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This paper proposes a nonextensive wavglet’)-entropy computed as a wavelet-domain generalization of the time-ddmait) entropy

of Borges and obtains a closed-form expression of this measure for the claggobignals. Theoretical wavelét, ¢’)-entropy planes

are obtained for these signals and the effect of parametarsl ¢’ on the shape and behaviour of these wavelet entropies are discussed
with sufficient detail. The relationship of this entropy with Shannon and Tsallis entropies is studied and some applications of the proposed
two-parameter wavelet entropy for the analysis/estimatiory gfsignals are outlined.
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1. Introduction Physics and many other areas of science [16]. For instance,
Gilmore and co-workers [17] found evidence of scaling be-
In statistical mechanics, the concept of entropy has tradihaviour in plasma turbulence. Moreover/f® noise be-
tionally been employed to measure the information contenhaviour was found in carbon nanotubes in [18] and this be-
or uncertainty of a random signal or system [1, 2]. In thehaviour seems to be ubiquitous since it has been found in
current literature, entropic functionals, such as the Shannoniisciplines as diverse as Chemistry [19], Physiology [20],
Reényi and Tsallis entropies, have been used to quantify th@sychology [21], Biomedical Engineering [22] among oth-
complexities associated to random and nonlinear phenoners. Within scale-invariant signal analysis, the estimation of
ena [3,4]. Moreover, more elaborate information functionalsthe scaling parametet, plays a role of relevant importance
such as the so-called information planes [5], which consistince it determines the form of autocorrelation functions [23],
of the product of entropy functionals and the Fisher infor-the shape and behaviour of sample paths, the stationarity
mation (and also of entropy and dissequilibrium), are cur-and nonstationarity of realizations [24], among other prop-
rently being applied in numerous fields, for instance, in an-erties [25]. Many techniques for estimatinghave been pro-
alyzing two-electron systems [6], many particle systems [7]posed, however, nowadays, no single technique is able to ac-
randomness and localization of molecules [8] and x-ray aseurately estimater under the variety of complexities found
trophysical sources [9]. In order to obtain an estimate ofin real measured data [23-25]. Recently, wavelet-based in-
such an information functional within a signal or system, aformation tools have found application in the analysis of
probability density function (pdf) for continuous signals or signals [10, 15, 23, 26]. Wavelet information tools charac-
probability mass function (pmf) for sampled data is requiredterize adequately the theoretical complexities of these sig-
Traditionally, pmfs in time and frequency domain are usednals and as a consequence may help the signal analyst to
however, in recent years, with the advent of multiscale analpropose tools or methodologies for their analysis/estimation.
ysis and time-frequency distributions, wavelet-domain pmfs=or instance, in [11], a novel technique based on generalized
are utilized giving rise to the so-called wavelet entropies [10]wavelet Fisher information allowed to detect level-shifts in
generalized wavelet Fisher informations [11], among othersfractional Gaussian noise (fGn) signals of paramé&teGen-
The advantages of extending spectral and time entropies teralized wavelet Fisher information not only detected and lo-
the wavelet domain are numerous including the possibilitycated level-shifts accurately but also permitted to enhance the
to analyze nonstationary signals or time-varying behaviourtime required to obtain an estimate than by using a standard
Wavelets, also permit to compute entropies for specific detool of level-shift detection/location [11]. Wavelet informa-
tails or resolutions of the signal in order to capture particulation tools, therefore offer many advantages and are becom-
behaviour. Applications of such wavelet entropy function-ing the tool of choice for analyzing the information content
als are diverse, from electroencephalogram (EEG) and eleef a signal. In this contribution, a two parameter, nonex-
trocardiogram (ECG) signal analysis [12, 13] to laser proptensive wavelefq, ¢’)-entropy for1/f® signal analysis is
agation [14] and characterization of complexity within ran- proposed. This two-parameter entropy not only generalizes
dom signals [15]. Scale-invariant oy f signals, on the other  Shannon and Tsallis entropy but also provides more analysis
hand, have been used to model a variety of phenomena in
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flexibility due to its two-parameter nature and nonextensivity.via a differencing operation, is stationary, self-similar, Gaus-
This means that the Shannon and the Tsallis entropies can ls&n and has a PSD of the form [16, 24, 25]:
obtained as special cases of their parameter values and more-

o0

over, due to its additional parametgy increased sensitivity Stan = 40k ey sin®(n f) Z e ERE

in the analyses may be obtained. In addition, its nonextensive oo |f + Jl

nature makes it suitable for analysihgf“ signals [27]. The 1

entropy planes for this two-parameter entropy are obtained Ifl < 3 4)

for a variety of values of the parameterand their relation-

ship with the standard Shannon and Tsallis entropies is alsfor H € (0,1). In the limit of f — 0, the PSD of fGn be-
found. The motivation behind the wavelgt ¢')-entropy is  haves asS;g, ~ c|f|~2#*! and therefore is a/f signal
that it provides alternative configurations of parameters valwith o = 2H — 1.

