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Entropy production: evolution criteria, robustness and fractal dimension
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∗e-mail: cocho@fisica.unam.mx

eDepartment of Chemical-Physics, M.V. Lomonosov Chemistry Division, Faculty of Chemistry,
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It was proved through R̈ossler model, where the funnel case is more robust tan spiral chaos, the entropy production per unit time is a
Lyapunov‘s function on the space of the control system parameters. It was established the conjecture of entropy production fractal dimension.
The current theoretical framework will hopefully provide a better understanding of the relationship between thermodynamics and nonlinear
dynamics and contribute to unify theses through complex systems theory.
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1. Introduction

The unification of nonlinear dynamics and complexity
through thermodynamics is already a challenge despite the
many efforts trying to reach this goal [1,2]. Presently, it is
needed to make an effort to develop formalism for thermody-
namics of complex processes.

The aim of this work is to extend the thermodynamics
formalism previously developed [3,4] and offers an approxi-
mation to the unification of nonlinear dynamics and complex-
ity through thermodynamics. The manuscript is organized as
follow: Section 2 we propose the relation of entropy produc-
tion with the Lyapunov exponent spectra is a Lyapunov func-
tion. Moreover, it is a type of measure of dynamical system
robustness. Section 3, a conjecture analogous to Lyapunov
dimension is proposed to define a fractal dimension of en-
tropy production as a method to measure the complexity of
a dynamical system. Finally, some concluding remarks are
presented.

2. Entropy production, Lyapunov exponent
spectra and Lyapunov function

The seminal work of Nose-Hoover [5] and of more recent
work [6] have showed that entropy production per time unit
Ṡi is related with the Lyapunov exponent spectraλj through
a relation

dSi

dt
≡ Ṡi ≈ −

∑

j

λj > 0 (1)

The Eq. (1) is per se a natural link between the thermody-
namics of irreversible processes formalism [7] and nonlinear
dynamics [8], without the need of to know if the dynamical
system is far or near the equilibrium.

In previous works [3,4], we showed that entropy produc-
tion per time unit is a Lyapunov function by its dependence
on control parameters. This dependence can be exemplified
by numerical experiments with R̈ossler model (Eq. 2) [9] for
some distinct values of control parameters (Table I).

ẋ = −y − z ẏ = x + ay

ż = b + (x− c)z (2)

As can be seen (Table I) there is a drastic dependence of
the entropy production rate on the control parameters. This
show our thesis [3,4] that the entropy production per time unit
is a Lyapunov function that depends on control parameters.
These parameters are constants along all the orbit of the or-
dinary differential equations system. We calculate Lyapunov
spectrum anḋSi for each orbit with constant parameters.

About the specific case of R̈ossler model, it is known that
its dynamics shows two levels of complexity in its robust-
ness: the spiral chaos and funnel chaos [12]. These chaos
types depend on the control parameters values. In another
work, we showed that funnel chaos is more robust that spiral
chaos [13].

So, it can be showed how the entropy production per time
unit, as an extremal criterion, fulfills the necessary and suffi-
cient conditions of a Lyapunov function [14], such that:

Ṡi = f(Ω) > 0 (3)
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TABLE I. Lyapunov exponents and entropy production per time
unit of the R̈ossler model for some distinct values of control pa-
rameters and fixedb = 0.20

control parameters λ1 λ2 λ3 Ṡi

a = 0.1

c = 14 0.072 0 -13.79 13.718

c = 18 0.123 0 -25.79 25.67

a = 0.15

c = 10 0.130 0 -14.1 13.967

c = 14 0.019 0 -25.5 25.48

a = 0.2

c = 5.7 0.064 0 -4.98 4.918

c = 14 0.167 0 -25.26 25.1

For the numeric integration of the ordinary differential equations was used

the Gear algorithm for stiff equations in Fortran, double precision and tol-

erance of10−8 [10]. The system was compiled with Open Watcom v1.4

(www.openwatcom.org). The Lyapunov exponents were computed with the

Wolf algorithm in Fortran [11].

whereΩ is the control parameters vector (a, b, c). The Eule-
rian derivative of (3) has to fulfill:

dṠi

dt
=

dṠi

dΩ
dΩ
dt

≤ 0; (4)

