
intermediate timēt between the stretched exponential and
the negative power law. The stretched exponential models
the very fast decay for small timēt, whereas the asymp-
totic power law is due to the very slow decay for large
time t̄ as can be seen in Fig. (1), showing the behaviour
of (12) for different value ofγ, taking some typical values
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e=− 1.602 · 10−19 C, me=9.109 · 10−31 kg, E0=100 V/m
andτ=1 · 10−14 s.

The fractional conductivity in the frequency domain is
given by

σ(s) =
e2Nτ

m

1
1 + (sτ)γ

=
σ0

1 + (sτ)γ
(16)

whereσ0 is the static Drude conductivity, and its magnitude
depending on frequencyσ(ω) expressed in decibels is

|σ̄(ω)|dB = 20 log
∣∣∣∣

1
1 + (jωτ)γ

∣∣∣∣ (17)

This equation may be written as follow

|σ̄(ω)|dB = −10 log
∣∣∣1 + (ωτ)2γ + 2(ωτ)γ cos

γπ

2

∣∣∣ (18)

The behaviour of the conductivity in the frequency do-
main can be better visualized by Bode diagrams of magni-
tude and phase. From 2, we can see how increase the slope
of the high frequency asymptote as the order of the fractional
derivativeγ decreases, with a minimun of−20 dB/dec, for
γ = 1.0. The wavelength of electric field,λ, in the case of
ωτ = 102 is of the order of hundreds of milimiters; much
larger than the intermolecular distances. Attenuation of low
frequency conductivity is higher with decreasing the orderγ
of the derivative.

The Drude phase for conductivity may be obtained from
(16) as follow

arg σ̄(ω) = arg
1

1 + (jωτ)γ

= − arctan
(ωτ)γ sin γπ

2

1 + (ωτ)γ cos γπ
2

(19)

See Fig. (3).

4. The Fractional AC Drude Model

Now, we will consider a varying electric fieldE = E0 cosωt,
where E0 is its constant amplitude andω its frequency.
Hence, the fractional differential equation has the form

m
dv

dt
+

m

τ
v = −eE0 cosωt (20)

Makingu = −mv/eE0τ in (20) andt̄ = t/τ

dγu

dt̄γ
+ u = cos (ωτ t̄) (21)

If the condition isu(0) = 0, then, applying the Laplace trans-
form, we have

U(s) =
s

[(τs)γ + 1](s2 + ω2)
(22)

We take the highest power ofs as a common factor from the
denominator and then expanding it in an alternating geomet-
ric series, we have [22]
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In this case we have the fractional current density given by
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)γ(l+1)+2k

(24)

The corresponding plots are given in the Fig. (4), for different
value ofγ.

5. Conclusions

As mentioned before, there are strong evidences that the frac-
tional models describe better the physical processes. In this
communication, using the fractional Caputo derivative we
have extended the classical Drude model for electrons in a
metal. We have obtained that the velocity and the current den-
sity of the electrons not only depend on the timet, but also on
the order of the fractional differential equationγ. This fact
could have interesting consequences in the study of electrical
properties of metals.
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