ues forg andq’ to analyze the same phenomena and the pos- Wavelet analysis permits to represent a signal as a sum
sibility to increase sensitivity in the analyses. The rest of theof small waves called wavelets. It has been employed for the
article is structured as follows. In Sec. 2, the concept ofanalysis of complex time series [32] ahdf“ signal analy-
1/ f signals, wavelets and the wavelet analysi$ of signals  sis/estimation [10, 15,31]. Wavelet analysis can be computed
is briefly revisited. Section 3 presents the wavelgly’)-  in two different ways allowing to capture different behaviour
entropy and computes the wavelet ¢')-entropy of1/ within a signal. The discrete wavelet transform (DWT) is
signals. It also presents the waveletq’')-entropy planes for  primarily used for computing wavelet variance, entropy, etc.
1/ f* signals, obtained for a variety of values of the nonex-The continuous wavelet transform (CWT), on the other hand,
tensivity parameterg andq’. Section 4 outlines some ap- is more convenient for quantifying the cycles, synchroniza-
plications of the waveletq, ¢’)-entropy for the analysis of tion as well as the correlation within one or more time series
1/ f signals and presents some simple example applicationsia the wavelet cross-correlation and wavelet coherence [33].
on synthesized/ f signals. Finally, Sec. 5 draws the conclu- In this article, the DWT is employed and the wavelet spec-
sions of the article. trum is computed. The wavelet spectrum obtains the vari-
ances of DWT coefficients at each wavelet sgadad allows

not only to estimate the scaling parametdyut also to obtain

a pmf which in turn can be used to compute entropic func-
1/f° signals are ubiquitous in many fields of science and entionals. In the work of Abry [31], the wavelet spectrum was
gineering and model phenomena as diverse as deoxyribonétUd'Ed arld a formula_for computing the wavelet spectrum of
cleic acid (DNA) sequences [28], heart-beat time series [29]/andom signals was given by,

mood and self-steem [30]./ f signals are traditionally de-

fined in terms of their power spectral density (PSD) which Ed% (j, k) = / Sx (277 )| (f)? df (5)
behaves as a power-law in a range of frequenciesas, e R ’

2. Wavelet analysis ofl / f* signals

SU) ~erlfI7 f e (fas o), (1) whereW(f) = [ (t)e~i27/t dt is the Fourier integral of the
mother wavelet)(t), Sx(.) is the PSD of the procesk;,
the expectation operator amt (j, k) is the DWT of the
ocessX, at time k and wavelet scalg [31]. Using the

wherec;y is a constantp € R is the scaling parameter and
fa, fo represent the lower and upper bounds upon which (1%r

holds [31]. Depending upam, f, andf,, several well-known 1k PSD ofl/ £ signal . by E 1) and
random processes are obtainedy, whenf, > f,, fo — 0 wel-known ofL/f* signals as given by Eq. (1) an

. substituting it into Eq. (5), the wavelet spectrumigff sig-
and0 < a < 1, long-memory signals result. Moreover, for 9 a. () P off sig

. 2 . nals results in:
all « € R, 1/ f signals are self-similar in the sense that their

2 (. _ Jo
distributional properties are invariant under dilations in time Edx (5, k) = €2%, ©)
and spacel/f signals are stationary it < 1 and nonsta- whereC' is a constant. The wavelet spectrum obtained in
tionary if « > 1 [24]. The well-known fractional Brownian EQ. (6) has been used to esitmat¢31] and also for com-
motion (fBm), a Gaussian, nonstationary and self-similar sigputing wavelet-based information tools [10, 11]. For further
nal with parametef! whose autocovariance is given by, information on wavelets, either continuous or discrete and in
the wavelet analysis of/ f signals please refer to [31, 32]

o? and references therein.
EBr(t)Ba(s) = 5 {|tP" +1s —lt = s}, ()

with H € (0,1), has a spectral density given by 3. Wavelet(q, ¢') entropy of 1/ f* signals

