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A nonextensive wavelet(q, q′)-entropy for 1/fα signals
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This paper proposes a nonextensive wavelet(q, q′)-entropy computed as a wavelet-domain generalization of the time-domain(q, q′) entropy
of Borges and obtains a closed-form expression of this measure for the class of1/fα signals. Theoretical wavelet(q, q′)-entropy planes
are obtained for these signals and the effect of parametersq andq′ on the shape and behaviour of these wavelet entropies are discussed
with sufficient detail. The relationship of this entropy with Shannon and Tsallis entropies is studied and some applications of the proposed
two-parameter wavelet entropy for the analysis/estimation of1/f signals are outlined.
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1. Introduction

In statistical mechanics, the concept of entropy has tradi-
tionally been employed to measure the information content
or uncertainty of a random signal or system [1, 2]. In the
current literature, entropic functionals, such as the Shannon,
Rényi and Tsallis entropies, have been used to quantify the
complexities associated to random and nonlinear phenom-
ena [3,4]. Moreover, more elaborate information functionals,
such as the so-called information planes [5], which consist
of the product of entropy functionals and the Fisher infor-
mation (and also of entropy and dissequilibrium), are cur-
rently being applied in numerous fields, for instance, in an-
alyzing two-electron systems [6], many particle systems [7],
randomness and localization of molecules [8] and x-ray as-
trophysical sources [9]. In order to obtain an estimate of
such an information functional within a signal or system, a
probability density function (pdf) for continuous signals or
probability mass function (pmf) for sampled data is required.
Traditionally, pmfs in time and frequency domain are used,
however, in recent years, with the advent of multiscale anal-
ysis and time-frequency distributions, wavelet-domain pmfs
are utilized giving rise to the so-called wavelet entropies [10],
generalized wavelet Fisher informations [11], among others.
The advantages of extending spectral and time entropies to
the wavelet domain are numerous including the possibility
to analyze nonstationary signals or time-varying behaviour.
Wavelets, also permit to compute entropies for specific de-
tails or resolutions of the signal in order to capture particular
behaviour. Applications of such wavelet entropy function-
als are diverse, from electroencephalogram (EEG) and elec-
trocardiogram (ECG) signal analysis [12, 13] to laser prop-
agation [14] and characterization of complexity within ran-
dom signals [15]. Scale-invariant or1/f signals, on the other
hand, have been used to model a variety of phenomena in

Physics and many other areas of science [16]. For instance,
Gilmore and co-workers [17] found evidence of scaling be-
haviour in plasma turbulence. Moreover,1/fα noise be-
haviour was found in carbon nanotubes in [18] and this be-
haviour seems to be ubiquitous since it has been found in
disciplines as diverse as Chemistry [19], Physiology [20],
Psychology [21], Biomedical Engineering [22] among oth-
ers. Within scale-invariant signal analysis, the estimation of
the scaling parameter,α, plays a role of relevant importance
since it determines the form of autocorrelation functions [23],
the shape and behaviour of sample paths, the stationarity
and nonstationarity of realizations [24], among other prop-
erties [25]. Many techniques for estimatingα have been pro-
posed, however, nowadays, no single technique is able to ac-
curately estimateα under the variety of complexities found
in real measured data [23–25]. Recently, wavelet-based in-
formation tools have found application in the analysis of1/f
signals [10, 15, 23, 26]. Wavelet information tools charac-
terize adequately the theoretical complexities of these sig-
nals and as a consequence may help the signal analyst to
propose tools or methodologies for their analysis/estimation.
For instance, in [11], a novel technique based on generalized
wavelet Fisher information allowed to detect level-shifts in
fractional Gaussian noise (fGn) signals of parameterH. Gen-
eralized wavelet Fisher information not only detected and lo-
cated level-shifts accurately but also permitted to enhance the
time required to obtain an estimate than by using a standard
tool of level-shift detection/location [11]. Wavelet informa-
tion tools, therefore offer many advantages and are becom-
ing the tool of choice for analyzing the information content
of a signal. In this contribution, a two parameter, nonex-
tensive wavelet(q, q′)-entropy for1/fα signal analysis is
proposed. This two-parameter entropy not only generalizes
Shannon and Tsallis entropy but also provides more analysis
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flexibility due to its two-parameter nature and nonextensivity.
This means that the Shannon and the Tsallis entropies can be
obtained as special cases of their parameter values and more-
over, due to its additional parameterq′, increased sensitivity
in the analyses may be obtained. In addition, its nonextensive
nature makes it suitable for analysing1/fα signals [27]. The
entropy planes for this two-parameter entropy are obtained
for a variety of values of the parameterα and their relation-
ship with the standard Shannon and Tsallis entropies is also
found. The motivation behind the wavelet(q, q′)-entropy is
that it provides alternative configurations of parameters val-
ues forq andq′ to analyze the same phenomena and the pos-
sibility to increase sensitivity in the analyses. The rest of the
article is structured as follows. In Sec. 2, the concept of
1/f signals, wavelets and the wavelet analysis of1/f signals
is briefly revisited. Section 3 presents the wavelet(q, q′)-
entropy and computes the wavelet(q, q′)-entropy of1/fα

