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Use of self-friction polynomials in standard convention and auxiliary functions for
construction of One-Range addition theorems for noninteger slater type orbitals
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UsingL(pl∗)-self-friction polynomials (L(p∗l )-SFPs), complete orthonormal sets ofψ(p∗l )-SF exponential type orbitals (ψ(p∗l )-SFETOs) in
standard convention andQq-integer auxiliary functions (Qq-IAFs) introduced by the author, the combined one- and two-center one-range
addition theorems forχ-noninteger Slater type orbitals (χ-NISTOs) are established, wherep∗l = 2l + 2−α∗ andα∗ is SF quantum number.
As an application, the one-center atomic nuclear attraction integrals ofχ-NISTOs andV -noninteger Coulombic potential (V -NICPs) are
calculated. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids.
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1. Introduction

It is well known that the addition theorems can be constructed
by expanding a function located at a centerb in terms of
a complete orthonormal set located at a centera [1,2]. In
a previous paper [3], with the help ofL(p∗l )-SFPs, the one-
range addition theorems forχ-NISTOs have been suggested.
It is shown in Ref. 4 that, for disappearing SF properties, the
L(p∗l )-SFPs are reduced to theLp-associated Laguerre poly-
nomials (Lp-ALPs) arising in nonstandard convention for the
Schrodinger’s bound-state hydrogen-like eigenfunctions and,
therefore, become the noncomplete. Since theLp-ALPs are
not complete sets, some convergence difficulties occur espe-
cially in series expansions. Accordingly, it is desirable to use
theL(p∗l )-SFPs andψ(p∗l )-SFETOs that are a large class (for
−∞ < α∗ < 3) of complete and orthogonal functions.

The purpose of this work is to obtain the one-range addi-
tion theorems forχ-NISTOs by the use ofL(pl∗)-SFPs, com-
plete orthonormal sets ofψ(p∗l )-SFETOs andQq-IAFs, where
α∗ is the integer (forα∗ = α, ∞ < α ≤ 2) and noninteger
(for α∗ 6= α, −∞ < α∗ < 3) SF quantum number. We
note that the suggested approach is based on the use of SF
polynomials in standard convention introduced in our previ-
ous works (see [5] and references therein to our papers on
standard convention).

2. Definition and basic formulas

The complete orthonormal sets ofψ(pl∗)-SFETOs,L(pl∗)-
SFPs,χ-NISTOs andQq-IAFs used in this work are defined
as
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wheret = 2ζr, p∗l = 2l + 2 − α∗, q∗n = n + l + 1 − α∗

andSlm = (θ, φ) are the complex or real spherical harmon-
ics. Our definition of phases [6] for the complex spherical
harmonics (Y ∗

lm = Yl−m) differs from the Condon-Shortly
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Using Eqs. (2) and (3) in (1), theψ(p∗l )-SFETOs can be
expressed through theχ-integer STOs (χ-ISTOs),
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TheL(p∗l )- SFPs andψ(p∗l )- SFETOs satisfy the following
orthogonality relations:
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3. Combined one- and two-center one-range
addition theorems for χ-NISTOs

To obtain the combined one-range addition theorems pre-
sented in this article we use forχ-NISTOs the following the
series expansion relation in terms of complete sets ofψ(p∗l )-
SFETOs:
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wherek∗ = u∗υs, q = µνσ, 0 < β < ∞, 0 < ξ < ∞,
~Rab = ~Rb − ~Ra and
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Using (8) in Eq. (14) we obtain for the two-center one-
range addition theorems ofχ-NISTOs the following expres-
sion:
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wherek = uνσ and
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Now we evaluate the integral (15) which is defined in the
molecular coordinate system. For this purpose, we move on

to the lined-up coordinate systems. Then, using method set
out in a previous paper [6], it is easy to find the relations

∆(p∗ν)νσ,υs
µu∗ (ξ, β; ~Rab) =

min(ν,υ)∑

λ=0

ν+υ∑

L=|ν−υ|
TλL∗

νσ,υs∆
(p∗ν)νλ,υλ
µu∗

× (ξ, β;Rab)S∗LM (Θab, Φab) (18)