Stem(f) ~ c\f|—<2H+1), f—0, (3) In this article, a two parameter wavelgt, ¢')-entropy for
1/f* signal analysis is proposed. To obtain an expression
andthusisa/f“ signal witha = 2H+1 [24,25]. Fractional for succh a wavelet entropy, a pmf in the DWT domain is re-
Gaussian noise (fGn), which is obtained from a fBm processjuired. As a matter of fact, by the use of Eq. (6), the wavelet
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spectrum ofl / f© signals, the DWT pmf of these signals is T N T 1——Nl_q
given by: K H(q,q’)(ﬁﬂ) H (Wﬂ)qu NI
&; L
Di= =N & @) T 1—- N1
DAY — Mo () j=g—ize - (10)

whereé; = NjflEd§((j, k) and N; represents the number . . , _
of DWT coefficients at scalg. Equation (7) is indeed a pmf Where () and?-.[q,/ (w;) represent the normalized Tsallis
since0 < p; < 1, Zj pj =1 andzﬂpj < Zp pj for q-entropy.an-d Tsallig -gntropy for dlstrlputlonrj.

j1 < j2. Equation (7), also called the relative wavelet en- ~ Substituting Eq. (8) into (10) and using the results of [23]
ergy (RWE) [10], quantifies the energy of a random signal'[he wavelefq, ¢') entropy ofl/ f* signals is given by:

per resolution levej. The RWE for the class df/ f« signals

is therefore given by substituting (6) into (7) [10,11, 15, T ) pN-1 (2 cosh( Oéq/21n 2 )>
. 1—2« (¢,9") )= -1 aln?2 7
Py = 2(3—1)am’ @8) (PN (2 cosh(222)))
whereN andj represent the (logarithmic) length of the signal Pt (2 cosh( aq21n 2 ))

and the wavelet scale respectively. Many wavelet-based in-
formation tools have been obtained using Eq. (8), the wavelet
Fisher informations of [11] and [26], the wavelet Tsaljis
entropy of [15], among others. The article proposes a novel
wavelet (¢, ¢')-entropy which is computed using (8). As
mentioned earlier, the concept of entropy is used to quantifyvhere P'~!(2 cosh u) is a polynomial of orde®V — 1, i.e.,
the information content of a signal and when computed in the

wavelet-domain it allows to quantify the information content PN=1() = (2coshu)V—1 — (N -2) (2 coshu)N =3

(PN_1 (2 cosh(“m)))q

2

x (Nl—q . Nl—q/)71 (11)

at different resolution levels, thus adjusting the analyses to 1!
the nature of the data. An important requirement of any in- (N —3)(N —4) Nos
formation functional is its ability to analyze linear, nonlinear + Y (2coshu) —... (12

and phenomena exhibiting long-range interactions. Tsallis
entropy allows these type of analyses, however, it is limited At this point and based on the results of Egs. (11)
to a single configuration of its parametgr This means that and (12), an interesting question is how the wavéjet)-
Tsallis g-entropies can, for example, classify signals usingentropy behaves according to the different valueg afidg’

a specific value of; but no other value of; can perform and to investigate if different sets of valuesgéndq’ may

the same classification. There is, thus, a need for an infolPermit to analyze the same problem, say detecting specific
mation functional to provide alternative configurational pa-behaviour within a signal. The first question is answered if
rameters to analyze the same problem. The)'-entropy the wavelet(g, ¢')-entropy planes for different andq’ are
provides additional flexibility in the sense that it has an addi-
tional nonextensivity parameteft and the question is if it is
able to provide alternative configurations of their parameter
values to analyze a given problem. In this article, this, )-
entropy, originally proposed by Borges [34] is generalized
to the wavelet domain and closed-form formulas of this en-
tropy for1/ f signals are obtained. THe, ¢’)-entropy gener-
alizes the Bolzmann-Gibbs statistic and the TsaHentropy

Wavelet (q,q’) entropy plane

as well and is defined by the following equation [34], 100
N q q
T m: — T
Ml (™) =D 3img—Ni=7 - ©)
j=1

whereq,¢’ € R are the nonextensivity parameters. When
q’ — 1, the usual normalized Tsalligzentropy results and A ==
wheng — 1 andq¢’ — 1, the normalized Shannon entropy 0,5
is obtained.(q, ¢')-entropy, therefore, increases not only pa-
rameter flexibility but also the possibility to obtain the same

type of results as Shannon or Tsallis by adjuséin@ndq’  Figure 1. Wavelet(q, ¢')-entropy forl/f® signals. Parameter
properly. As a matter of fact, Eq. (9) can be rewritten; andq’ are settog = 7 andg¢’ = 4. Scaling index range is
in terms of the Tsallig-entropy (and Tsallig’-entropy) as « € (—1,1) and the length of the signal ranges in the interval
follows, N ¢ (2%,2").