signals. It also presents the wavelet(q, q′)-entropy planes for
1/fα signals, obtained for a variety of values of the nonex-
tensivity parametersq andq′. Section 4 outlines some ap-
plications of the wavelet(q, q′)-entropy for the analysis of
1/f signals and presents some simple example applications
on synthesized1/f signals. Finally, Sec. 5 draws the conclu-
sions of the article.

2. Wavelet analysis of1/fα signals

1/fα signals are ubiquitous in many fields of science and en-
gineering and model phenomena as diverse as deoxyribonu-
cleic acid (DNA) sequences [28], heart-beat time series [29],
mood and self-steem [30].1/fα signals are traditionally de-
fined in terms of their power spectral density (PSD) which
behaves as a power-law in a range of frequencies,i.e., as,

S(f) ∼ cf |f |−α, f ∈ (fa, fb), (1)

wherecf is a constant,α ∈ R is the scaling parameter and
fa, fb represent the lower and upper bounds upon which (1)
holds [31]. Depending uponα, fa andfb, several well-known
random processes are obtained,e.g., whenfb > fa, fa → 0
and0 < α < 1, long-memory signals result. Moreover, for
all α ∈ R, 1/f signals are self-similar in the sense that their
distributional properties are invariant under dilations in time
and space.1/f signals are stationary ifα < 1 and nonsta-
tionary if α > 1 [24]. The well-known fractional Brownian
motion (fBm), a Gaussian, nonstationary and self-similar sig-
nal with parameterH whose autocovariance is given by,

EBH(t)BH(s) =
σ2

2
{|t|2H + |s|2H − |t− s|2H

}
, (2)

with H ∈ (0, 1), has a spectral density given by

SfBm(f) ∼ c|f |−(2H+1), f → 0, (3)

and thus is a1/fα signal withα = 2H+1 [24,25]. Fractional
Gaussian noise (fGn), which is obtained from a fBm process

via a differencing operation, is stationary, self-similar, Gaus-
sian and has a PSD of the form [16,24,25]:

SfGn = 4σ2
XcH sin2(πf)

∞∑

j=−∞

1
|f + j|2H+1

,

|f | < 1
2
, (4)

for H ∈ (0, 1). In the limit of f → 0, the PSD of fGn be-
haves asSfGn ∼ c|f |−2H+1 and therefore is a1/f signal
with α = 2H − 1.