∆(p∗ν)νλ,υλ
µu∗ (ξ, β; R) =

(µ− (ν + 1))!
Γ(q∗µ + 1)

×
∫

1
(2ζr)2−p∗ν

ψ
(p∗ν)∗

µνλ (ξ, ~ra)χu∗υλ(β,~rb)d3~r (19)

whereM = −σ + s andR = Rab. Here,TλL
νσ,υs(Θab, Φab)

and∆(p∗ν)νλ,υλ
µu∗ (ξ, β;R) are the rotation coefficients [9] and

the expansion coefficients in lined-up coordinate systems, re-
spectively,
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whereN∗ = p∗ν+k−γ−2, N ′∗ = u∗−ω, ρ = (R/2)(ξ+β),
τ = ξ − β/ξ + β and
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are the auxiliary functions with noninteger indices. Here,
N∗ = n + η∗, 0 < η∗ < 1, N ′∗ = n′ + η′∗, 0 < η′∗ < 1;
the indicesn andn′ are the integral parts ofN∗ andN ′∗,
respectively.

For the evaluation of auxiliary functions (21), we use the
series expansion ofxη∗ derived with the help ofL(p∗l )-SFPs,
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(p∗l )ν
uk

Γ(u− η∗)Γ(η∗ − α∗ + υ + 2))
[u− (υ + 1)]!Γ(υ + 1− η∗)

, (23)
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wherex = ρ(µ′ ± ν′). Using Eq. (22) in (21), the quanti-
ties[ρN∗+N ′∗

Qq
N∗+N ′∗(ρ, τ)] are expressed through theQq-

IAFs,
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where N = k + n and N ′ = k′ + n′. The properties
of Qq

NN ′ are described in the previous papers [6,10]. Us-
ing Eq. (20) in (17), it is easy to show that the expansion
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one-range addition theorems ofχ-NISTOs are defined as for
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As can be seen from Eqs. (26) and (27), the one-center
addition theorems are the special cases of the two-center one-
range addition theorems ofχ-NISTOs,
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Accordingly, by the use ofQq-IAFs, complete sets of
ψ(p∗l )-SFETOs andL(p∗l )-SFPs, we have derived a large num-
ber (−∞ < α ≤ 2 and∞ < α ≤ 3) of the unified one- and
two-center one-range addition theorems for theχ-NISTOs.

4. Application

As an application of one-range addition theorems (16) we
calculate the atomic nuclear attraction integrals ofχ-NISTOs
andV -NICPs defined as

Iq∗

p∗p′∗(ς, ς
′) =

∫
χ∗p∗(ς, ~r)χ

′∗
p (ς, ~r)V q∗(~r)d3~r, (33)

wherep∗ = n∗lm, p′∗ = n′∗l′m′, q∗ = µ∗νσ, µ∗ ≥ 0 and

V µ∗νσ(~r) = V µ∗(r)Sνσ(θ, φ) (34)

V µ∗(r) =
1

r1−µ∗ (35)

It is easy to show that

Iq∗

p∗p′∗(ς, ς
′) = Cν|σ|(lm, l′m′)Aσ

mm′In∗n′∗(ς, ς ′) (36)

In∗n′∗
µ∗ =

∞∫

0

Rn∗(ς, r)Rn′∗(ς ′, r)V µ∗(r)r2dr, (37)

whereCν|σ|(lm, l′m′) andAσ
mm′ are the generalized Gaunt

and Kronecker’sδ coefficients, respectively [6].
The analytical expression for integral (37) is determined

as follows:

Iµ∗

n∗n′∗(ς, ς
′) =

[
Γ(2N∗ + 1)

Γ(2n∗ + 1)Γ(2n′∗ + 1)

]1/2

× τ3/2

2N∗+1/2
(1 + t)n∗+1/2(1− t)n′∗+1/2Iµ∗

N∗(τ) (38)
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TABLE I. Numerical values of atomic nuclear attraction integrals ofχ-NISTOs andV -NICPs calculated by analytical and series expansion
relations (in a.u.).