(g, q")-entropy, ’H,,.,]/ (mj)
=

17 Length N

Scaling-index «
t=}
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Wavelet (g, ¢')-entropy Wavelet (g, ¢')-entropy plane for 1/f signals

(g, ¢')-entropy, ')':iq,qr (m5)

(¢, q')-entropy, ?:L(,‘,,r (m5)

Scaling-index «

FIGURE 2. Wavelet(q, ¢’)-entropy for fixed lengthN = 10, 5

q = 13 and several values of the nonextensivity paramgter Length N

Scaling-index «

Wavelet (g, ¢')-entropy FIGURE 4. Wavelet(q, ¢’)-entropy for1/f< signals. Parameter
g andq are settog = 7 andqg’ = 4. Scaling index range is
a € (—1,1) and the length of the signal ranges in the interval
N ¢ (2%,2").

further the effect ofy on the shape of wavelét, ¢') entropy
planes, Fig. 2 displays a particular example whesa 13,

N = 10 and negativey’. Note that as;/ decreases, the en-
tropies increase more rapidly and the range of constant en-
tropies decreases. Figure 3 displays another example when
N =12, ¢ = 7 but using positive values of the nonextensiv-
ity parametery’. Note that for this case, entropies increase

(g, ¢')-entropy, ’)(lq)qr (m5)

—06 —04 —0,2 0 02 0.4 0.6 more rapidly with higher values af and the range of zero
Scaling-index a entropies decreases. From this, it is concluded that the rate
FIGURE 3. Wavelet(q, ¢')-entropy for fixed lengttv = 12,¢ = 7 at which entropies increase is boosted whenev&ecomes
and several values of the nonextensivity paramegter more negative o/ becomes more positive (mantainifg

andgq fixed). Figure 4 displays another wavelet entropy plane
obtained and the second by identifying planes which in prinobtained wherny; = 9 and¢’ — 1. Note that in this case,
ciple may be different but provide a similar description of wavelet entropies are monotonically decreasing and normal-
a given phenomena. In the following, the entropy planeszed to1. This behaviour is similar to the one observed for
obtained for particular values of the nonextensivity paramthe wavelet Tsallis;-entropy [23] and the parameter in
etersq andq’ are studied. Wavelet entropy planes can alsahis case, permits to stretch the range over which constant
be used for identifying potential applications of this entropyentropies are observed. In contrast to Fig. 1, the wavelet
for the analysis/estimation df/ f signals. Figure 1, shows (¢, ¢)-entropy plane of Fig. 4 is not sensitive to the length
the wavelet entropy plane for the nonextensivity parametersf the signal. Note that Fig. 1 and Fig. 4 provide alterna-
q = 7Tandq’ = 4 and which is a typical behaviour of wavelet tive ways of characterizing complexity. The configuration of
(¢,4')-entropies whery > 1 andq’ € R — {1}. Forthese Fig. 1 treats purely randorty/ f signals ¢ = 0) with zero
cases, the observed wavelet entropies are monotonically iRntropies while the configuration gfandq’ values of Fig. 4
creasing and are not normalized1o Interestingly, wavelet  assigns unity entropies to these random signals.
(¢, q")-entropies have even symmetry and for a range of the
form (—a,, «,), zero entropies are observed. This symmet-
ric range of zero entropies can be stretched depending upah.  Applications
the values of the nonextensivity parameterandq’. The
length of the signalV and the nonextensivity parametgr  Wavelet (¢, ¢')-entropy may have several applications not
have the effect of increasing the rate at which entropies inenly for the analysis/estimation df/ f* signals but also for
crease and in the same way of reducing the range of zenhe characterization of the complexities of any random sig-
entropies as shown in Fig. 1. Increasing increases the nal. Forl/f“ signal analysis and estimation, waveletq’)-
rate at which entropies increase. Parameterlso increases entropy may help increase the accuracy of estimating algo-
this rate, however follows an interesting behaviour which derithms by identifying and eliminating level-shifts that bias the
pends upon the positivity or negativity gf. To investigate estimations. Moreover, based on the results of Sec. 3, wavelet
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Xran (t) U Xfana(t) p(k)={|k + 1|21 — 2k2H + |k — 1"}
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FIGURE 6. Level-shift detection and location using waveletq’)-
L ) . . entropy. Top plot displays a fGn with three level-shifts. for illus-
FIGURE 5. Classification of S|gna_tls as stationary or_ nonstat_lon- trative purposes, the level-shifts are plotted in white. Bottom plot:
ary. Top plot: concatenated stationary and nonstationary s'gnalwavelet(q, ¢)-entropy for the signal with three level-shifts.
first half part is a stationary signal and second half corresponds to
a nonstationary one. Bottom plot: wavel@t ¢')-entropy of con- pai¢ nart vary. This simple example demonstrates that a ro-
catenated signal computed in sliding windows. bust and powerful technique for discriminatihgf* signals

