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Gravitational collapse in brane-worlds revisited
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cDepartamento de F́ısica, Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional,
2508, San Pedro Zacatenco, 07360, Gustavo A. Madero, Ciudad de México, Ḿexico.
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This paper is dedicated to revisit the modifications caused by branes in the collapse of a stellar structure under the Snyder-Oppenheimer
scheme. Due to the homogeneity and isotropy of the model, we choose study the case of a closed geometry described byk = 1, through
the tool of dynamical systems. We revisit the different components of the star and its evolution during the stellar collapse, paying particular
attention to the non-local effects and the quadratic terms of the energy momentum tensor that come from branes corrections. In the same vein
we realize a phase portrait together with a stability analysis with the aim of obtain information about the attractors or saddle points of the
dynamical system under different initial conditions in the density parameters, remarking the parameters that come from branes contributions.
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1. Introduction

Brane-world theory, is one of the most promising extensions
to General Relativity (GR) due of their natural ability to
solve fundamental problems in physics with unprecedented
success [1-3]. One of the problems addressed in this con-
text, is for example, the hierarchy problem which is solved
by the insertion of one or two 4-dimensional branes in a 5-
dimensional bulk with Anti d’Sitter (AdS) geometry (see for
example [4-6]) or a most complex bulk geometry [6]; due
to this particular topology, the gravity is weakened as it ap-
proaches to our4-dimensional manifold (brane), solving in
a natural way the problem of hierarchy [5,6]. It is important
to remark that this new topology generates modifications in
Einstein’s equations with the presence of second order term
in the energy-momentum tensor, the presence of bulk matter
and the existence of nonlocal terms due to the5-dimensional
Weyl tensor [6].

From here, it is noteworthy to remark the contributions to
cosmology [7-11] and astrophysics [12-19], establishing new
dynamics and alternative solutions to for example, the stellar
stability, dark energy and dark matter problems[20-26]. In
cosmological context, it is possible to find quadratic terms
and non local terms, which are relevant at high energies, pro-
viding new dynamic in inflationary models [27] among others
cosmological studies. Also we have new astrophysical dy-
namics from the brane-world point of view, where it is possi-
ble to explore the stability bounds generated by the presence
of extra dimensions [12,17,18], or the behavior of a star with
a polytropic Equation of State (EoS) [28].

There have been advances in this approach, where it is
studied the stellar stability imposing different exterior condi-
tions [12], there are also studies where it is considered a star
with constant energy density in which is demonstrated that

Schwarzschild exterior is the extreme case possible(see for
example [17]), also it is demonstrated the minimal setup to
obtain a stellar configuration with the initial conditions of any
EoS and with a Schwarzschild exterior [17]. As a counter-
part, it is possible to study stellar collapse using the Snyder-
Oppenheimer (SO) model through a no-go theorem in order
to explore whether it is possible to maintain a Schwarzschild
exterior type [15]. In the same vein, other studies focus in
the gravitational collapse and black hole formation and evo-
lution [29] as well as the curvature corrections in the stellar
collapse [30].

Before we start, let us mention here some experimental
constraints on braneworld models, most of them about the so-
called brane tension,λ, which appears explicitly as a free pa-
rameter in the corrections of the gravitational equations men-
tioned above. As a first example we have the measurements
on the deviations from Newton’s law of the gravitational in-
teraction at small distances. It is reported that no deviation
is observed for distancesl & 0.1mm, which then implies
a lower limit on the brane tension in the Randall-Sundrum
II model (RSII): λ > 1 TeV4 [31]; it is important to men-
tion that these limits do not apply to the two-branes case of
the Randall-Sundrum I model (RSI) (see [1] for details). As-
trophysical studies, related to gravitational waves and stellar
stability, constrain the brane tension to beλ > 5×108 MeV4

[12,32], whereas the existence of black hole X-ray binaries
suggests thatl . 10−2 mm [1,33]. Finally, from cosmologi-
cal observations, the requirement of successful nucleosynthe-
sis provides the lower limitλ > 1 MeV4, which is a much
weaker limit as compared to other experiments (another cos-
mological tests can be seen in: Ref. 34).

Based in this background, this paper is dedicated to study
the SO collapse in brane-world point of view through the
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theory of dynamical systems. We follow the standard pro-
cedure [35] and it is extended to the case of branes with
the aim of delve the behavior of the various components of
the star at different stages of collapse, showing the critical
points, stability and saddle points, remarking the advantage
of this method to describe the dynamic of the star in its final
stages [36,37].