Ṡi = f(Ω) is the Lyapunov function of the fixed pointΩ0 of
a system of ordinary differential equationsΩ̇ = g(Ω), such
asΩ ∈ P andP ⊂ in, whereP is the parameters space of the
system of ordinary differential equationsẋ = h(x), x ∈ im

(as the R̈ossler system). And we know thatṠj = −∑m
j=1 λj ,

whereλj is thejth Lyapunov exponent oḟx = h(x).
If we fix b = 0.1 andc = 18 and leta to increase mono-

tonically in time, we have:

dṠi

dt
=

dṠi

da

da

dt
≤ 0; (5)

The control parametera is linked with the evolution of the
spiral chaotic behavior to a funnel one [12]; as the value of is
growing so the robustness of the system is growing too [13].

Becauseda/dt > a during the evolution of the spiral
chaotic behavior to a funnel one, this impliesdṠi/da < 0 as
show in Fig. 1,

This way, it can be seen that the entropy production per
time unit not only satisfies Lyapunov function conditions;
moreover, it is a magnitude to quantify the dynamical system
robustness [15].

3. Kaplan-York dimension and entropy pro-
duction

Fractal dimension is one the most important properties of an
attractor [16], and it is a measure of the dynamical system
complexity. A simple way to compute fractal dimension is

FIGURE 1. The entropy production per time unit vs. the control
parametera in Rössler model [8].

through the LyapunovDL or Kaplan-York dimension [17]. It
is calculated from the Lyapunov exponentsλj :

DL = j +
∑j

i=1 λi

|λj+1| , (6)

Wherej is the largest integer number for which

λ1 + λ2 + · · ·+ λj ≥ 0

By analogy with the Eq. (6), we can establish the follow-
ing conjecture: The fractal dimension of entropy production
is defined as:

DṠi
= j +

Ṡi

(
∑n

i=j+1 λi)
(7)

where the entropy production per time unitṠi, is evaluated
from Eq. (1),n is the number of all Lyapunov exponents,j
is the same as in Eq. (6) (i in Ṡi is not an index, the symbol
Ṡi stands for entropy production per time unit).

As an example, we used the Baier-Sahle model [18], a
N -dimensional model of ordinary differential equations (see
Eq. 8). This model is a generalization of the Rössler model.
The Baier-Sahle model shows varied levels of complex be-
havior (see Fig. 2), including chaos and hyperchaos.

ẋ1 = −x2 + ax1 ẋi = −xi−1 − xi−1 (8)

ẋN = e + bxN (xN−1 − d)

TABLE II. Lyapunov dimensionDL and entropy production di-
mensionDṠi

, for the N -dimensional de Baier-Sahle model [18]
(b = 4, d = 2, e = 0.1).

N(a) #(λi > 0)* DL DṠi

5(a = 0.10) 1 2.704 2.9977

5(a = 0.15) 2 4.006 4.9937

5(a = 0.20) 3 4.012 4.9900

7(a = 0.32) 4 6.026 6.9740

9(a = 0.30) 6 8.004 8.9959

*number of positive Lyapunov exponents
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FIGURE 2. Three dimensional projections of five-dimensional
Baier-Sahle System, varying parametera. X = x1, Y = x2 and
Z = x5.

Table II shows the values of Lyapunov fractal dimension
and those of entropy production fractal dimension for the
Baier-Sahle model [18].

As can be seen, both fractal dimensions grows in propor-
tion with the growing of the number of positive Lyapunov
exponents #(λi > 0). This way, the entropy production
fractal dimension is a measure of system complexity [19]
and robustness [20]. Figure 2 shows projections of the five-
dimensional Baier-Sahle system. It can be seen the apparent
increase in complexity.

4. Conclusions and remarks

In summary, in this paper we found:

1. It is shown how the rate of entropy production evalu-
ated through the spectrum of Lyapunov exponents rep-
resents a Lyapunov’s function depending on the con-
trol system parameters. In fact it represents a physical
magnitude which measures the robustness [15] of the
dynamical system.

2. In the same way of the Lyapunov fractal dimension, it
was established a conjecture and it was defined an Lya-
punov entropy production fractal dimension which is a
measure of complexity and robustness [15,21] of the
dynamical systems.

The current theoretical framework will hopefully provide
a better understanding of the relationship between thermody-
namics and nonlinear dynamics and contribute to unify theses
through complex systems theory.
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