based on waveléy, ¢')-entropy can be obtained. Another in-

(¢, ¢')-entropy can also be used for classifyinty signals as ~ teresting application of waveléy, ¢')-entropy is in the field
StatiQnary/nonstationary, extended fBms from fBms, among)f level-shift detection and location. It has been shown in
others. The /f signal classification problem as stationary or the work of Stoev [35] that a single level-shift has the effect
nonstationary is fundamental foy f signal estimation since ©Of overestimating yielding H > 1, thus, wavele{(q, ¢')-

the selection of the estimators of the parametérbased on ~ €ntropy applied to a segment with a single level-shift will
the stationarity nature of the signal. Some estimators workesult in an entropy value suddently decaying to zero (or su-
only in stationary signals while others are more suitable undently increasing above zero) resembling an impulse shaped
der nonstationary ones [24, 25]. Classificationigf~ sig- form. Therefore, the waveldy, ¢’)-entropy of signal with
nals as stationary or nonstationary can be performed wittevel-shifts will result in a signal composed of impulses. The
wavelet(q, ¢')-entropy in two different ways using different location and strength of the impulse is related to the loca-
Conﬁguration of values for the nonex[ensivity parameters tion and amplitude of the level-shift. With the use of wavelet
andq’. First, by adjusting the range of zero frequencies in(¢; ¢')-entropy, a level-shift detection/location problem be-
Fig. 1toa € (—1, 1), an efficient way to classify/f signals ~ comes in a peak detection and location problem. Figure 6
reduces to the problem of identifying signals with zero en-displays an example in which a signal witHevel-shifts is
tropies from varying ones. Therefore, a methodology for disdetected by the use of wavelgf, ¢')-entropy. Therefore,
criminating stationary signals from nonstationary ones is taVith the use of waveletq, ¢')-entropy, an efficient and fast
compute entropies in sliding windows and to detect regions ofnethodology for detecting and locating weak level-shifts can
zero entropies (which correspond to stationary signals) froniP€ designed. Many other applications can be perfomed with
regions of entropies that present variable behaviour (nonstdhe use of wavelefg, ¢’)-entropy, the purpose of this article,
tionary signals). A second approach which is similar to thehowever is not to investigate applications but to present the
above one is based on the behaviour of entropies of Fig. 4. IWavelet(q, ¢')-entropy, their theoretical properties apf®

this case, stationary behaviour is distinguished from nonstasignals and highlight some potential applications.

tionary one based on the fact that stationary signals experi-

ment constant unity entropies while entropies for nonstations  Conclusions

ary signals vary. Figure 5 provides a simple demonstration

of the stationarity/nonstationarity classification capabilitiesin this article, a novel waveldly, ¢')-entropy for the anal-

of wavelet(q, ¢')-entropy. Top plot represents a concatenatedssis of 1/ signals was proposed. The entropy was ob-
time series in which the first time points up to the middle oftained as a waveler-domain extension of {heg’) entropy

the duration are from a stationary signal and the rest comef Borges and permits to quantify the complexities and in-
from a nonstationary signal. Bottom plot of Fig. 5 display formation content of random signals and systems using the
the wavelet(q, ¢')-entropy from the concatenated signal us-DWT. Closed-form expressions for this entropy are found
ing sliding windows of lengtiV = 1024, ¢ = 8 andq¢’ = 6.  for the class ofl/f“ signals and based on this, wavelet
Note that the entropies for the first part of the signal (station{q, ¢’)-entropy planes are obtained. Wave(etq')-entropy
ary) are zero while entropies corresponding to the seconglanes, as demonstrated, are not only useful for explaining
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the complexities of / f signals but also for identifying poten- bust techniques for signal classification and level-shift detec-
tial applications for their analysis/estimation. A detail studytion/location.

of the behaviour of wavel€ly, ¢')-entropy planes was pre-

sented for a variety of values of parameteendq’. Finally,
two possible application areas of the wavélgty')-entropy,
specifically for classifyingl/f* signals and for detecting jylio C. Rarirez-Pacheco thanks the support of CONA-
level-shifts within fGn signals were outlined. It was shown cyT grant for project infrastructure and PROMEP grant. J.
that wavelet(q, ¢')-entropy may provide promising and ro- cortez-Gonalez thanks the support of PROFOCIE 2014.
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