This paper is organized as follows: in Sec. 2 we show the
mathematical formalism necessary for the study of brane the-
ory. In Sec. 3 we explore the model of SO collapse in brane
context, performance the results through a numerical analy-
sis. Finally in Sec. 4 we discuss our results obtained through-
out the paper. Henceforth we use units in whichc = ~ = 1.

2. Mathematical Background

Let us start by writing the equations of motion for stellar sta-
bility in a brane embedded in a 5D bulk according to the RSII
model [6]. Following an appropriate computation (for details
see [1,6]), it is possible to demonstrate that the modified 4D
Einstein’s equation can be written as

Gµν +Λ(4)gµν = κ2
(4)Tµν +κ4

(5)Πµν +κ2
(5)Fµν − ξµν , (1)

hereTµν is the four-dimensional energy-momentum tensor
of the matter in the brane,Λ(4) is the four dimensional cos-
mological constant andκ(4) is the four dimensional coupling
constant which is related with the five dimensional coupling
constantκ(5), through the relationκ2

(4) = 8πGN = κ4
(5)λ/6,

whereλ is the brane tension parameter andGN is the New-
ton constant. Also we have thatΠµν represents the quadratic
corrections on the brane generated from the four-dimensional
energy-momentum tensorTµν , whereasFµν gives the con-
tributions of the energy-momentum tensor in the bulkTAB

(with latin letters taking values0, 1, 2, 3, 4), which is then
projected onto the brane with the help of the unit normal
vectornA. Finally, ξµν gives the contributions of the five-
dimensional Weyl’s tensor(5)CE

AFB when projected onto the
brane manifold (see [6] for more details).

For simplicity, we will not consider bulk matter and then
TAB = 0, which translates intoFµν = 0, and will also
discard the presence of the four-dimensional cosmological
constant,Λ(4) = 0, as we do not expect it to have any
important effect at astrophysical scales (for a recent discus-
sion about this see [38]). The energy-momentum tensorTµν ,
the quadratic energy-momentum tensorΠµν , and the Weyl
(traceless) contributionξµν , have the explicit forms:

Tµν = ρuµuν + phµν , (2a)

Πµν =
1
12

ρ[ρuµuν + (ρ + 2p)hµν ] , (2b)

ξµν = −
(

κ(5)

κ(4)

)4

[Uuµuν+Prµrν+
hµν

3
(U+P)] , (2c)

wherep andρ are, respectively, the pressure and energy den-
sity of the stellar matter of interest,U is the nonlocal energy

density,P is the nonlocal anisotropic stress,uα the four-
velocity (that also satisfies the conditiongµνuµuν = −1), rµ

is a unit radial vector andhµν = gµν + uµuν is the projec-
tion operator orthogonal touµ. In this case we are assuming
spherical symmetry for a real star.

3. Snyder-Oppenheimer collapse in branes

We turn our attention to the gravitational collapse of a ball
made of dust, and look for the dynamic caused by the brane
corrections [15]. Our arguments below will follow the simple
assumptions we have made so far about the brane corrections
on the4-dimensional gravitational equations of motion. To
begin with, we find it convenient to write the physical basis
of a comoving coordinate system in the form:

ds2=−dt2 + U(r, t)dr2 + V (r, t)(dθ2 + sin2(θ)dϕ2). (3)

For practical porpoises, it is possible rewrite Eq. (1) in the
form:

Rµν = κ2
(4)

(
Tµν − 1

2
gµνT

)

+ κ4
(5)

(
Πµν − 1

2
gµνΠ

)
− ξµν , (4)

then, the non-null terms are:

U̇ V̇

2UV
− U̇2

4U2
+

Ü

2U

− 1
U

[
V ′′

V
− V ′2

2V 2
− U ′V ′

2UV

]
= 4πGNρeff, (5a)

V̇ U̇

4V U
+

V̈

2V
+

1
V

− 1
U

[
V ′′

2V
− U ′V ′

4UV

]
= 4πGNρeff, (5b)

U̇2

4U2
+

V̇ 2

2V 2
− Ü

2U
− V̈

V
= 4πGNρeff, (5c)

V ′V̇
2V 2

+
U̇V ′

2UV
− V̇ ′

V
= 0, (5d)

where dots represents derivative with respect tot and primes
represents derivatives with respect tor. We have also thatρeff

andpeff are defined as:

ρeff = ρ
(
1 +

ρ

2λ

)
+
V
λ

, (6)

peff = p
(
1 +

ρ

λ

)
+

ρ2

2λ
+
V
3λ

+
N
λ

, (7)

beingV = U/κ4
(4) andN = 4P/κ4

(4). In order to demon-
strate the general conditions for stellar collapse, we start con-
sidering the following separable solution:U = R2(t)f(r)
andV = S2(t)g(r); notice that (5d) requires:S(t) = R(t),
wheref andg can be normalized.
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Under the argument that we are still free to redefine the
radial coordinate as an arbitrary function ofr (see [35] for
details), it is possible to write:U = R2f(r), V = R2(t)r2.
Using Eqs. (5b) and (5c) we have:

f ′

rf2
= − 1

r2
+

1
fr2

− f ′

2rf2
= −2k, (8)

where prime denotes derivative with respect tor. Solving
Eq. (8) we havef(r) = (1 − kr2)−1, obtaining a spatially
homogeneous and isotropic metric

ds2=−dt2+R2(t)
[

dr2

1−kr2
+r2(dθ2+sin2(θ)dϕ2)

]
, (9)

hereR(t) is the evolving scale factor of the star andk is asso-
ciated with the geometry of the stellar configuration in equiv-
alence with cosmology. The 4-dimensional Bianchi identities
implies∇νT eff

µν = 0 and from the conservation equations we
get∇νTµν = 0, even more for a spatially homogeneous and

isotropic Friedman model we have:∇νU = Pµν = 0
(see [39] for details). Then, it is possible to extract informa-
tion aboutρ(t) andV(t) through the following conservation
equations:

ρ̇ + 3Hρ = 0, V̇ + 4HV = 0, (10)

here the dot represents derivative with respect tot and we de-
fineH ≡ Ṙ/R. From Eqs. (10) we obtainρ(t) = ρ0R(t)−3

andV(t) = V0R(t)−4. Substituting in (5a) and solving for
Ṙ we have

H2 = −k +
κ2

(4)

3

[
ρ0

R3

(
1 +

ρ0

2λR3

)
+

V0

λR4

]
. (11)

Notice that in the GR regime (ρ0/λ → 0, V0/λ → 0) with
k 6= 0, we recover the parametric solution of cycloid reported
in the literature [35]. In general, Eq. (11) can be solved by
quadratures giving the following expression:

t− t0 =
2(−1)1/6α1/3

9(3)1/4
√

α + x3

[
(−1)5/6

(
(−1)1/3x

α1/3
− 1

)]1/2 [
(−1)2/3x2

α2/3
+

(−1)1/3x

α1/3
+ 1

]1/2

× F

(
arcsin

(
(3)−1/4

√(
− (−1)5/6x

α1/3
− (−1)5/6

))
, (−1)1/3

)
, (12)

whereα ≡ −ax6+bx2+c, beinga ≡ 3/κ2
(4)ρ0, b ≡ V0/ρ0λ,

c ≡ ρ0/2λ, x ≡ (3/κ2
(4)ρ0)1/2R3 andF (z, y) is the Elliptic

function, under the assumption of a closed geometryk = 1,
in concordance with conventional wisdom.

3.1. Dynamical Analysis

To complement this study, we analyze the equation of motion
from the metric element (9), where the stellar components
evolve during the collapse:

H(t)2 = ρeff (t)− kρk(t), (13)

whereρk(t) = 1/R(t)2. In addition, we propose the follow-
ing dimensionless variables

Ωm ≡ ρ̄

H2
, ΩV ≡ V

H2λ
, Ωλ ≡ ρ

2λ
, Ωk ≡ ρk

H2
, (14)

subject to the Friedman condition

1 + kΩk = Ωm(1 + Ωλ) + ΩV . (15)

The dynamical system can be written as:

Ω′m
Ωm

= −3− 2Π,
Ω′V
ΩV

= −4− 2Π, (16a)

Ω′λ
Ωλ

= −3,
Ω′k
Ωk

= −2− 2Π, (16b)

where now, the primes denote derivative with respect to the
e-foldings (N = ln(R)) andΠ is defined as

Π ≡ H′
H = −3

2
Ωm(1 + 2Ωλ)− 2ΩV + kΩk, (17)

which can be obtained from Eq. (13). From conditions (14)
and (15), it is enough to investigate the flow of (16a)-(16b)
defined in the space phase

Ψ = {(Ωm,Ωλ,Ωk) : 0 6 Ωm(1 + Ωλ)− kΩk 6 1,

0 6 Ωm 6 1, 0 6 Ωλ 6 1, 0 6 Ωk 6 1}, (18)

where it is reduced the above condition due that we assume
0 6 ΩV 6 1.