µ∗ n∗ n′∗ ζ ζ ′ Eq. (38) α∗ Eq. (43) Eq. (43)

N = 60 N = 80

0.9 6.3 4.9 7.0397 2.2886 0.3141510287 1 0.3141509034 0.3141510230

0 0.3141510925 0.3141510200

-1 0.3141510309 0.3141510326

-1.8 0.3141510045 0.3141510303

-2 0.3141510059 0.3141510292

-2.3 0.3141510125 0.3141510278

-2.8 0.3141510297 0.3141510266

Iµ∗

N∗(τ) =

∞∫

0

RN∗(τ, r)V µ∗(r)r2dr

=
Γ(N∗ + µ∗ + 1)2N∗+1/2

[Γ(2N∗ + 1)]1/2τµ∗+1/2
, (39)

whereN∗ = n∗ + n′∗ − 1, τ = ζ + ζ ′, t = ζ − ζ ′/ζ + ζ ′.
The Eqs. (38) and (39) describe the analytical approach of
nuclear attraction integrals ofχ-NISTOs andV -NICPs.

To establish the series expansion relations, we use
Eq. (22) for the SF power series of radial part of theχ-
NISTOs occurring in Eq. (39),

RN∗(τ, r) =
∞∑

k=l+1

k∑

η=l+1

Ỹ
(p∗l )l
kη,η∗

×
[
(2(N + η))!
Γ(2N∗ + 1)

]1/2

RN+η(τ, r), (40)

whereN∗ = N + η∗, 0 < η∗ < 1 andN is the integer part
of N∗. Then, we obtain:

Iµ∗

N∗(τ) =
∞∑

k=l+1

k∑

η=l+1

Ỹ
(p∗l )l
kη,η∗

×
[
(2(N + η))!
Γ(2N∗ + 1)

]1/2

Jµ∗

N+η (41)

Jµ∗
n =

∞∫

0

Rn(τ, r)V µ∗(r)r2dr

=
Γ(n + µ∗ + 1)2n+1/2

[(2n)!]1/2τµ∗1/2
(42)

wheren = N + η. The substitution (41) into Eq. (38) gives
the following series expansion relations:

Iµ∗

n∗n′∗(ζ, ζ ′) = Nn∗n′∗(t)
∞∑

k=l+1

k∑

η=l+1

Ỹ
(p∗l )l
kη,η∗

×
[

Γ(µ∗ + N + η + 1)√
(2N + 1)!2N∗−(N+η)τµ∗−1

]1/2

(43)

where

Nn∗n′∗(t) =
(1 + t)n∗+1/2(1− t)n′∗+1/2

[Γ(2n∗ + 1)Γ(2n′∗ + 1)]1/2
(44)

Thus, we have derived the analytical and series expan-
sion formulas for the atomic nuclear attraction integrals of
χ-NISTOs andV -NICPs using one-center one-range addi-
tion theorems established with the help ofψ(p∗l )-SFETOs and
L(p∗l )-SFPs in standard convention.

The convergence properties of nuclear attraction integrals
of χ-NISTOs andV -NICPs have been tested. The results of
calculations for some values of parameters are shown in Ta-
ble I. The quantitiesN in this table are the number of terms
over summation indicesk. As can be seen from this table, the
convergence of series forχ-NISTOs andV -NICPs is guaran-
teed for all the values of parameters ofχ-NISTOs andV -
NICPs.

5. Conclusion

In this work, with the help ofL(p∗l )-SFPs andψ(p∗l )-SFETOs,
the combined one- and two-center one-range addition theo-
rems forχ-NISTOs in terms ofQq-IAFs auxiliary functions
are obtained. The presented series expansion formulas can
be used in a study of different problems arising in the quan-
tum chemistry. They can be especially useful tools in the
electronic structure calculations whenχ-NISTOs are used as
basis functions. The suggested one-range addition theorems
will also be of interest for the broader multidisciplinary areas,
which span over fields as diverse as physics, chemistry, biol-
ogy, astrophysics and mathematics. It should be noted that
the origin of the obtained one-range addition theorems pre-
sented in this work is the quantum forces which are analog
of the self-frictional forces introduced by Lorentz in classical
electrodynamics [11-13].
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