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Gravitational collapse in brane-worlds revisited
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This paper is dedicated to revisit the modifications caused by branes in the collapse of a stellar structure under the Snyder-Oppenheime
scheme. Due to the homogeneity and isotropy of the model, we choose study the case of a closed geometry dekctbedttmough

the tool of dynamical systems. We revisit the different components of the star and its evolution during the stellar collapse, paying particular

attention to the non-local effects and the quadratic terms of the energy momentum tensor that come from branes corrections. In the same vei
we realize a phase portrait together with a stability analysis with the aim of obtain information about the attractors or saddle points of the

dynamical system under different initial conditions in the density parameters, remarking the parameters that come from branes contributions.
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1. Introduction Schwarzschild exterior is the extreme case possible(see for
example [17]), also it is demonstrated the minimal setup to
Brane-world theory, is one of the most promising extensiongptain a stellar configuration with the initial conditions of any
to General Relativity (GR) due of their natural ability to EoS and with a Schwarzschild exterior [17]. As a counter-
solve fundamental problems in physics with unprecedentegart, it is possible to study stellar collapse using the Snyder-
success [1-3]. One of the problems addressed in this cor@ppenheimer (SO) model through a no-go theorem in order
text, is for example, the hierarchy problem which is solvedto explore whether it is possible to maintain a Schwarzschild
by the insertion of one or two 4-dimensional branes in a Sexterior type [15]. In the same vein, other studies focus in
dimensional bulk with Anti d'Sitter (AdS) geometry (see for the gravitational collapse and black hole formation and evo-
example [4-6]) or a most complex bulk geometry [6]; due|ution [29] as well as the curvature corrections in the stellar
to this particular topology, the gravity is weakened as it apcollapse [30].
proaches to ou#-dimensional manifold (brane), solving in ) .
a natural way the problem of hierarchy [5,6]. It is important  B€foré we start, let us mention here some experimental
to remark that this new topology generates modifications iffPnStraints on braneworld models, most of them about the so-
Einstein’s equations with the presence of second order terfi2lled brane tension, which appears explicitly as a free pa-

in the energy-momentum tensor, the presence of bulk matté[s\meter inthe correc.tions of the gravitational equations men-
and the existence of nonlocal terms due toftkdimensional tioned above. As a first example we have the measurements

Wey! tensor [6] on the deviations from Newton’s law of the gravitational in-
From here, it is noteworthy to remark the contributions tof[eractlon at small distances. It is reported that no deviation

. o i > 0.1 mm, which then implies
cosmology [7-11] and astrophysics [12-19], establishin new® obser\{eq for distancds 2, o P
oy [ ] phy [ ] 9 lower limit on the brane tension in the Randall-Sundrum

dynamics and alternative solutions to for example, the stellaf ) 4 L
stability, dark energy and dark matter problems[20-26]. In' model (RSHI): A > 1 TeV™ [31]; it is important to men-

cosmological context, it is possible to find quadratic terms " that these limits do not apply to the two-branes case of

and non local terms, which are relevant at high energies, prc}—he Ran_daII-Sun_drum | model (RSI.) (s_ee [1] for details). As-
viding new dynamic in inflationary models [27] among otherstmpt.]ys'c"’lI stud|_es, related to grqwtatlonal waveSS and ftellar
cosmological studies. Also we have new astrophysical dy§tab'|'ty' constrain the brgne tension tobe- 5 x 10 Me\( .
namics from the brane-world point of view, where it is possi-[12’32]’ whereas the existence of black hole X-ray binaries

-2 . i
ble to explore the stability bounds generated by the presencséjggestS thgltg 10 mm_[1,33]. Finally, from cosmologi
of extra dimensions [12,17,18], or the behavior of a star Withcal observations, the requirement of successful nucleosynthe-
a polytropic Equation of’ Sté\te (’EoS) 28] sis provides the lower limiA > 1 MeV*, which is a much