Wavelet analysis permits to represent a signal as a sum
of small waves called wavelets. It has been employed for the
analysis of complex time series [32] and1/fα signal analy-
sis/estimation [10,15,31]. Wavelet analysis can be computed
in two different ways allowing to capture different behaviour
within a signal. The discrete wavelet transform (DWT) is
primarily used for computing wavelet variance, entropy, etc.
The continuous wavelet transform (CWT), on the other hand,
is more convenient for quantifying the cycles, synchroniza-
tion as well as the correlation within one or more time series
via the wavelet cross-correlation and wavelet coherence [33].
In this article, the DWT is employed and the wavelet spec-
trum is computed. The wavelet spectrum obtains the vari-
ances of DWT coefficients at each wavelet scalej and allows
not only to estimate the scaling parameterα but also to obtain
a pmf which in turn can be used to compute entropic func-
tionals. In the work of Abry [31], the wavelet spectrum was
studied and a formula for computing the wavelet spectrum of
random signals was given by,

Ed2
X(j, k) =

∞∫

−∞
SX(2−jf)|Ψ(f)|2 df, (5)

whereΨ(f) =
∫

ψ(t)e−j2πft dt is the Fourier integral of the
mother waveletψ(t), SX(.) is the PSD of the processXt,
E the expectation operator anddX(j, k) is the DWT of the
processXt at time k and wavelet scalej [31]. Using the
well-known PSD of1/fα signals as given by Eq. (1) and
substituting it into Eq. (5), the wavelet spectrum of1/f sig-
nals results in:

Ed2
X(j, k) = C2jα, (6)

whereC is a constant. The wavelet spectrum obtained in
Eq. (6) has been used to esitmateα [31] and also for com-
puting wavelet-based information tools [10, 11]. For further
information on wavelets, either continuous or discrete and in
the wavelet analysis of1/f signals please refer to [31, 32]
and references therein.

3. Wavelet(q, q′) entropy of 1/fα signals

In this article, a two parameter wavelet(q, q′)-entropy for
1/fα signal analysis is proposed. To obtain an expression
for succh a wavelet entropy, a pmf in the DWT domain is re-
quired. As a matter of fact, by the use of Eq. (6), the wavelet
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spectrum of1/fα signals, the DWT pmf of these signals is
given by:

pj =
Êj∑N
i=1 Êi

, (7)

whereÊj = N−1
j Ed2

X(j, k) andNj represents the number
of DWT coefficients at scalej. Equation (7) is indeed a pmf
since0 < pj < 1,

∑
j pj = 1 and

∑
j1 pj <

∑
j2 pj for

j1 < j2. Equation (7), also called the relative wavelet en-
ergy (RWE) [10], quantifies the energy of a random signal
per resolution levelj. The RWE for the class of1/fα signals
is therefore given by substituting (6) into (7) [10,11,15],i.e.,

pj,1/f = 2(j−1)α 1− 2α

1− 2αN
, (8)

whereN andj represent the (logarithmic) length of the signal
and the wavelet scale respectively. Many wavelet-based in-
formation tools have been obtained using Eq. (8), the wavelet
Fisher informations of [11] and [26], the wavelet Tsallisq-
entropy of [15], among others. The article proposes a novel
wavelet (q, q′)-entropy which is computed using (8). As
mentioned earlier, the concept of entropy is used to quantify
the information content of a signal and when computed in the
wavelet-domain it allows to quantify the information content
at different resolution levels, thus adjusting the analyses to
the nature of the data. An important requirement of any in-
formation functional is its ability to analyze linear, nonlinear
and phenomena exhibiting long-range interactions. Tsallis
entropy allows these type of analyses, however, it is limited
to a single configuration of its parameterq. This means that
Tsallis q-entropies can, for example, classify signals using
a specific value ofq but no other value ofq can perform
the same classification. There is, thus, a need for an infor-
mation functional to provide alternative configurational pa-
rameters to analyze the same problem. The(q, q)′-entropy
provides additional flexibility in the sense that it has an addi-
tional nonextensivity parameterq′ and the question is if it is
able to provide alternative configurations of their parameter
values to analyze a given problem. In this article, this(q, q′)-
entropy, originally proposed by Borges [34] is generalized
to the wavelet domain and closed-form formulas of this en-
tropy for1/f signals are obtained. The(q, q′)-entropy gener-
alizes the Bolzmann-Gibbs statistic and the Tsallisq-entropy
as well and is defined by the following equation [34],