Before to start, we establish two important limits: The
first one, is thelow energy limitwhere GR is recovered; in
this case we have thatΩλ ¿ 1 andΩV ∼ 0 recovering the
SO collapse obtained form classical GR. In the other case,
brane effects begin to be significant, dominating over the
other terms. Then, Eq. (17) and the Friedman constraint can
be expressed as:1 + kΩk = ΩmΩλ + ΩV together with

ΠHigh = −3ΩmΩλ − 2ΩV + kΩk. (19)

Returning to our analysis, Eqs. (16a)-(17) are readily soluble
analytically, under the assumptionk = 0 due to the spherical
geometry of the stellar configuration. The results are shown
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FIGURE 1. Phase space of the system (16a)-(16b), for the spheri-
cal geometryk = 1. (Top) Here we assume dominance of baryonic
density parameter in comparison with the other components, as ex-
pected in a real stellar configuration. It is shown the matter, Weyl,
brane tension and curvature terms during the evolution of collapse
of the star. Notice how the high energy termΩλ always domi-
nate in the closest moments of collapse. (Bottom) In this case we
assume that brane corrections are dominant over the other compo-
nents, maintaining the presence of non local terms until the final
stages of collapse; the brane tension parameter always grow expo-
nentially as we expect.

in Fig. 1. In the first case (Fig. 1 Top) we have that the initial
conditions imposed are:Ωm0 = 0.8, ΩV0 = 0.15, Ωλ0 = 0.3
andΩk0 = 0.25, where it is possible to observe the domi-
nation of baryonic matter. In the second case (Fig. 1 Bot-
tom) brane parameters are dominant over the other compo-
nents, having the initial conditions:Ωm0 = 0.1, ΩV0 = 0.5,
Ωλ0 = 0.4 andΩk0 = 0.25. It is possible to observe that the
non-local term is always dominant until the final stages of the
stellar collapse. Both initial conditions are chosen by hand,
only by the premise of show the behavior of the components
under different conditions.

It is important to notice, how Fig. 1 show that the brane
term Ωλ grow exponentially in comparison with the other
components; this behavior is due that the direct integration,

FIGURE 2. Phase portrait of Eqs. (16a)-(16b). (Top) As ini-
tial conditions, we fix the value of the matter density parameter at
Ωm = 0.7 and the other two density parameters vary in the inter-
val Ωkε[0.2, 0.4] andΩλε[0.2, 0.4] always maintaining the domi-
nance of the matter density parameter. (Bottom) In this case we fix
Ωk = 0.25 and varying the other two parameters in the intervals
Ωmε[0.25, 0.8] andΩλε[0.15, 0.7], from here it is possible to see
two saddle points unlike the previous case.

generates an exponential function described in the following
way: Ωλ = Ωλ0 exp(−3N), notice how the other compo-
nents are negligible nearest to the collapse.

To complement our study realized through this section,
we analyze the equilibrium points and eigenvalues associated
to Eqs. (16a) and (16b) in order to obtain important infor-
mation about the collapse behavior. It is possible to define
the equation of critical points as:(dΩi/dN)x0 = 0. In this
case we have three critical points with matter, Weyl fluid and
curvature domination, shown in Table I. Also, we define the
vectorx = (Ωm,ΩV , Ωλ, Ωk) and consider a linear perturba-
tion of the formx → xc + δx. The linearized system reduces
to δx′ = J δx, whereJ is the Jacobian matrix ofx′, written
as:
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J =
(

∂Ω′i
∂Ωj

)

x0

=




−3− 2[Π0 − 3
2Ωm0(1 + 2Ωλ0)] 4Ωm0 6Ω2

m0 −2kΩm0

3ΩV0(1 + 2Ωλ0) −4− 2(Π0 − 2ΩV0) 6ΩV0Ωm0 −2kΩV0

0 0 −3 0

3Ωk0(1 + 2Ωλ0) 4Ωk0 6Ωk0Ωm0 −2−2(Π0 + kΩk0)




. (20)

TABLE I. Critical points for the system (16a) and (16b). From left to right, the columns read: Point, coordinates, existence, eigenvalues and
stability.