There have been advances in this approach, where it ivsveaker limit as compared to other experiments (another cos-

studied the stellar stability imposing different exterior condi—mmog'c""I tests can be seen in: Ref. 34).
tions [12], there are also studies where it is considered a star Based in this background, this paper is dedicated to study
with constant energy density in which is demonstrated thathe SO collapse in brane-world point of view through the
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theory of dynamical systems. We follow the standard pro-density, P is the nonlocal anisotropic stress,, the four-
cedure [35] and it is extended to the case of branes witlvelocity (that also satisfies the conditigp, u*u” = —1), r,
the aim of delve the behavior of the various components ofs a unit radial vector andl,,, = g, + u,u, is the projec-
the star at different stages of collapse, showing the critication operator orthogonal te,,. In this case we are assuming
points, stability and saddle points, remarking the advantagspherical symmetry for a real star.
of this method to describe the dynamic of the star in its final
stages [36,37]. 3
This paper is organized as follows: in Sec. 2 we show the™
mathematical formalism necessary for the study of brane thewe turn our attention to the gravitational collapse of a ball
ory. In Sec. 3 we explore the model of SO collapse in brangnade of dust, and look for the dynamic caused by the brane
context, performance the results through a numerical analycqrrections [15]. Our arguments below will follow the simple
sis. Finally in Sec. 4 we discuss our results obtained throughgssumptions we have made so far about the brane corrections

Snyder-Oppenheimer collapse in branes

out the paper. Henceforth we use unitsinwhich h = 1. g the4-dimensional gravitational equations of motion. To
begin with, we find it convenient to write the physical basis
2. Mathematical Background of a comoving coordinate system in the form:

Let us start by writing the equations of motion for stellar sta- ds*=—dt* + U(r, t)dr* + V (r,t)(d6” + sin®(0)de?). (3)
bility in a brane embedded in a 5D bulk according to the RSII

model [6]. Following an appropriate computation (for details PO Practical porpoises, it is possible rewrite Eq. (1) in the

see [1,6]), it is possible to demonstrate that the modified 400"
Einstein’s equation can be written as 1
Ry, = ’1%4) (TW - 29WT)
Guu +A(4)gu1/ = 5%4)Tuz/ + ’%?S)HHV + K‘?5)F;,LV - guz/a (l)
4 1
hereT,,, is the four-dimensional energy-momentum tensor + K(s) <Huu - 29WH> — &, (4)
of the matter in the brane\ 4 is the four dimensional cos-
mological constant andl,) is the four dimensional coupling  then, the non-null terms are:
constant which is related with the five dimensional coupling .. o .
constant s, through the relatiom24) =81Gy = 5?5))\/6, v v U
where) is the brane tension parameter afg is the New- 20V 4U? 22U
ton constant. Also we have thHt,, represents the quadratic 1[vr vz uv
corrections on the brane generated from the four-dimensional U [V Toyz 2UV:| = 4nGypert,  (58)
energy-momentum tensdl,,,, whereasF),, gives the con- . .
tributions of the energy-momentum tensor in the biilks 4% n v 1
(with latin letters taking value$, 1,2, 3,4), which is then 4vu 2v vV
projected onto the brane with the help of the unit normal 1 Tv" Uv’
vectorn . Finally, ¢, gives the contributions of the five- - [2V - 4UV} = 470G N pefr, (5b)
dimensional Weyl's tende’)CEFB when projected onto the ) . . .
brane manifold (see [6] for more details). uroov: UV e (50)
For simplicity, we will not consider bulk matter and then auz Toyzr ou Ty T MTNpef
T.AB = 0, which translates intd’,“,. = O,' and will also _ ViV oV v
discard the presence of the four-dimensional cosmological +—5 + 57—+ =0, (5d)

constant,A4) = 0, as we do not expect it to have any
important effect at astrophysical scales (for a recent discugvhere dots represents derivative with respectaad primes
sion about this see [38]). The energy-momentum tefispy ~ represents derivatives with respect-tdVe have also thates
the quadratic energy-momentum tengfy,, and the Weyl — andpe are defined as:

(traceless) contributiog,, , have the explicit forms:

p 1%
pe =p |1+ %)+~ (6)
TMV = pu;l,ul/ +phy,1/ ) (2a) ¢ ( 2)\) >\
2
1 _ ALY N
I = EP[PW“V + (p+2p)hyw] s (2b) Peft =P (1 + )\> Tox T T N\ ™

ki) \ ! B beingV = U/x{, and N = 4P/x{,. In order to demon-
S = — <H> [UUWVJFPTMVJFT(UH’)] » (2¢)  strate the general conditions for stellar collapse, we start con-
“ sidering the following separable solutiobl = R2(t)f(r)
wherep andp are, respectively, the pressure and energy denandV = S2(t)g(r); notice that (5d) requiresS(t) = R(t),
sity of the stellar matter of interesy, is the nonlocal energy wheref andg can be normalized.
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Under the argument that we are still free to redefine thasotropic Friedman model we haveV, U/ = P,, = 0
radial coordinate as an arbitrary functionsofsee [35] for  (see [39] for details). Then, it is possible to extract informa-
details), it is possible to writel/ = R2f(r), V = R?(t)r%.  tion aboutp(t) andV(¢) through the following conservation
Using Egs. (5b) and (5¢) we have: equations:

f/ 1 1 f/
=—=+—-—- = -2k

rf? r2 + fr2  2rf? ’

where prime denotes derivative with respectrtoSolving  here the dot represents derivative with respe¢tod we de-
Eq. (8) we havef(r) = (1 — kr®)~', obtaining a spatially fine = R/R. From Eqgs. (10) we obtaip(t) = poR(t)~3

(8) p+3Hp=0, V+4HY =0, (10)

homogeneous and isotropic metric andV(t) = VoR(t)~*. Substituting in (5a) and solving for
dr2 R we have
ds’=—dt*+R*(t) 3 +72(d6*+sin*(0)de?) |, (9) ,
- K
2 (4) | Po £0 Vo
hereR(t) is the evolving scale factor of the star and asso- Ho=—k+ 3 [RB (1 T 2)\R3> + )\34} ’ (11)

ciated with the geometry of the stellar configuration in equiv-

alence with cosmology. The 4-dimensional Bianchi identitiesNotice that in the GR regimep¢/\ — 0, Vo/A — 0) with
impIiesV”Tﬁﬁ = 0 and from the conservation equations we k # 0, we recover the parametric solution of cycloid reported
getV¥T,, = 0, even more for a spatially homogeneous andin the literature [35]. In general, Eq. (11) can be solved by
| quadratures giving the following expression:

1/2 1/2
t—1to = 2(=1)Y0al® (—1)%/6 (=D)Y3z 1 (=1)?/322  (=1)/3z 1
T 93 AVat B al/3 o273 VE

x F (arcsin ((3)1/4\/<(a12?fx — (1)5/6)) ,(1)1/3> : 12)

wherea = —ax®+bx?+c, beinga = 3//@%4)p0, b=Vo/po,
c=po/2\ x = (3/5%4)%)1/21{3 andF(z,y) is the Elliptic Where now, the primes denote derivative with respect to the
function, under the assumption of a closed geometey 1,  e-foldings (V = In(R)) andIl is defined as
in concordance with conventional wisdom. 2 3
= — = —me(l—f—QQ)\) — 20y, + kQy, a7
H 2
which can be obtained from Eq. (13). From conditions (14)

To complement this study, we analyze the equation of motiomnd (15), it is enough to investigate the flow of (16a)-(16b)
from the metric element (9), where the stellar componentgiefined in the space phase

evolve during the collapse:

H(t)? = pesr(t) — kpr(t), (13)

wherepy(t) = 1/R(t)2. In addition, we propose the follow-
ing dimensionless variables

3.1. Dynamical Analysis

U= {(Qmy Q0 Q) 1 0 < Qi (14 Q) — B < 1,
0<9Q, <L0<O<1L,0<Q <13, (18)

where it is reduced the above condition due that we assume
0< Oy <1

7] vV . Before to start, we establish two important limits: The
Q=L p=— =L 0, =2 @4 4 - - - -
H2’ H2N 2\’ H2 f|r§t one, is thdow energy limitwhere GR is recovgred, in
] ) » this case we have th&t, < 1 andQ2y, ~ 0 recovering the
subject to the Friedman condition SO collapse obtained form classical GR. In the other case,
_ brane effects begin to be significant, dominating over the
L B = Qm (14 Q0) + Q. 15 Gther terms. Then, Eq. (17) and the Friedman constraint can
The dynamical system can be written as: be expressed as:+ k€, = 2,2y + {2y together with
Q Q HHigh = =30, — 20y + kQy. (19)
—m o — 3 2II, Y — 4o, (16a)
Qi Qv Returning to our analysis, Egs. (16a)-(17) are readily soluble
Q v 9 _ ol 16b analytically, under the assumptién= 0 due to the spherical
Q, 7 Q. - 7 (16b) geometry of the stellar configuration. The results are shown
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FIGURE 1. Phase space of the system (16a)-(16b), for the spheri-
cal geometryt = 1. (Top) Here we assume dominance of baryonic
density parameter in comparison with the other components, as ex- . .
pected in a real stellar configuration. It is shown the matter, Weyl, F'GURE 2 Phase _portralt of Egs. (16a)-(16b). . (Top) As ini-

brane tension and curvature terms during the evolution of coIIapsetlal conditions, we fix the value of _the matter density p_arame_ter at
of the star. Notice how the high energy tef, always domi- Q,, = 0.7 and the other two density parameters vary in the inter-

val Qx€[0.2,0.4] andQx€[0.2, 0.4] always maintaining the domi-

nate in the closest moments of collapse. (Bottom) In this case we ) . i
assume that brane corrections are dominant over the other compd21¢€ of the matter density parameter. (Bottom) In this case we fix

nents, maintaining the presence of non local terms until the final$2 = 0-25 and varying the other two parameters in the intervals

stages of collapse; the brane tension parameter always grow expo- me€[0.25, 0‘8}_and956[0‘15’ 0.7],_from here it is possible to see
nentially as we expect. two saddle points unlike the previous case.

in Fig. 1. In the first case (Fig. 1 Top) we have that the initial9enerates an exponential functipn described in the following
conditions imposed aré, o = 0.8, Qyo = 0.15, 2y = 0.3 Way: 2x = Qxoexp(=3N), notice how the other compo-
and Qo = 0.25, where it is possible to observe the domi- Nents are negligible nearest to the collapse.

nation of baryonic matter. In the second case (Fig. 1 Bot- To complement our study realized through this section,
tom) brane parameters are dominant over the other compdave analyze the equilibrium points and eigenvalues associated
nents, having the initial conditions,,,o = 0.1, Q0 = 0.5, 10 Egs. (16a) and (16b) in order to obtain important infor-
Q0 = 0.4 andQyo = 0.25. Itis possible to observe that the mation about the collapse behavior. It is possible to define
non-local term is always dominant until the final stages of thethe equation of critical points ad<2;/dN)x, = 0. In this
stellar collapse. Both initial conditions are chosen by hand¢ase we have three critical points with matter, Wey! fluid and

0n|y by the premise of show the behavior of the Component§urvature domination, shown in Table I. Also, we define the
under different conditions. vectorx = (,,,, Qp, Qx, Q) and consider a linear perturba-

It is important to notice, how Fig. 1 show that the branetion of the formx — x. + dx. The linearized system reduces
term Q, grow exponentially in comparison with the other t0 0x’ = J0x, whereJ is the Jacobian matrix of , written
components; this behavior is due that the direct integration, as:
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=3 —2[ITp — 3Qm0(1 + 2€)] 4Qm0 602, —2kQmo
oy 39]}0(1 -+ 29)\0) —4 — 2(H0 — QQV()) 692,02m0 —2kQv0
J = < i) = B . (20)
9Q; ‘o 0 0 3 0
SQko(l =+ QQ)\()) 40 6910 Q2mo —2—2(1_[0 + kao)

TABLE I. Critical points for the system (16a) and (16b). From left to right, the columns read: Point, coordinates, existence, eigenvalues and
stability.