Point Coordinates Existence Eigenvalues Stability

P1 (1, 0, 0, 0) all k (1,−3, 3,−1) Saddle point

P2 (0, 1, 0, 0) all k (0, 1, 2,−3) Saddle point

P3 (0, 0, 0,−1/k) k = ±1 (2,−3,−2,−1) Saddle point

FIGURE 3. Phase portrait of Eqs. (16a)-(16b). we apply the ini-
tial conditionsΩV0 = 0 with Ωm0ε[0.25, 0.8] andΩk0ε[0.25, 0.8],
such that the only term in which it contributes branes isΩλ0 = 0.3.

In order to obtain information about attractors, saddle
points and others, we found the eigenvalues associated with
the Jacobian matrix (20). Table I summarize the eigenvalues
associated with this particular model and establish the condi-
tions of the eigenvalues existence (see the middle part of Ta-
ble I). Our results remark the existence of saddle-like points
in dynamics which represents unstable manifolds, being no-
torious in Figs. 2 which are phase portrait of Eqs. (16a)-
(16b).

Figures were computed under the following Initial con-
ditions: In Fig. 2 top we fix the value of the matter density
parameter atΩm0 = 0.7 and the other two density parame-

ters vary in the intervalΩV0ε[0.2, 0.4] andΩk0ε[0.2, 0.4] al-
ways maintaining the dominance of the matter density pa-
rameter. In the same vein, for Fig. 2 bottom, we analyze the
behavior, fixingΩk0 = 0.25 and varying the other two pa-
rameters in the intervalsΩm0ε[0.25, 0.8] andΩV0ε[0.15, 0.7].
In both cases we fix the brane tension density parameter as:
Ωλ0 = 0.3. Finally in Fig. 3 we apply the initial conditions
ΩV0 = 0 with Ωm0ε[0.25, 0.8] andΩk0ε[0.25, 0.8], such that
the only term in which it contributes branes isΩλ0 = 0.3.

4. Discussion

In this paper we implement a roboust analysis of the SO col-
lapse in the background of branes showing the new terms that
will play a role in the dynamic of collapse of a star. We start
with the equation of motion for SO collapse which is shown
in Eq. (11) and solved analytically for the most general case
where branes play an important role, never losing sigh that
Eq. (11) and Eq. (11) converge to GR in the appropriate limit
ρ0/λ → 0 andV0/λ → 0.

Similar analysis was conducted from the point of view of
dynamical systems in order to study the dynamics of the dif-
ferent components of the star. In this case, we focused on the
matter components (dust), the brane terms thats grows pro-
portional toρ/λ, the non-local terms due to the Weyl tensor
and the geometrical term fixed only in the spherical geometry
k = 1. From this study, it was possible to extract relevant in-
formation regarding the behavior of stellar collapse with the
addition of terms that come from brane-worlds. In this case,
we impose reasonable conditions that must contain a star in
the most natural possible conditions. As it was expected,
the brane term associated withΩλ must dominate over the
other density parameters due to its exponential behavior, al-
lowing the natural decaying of the other components in the
final stages of the stellar collapse. Notoriously, Weyl terms
only dominates slightly in the final stage but always is sub-
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dominant previous the collapse as we expect from the tradi-
tional knowledge of stellar dynamics. On the other hand, we
explore the dynamic when the brane components are domi-
nant over the other components, showing the dominance of
the Weyl term even in the final stages of the collapse.

To complement, we realize the phase portrait of
Eqs. (16a)-(16b) (see Figs. 2 and 3) assuming different initial
conditions with the aim of prove the behavior under different
conditions. The mathematical and numerical analysis show
saddle points which are unstable in the dynamics, noticing
that the presence of non-local terms generates the disconti-
nuity presented in Figs. 2. From Fig. 3 the plot is only
restricted to the planeΩk, Ωm due to the conditionΩV0 = 0;
despite this, the presence of branes still there, mediated by
the termΩλ.

As a final note, we emphasize that the procedure can be
replicated for other classes of stars that may include the pres-
ence of polytropic matter or with other most general focuses
and whose solutions may also require extra numerical analy-
sis. However this is ongoing research that will be presented
elsewhere.
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