Point Coordinates Existence Eigenvalues Stability
P (1,0,0,0) all k (1,-3,3,-1) Saddle point
P (0,1,0,0) all & (0,1,2,-3) Saddle point
Py (0,0,0,—1/k) k=+1 (2,-3,-2,-1) Saddle point

ters vary in the intervaly€[0.2, 0.4] andQ¢[0.2, 0.4] al-
ways maintaining the dominance of the matter density pa-
rameter. In the same vein, for Fig. 2 bottom, we analyze the
behavior, fixingQ2y, = 0.25 and varying the other two pa-
rameters in the interval3,,,0€[0.25, 0.8] andQy,y€[0.15, 0.7].

In both cases we fix the brane tension density parameter as:
Qo = 0.3. Finally in Fig. 3 we apply the initial conditions
Qo = 0 with €,,,0€[0.25, 0.8] and2xo€[0.25, 0.8], such that

the only term in which it contributes branes(ls, = 0.3.

4. Discussion

In this paper we implement a roboust analysis of the SO col-
lapse in the background of branes showing the new terms that
will play a role in the dynamic of collapse of a star. We start
with the equation of motion for SO collapse which is shown
in Eq. (11) and solved analytically for the most general case
where branes play an important role, never losing sigh that
Eqg. (11) and Eq. (11) converge to GR in the appropriate limit
FIGURE 3. Phase portrait of Egs. (16a)-(16b). we apply the ini- po/)‘_ﬂ_ 0 andVO/f\ — 0. _ _
tial conditionsQyo = 0 with Q,,,0¢[0.25, 0.8] andQoe[0.25, 0.8], Similar analysis was conducted from the point of view of
such that the only term in which it contributes braneQjs = 0.3. dynamical systems in order to study the dynamics of the dif-
ferent components of the star. In this case, we focused on the
matter components (dust), the brane terms thats grows pro-
In order to obtain information about attractors, saddleportional top/), the non-local terms due to the Weyl tensor
points and others, we found the eigenvalues associated wi#nd the geometrical term fixed only in the spherical geometry
the Jacobian matrix (20). Table | summarize the eigenvalues = 1. From this study, it was possible to extract relevant in-
associated with this particular model and establish the condformation regarding the behavior of stellar collapse with the
tions of the eigenvalues existence (see the middle part of Taaddition of terms that come from brane-worlds. In this case,
ble 1). Our results remark the existence of saddle-like pointsve impose reasonable conditions that must contain a star in
in dynamics which represents unstable manifolds, being nothe most natural possible conditions. As it was expected,
torious in Figs. 2 which are phase portrait of Egs. (16a)-the brane term associated wifly must dominate over the
(16b). other density parameters due to its exponential behavior, al-
Figures were computed under the following Initial con- lowing the natural decaying of the other components in the
ditions: In Fig. 2 top we fix the value of the matter density final stages of the stellar collapse. Notoriously, Weyl terms
parameter af),,, = 0.7 and the other two density parame- only dominates slightly in the final stage but always is sub-
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dominant previous the collapse as we expect from the tradi- As a final note, we emphasize that the procedure can be
tional knowledge of stellar dynamics. On the other hand, weeplicated for other classes of stars that may include the pres-
explore the dynamic when the brane components are domence of polytropic matter or with other most general focuses
nant over the other components, showing the dominance @fnd whose solutions may also require extra numerical analy-
the Weyl term even in the final stages of the collapse. sis. However this is ongoing research that will be presented

To complement, we realize the phase portrait ofélsewhere.
Egs. (16a)-(16b) (see Figs. 2 and 3) assuming different initial
conditions with the aim of prove the behavior under differentAcknowledgments
conditions. The mathematical and numerical analysis show
saddle points which are unstable in the dynamics, noticindhe authors acknowledge support from SNé&kito, PIFI
that the presence of non-local terms generates the discontnd PROMEP with number CA 205. MAG-A acknowledge
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