HT
(q,q′)(πj) =

N∑

j=1

πq
j − πq′

j

N1−q −N1−q′ . (9)

whereq, q′ ∈ R are the nonextensivity parameters. When
q′ → 1, the usual normalized Tsallisq-entropy results and
whenq → 1 andq′ → 1, the normalized Shannon entropy
is obtained.(q, q′)-entropy, therefore, increases not only pa-
rameter flexibility but also the possibility to obtain the same
type of results as Shannon or Tsallis by adjustingq and q′

properly. As a matter of fact, Eq. (9) can be rewritten
in terms of the Tsallisq-entropy (and Tsallisq′-entropy) as
follows,

HT
(q,q′)(πj) = HT

q (πj)
1−N1−q

N1−q −N1−q′

−HT
q′(πj)

1−N1−q′

N1−q −N1−q′ . (10)

whereHT
q (πj) andHT

q′(πj) represent the normalized Tsallis
q-entropy and Tsallisq′-entropy for distributionπj .

Substituting Eq. (8) into (10) and using the results of [23]
the wavelet(q, q′) entropy of1/fα signals is given by:

HT
(q,q′)(πj) =





PN−1
(
2 cosh(αq′ ln 2

2 )
)

(
PN−1

(
2 cosh(α ln 2

2 )
))q′

−
PN−1

(
2 cosh(αq ln 2

2 )
)

(
PN−1

(
2 cosh(α ln 2

2 )
))q





×
(
N1−q −N1−q′

)−1

(11)

where PN−1(2 cosh u) is a polynomial of orderN − 1, i.e.,

PN−1(.) = (2 coshu)N−1 − (N − 2)
1!

(2 cosh u)N−3

+
(N − 3)(N − 4)

2!
(2 cosh u)N−5 − . . . (12)

At this point and based on the results of Eqs. (11)
and (12), an interesting question is how the wavelet(q, q′)-
entropy behaves according to the different values ofq andq′

and to investigate if different sets of values ofq andq′ may
permit to analyze the same problem, say detecting specific
behaviour within a signal. The first question is answered if
the wavelet(q, q′)-entropy planes for differentq andq′ are

FIGURE 1. Wavelet(q, q′)-entropy for1/fα signals. Parameter
q and q′ are set toq = 7 and q′ = 4. Scaling index range is
α ∈ (−1, 1) and the length of the signal ranges in the interval
N ∈ (24, 213).
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FIGURE 2. Wavelet (q, q′)-entropy for fixed lengthN = 10,
q = 13 and several values of the nonextensivity parameterq′.

FIGURE 3. Wavelet(q, q′)-entropy for fixed lengthN = 12, q = 7

and several values of the nonextensivity parameterq′

obtained and the second by identifying planes which in prin-
ciple may be different but provide a similar description of
a given phenomena. In the following, the entropy planes
obtained for particular values of the nonextensivity param-
etersq andq′ are studied. Wavelet entropy planes can also
be used for identifying potential applications of this entropy
for the analysis/estimation of1/f signals. Figure 1, shows
the wavelet entropy plane for the nonextensivity parameters
q = 7 andq′ = 4 and which is a typical behaviour of wavelet
(q, q′)-entropies whenq > 1 andq′ ∈ R − {1}. For these
cases, the observed wavelet entropies are monotonically in-
creasing and are not normalized to1. Interestingly, wavelet
(q, q′)-entropies have even symmetry and for a range of the
form (−αa, αa), zero entropies are observed. This symmet-
ric range of zero entropies can be stretched depending upon
the values of the nonextensivity parametersq and q′. The
length of the signalN and the nonextensivity parameterq′

have the effect of increasing the rate at which entropies in-
crease and in the same way of reducing the range of zero
entropies as shown in Fig. 1. IncreasingN , increases the
rate at which entropies increase. Parameterq′ also increases
this rate, however follows an interesting behaviour which de-
pends upon the positivity or negativity ofq′. To investigate

FIGURE 4. Wavelet(q, q′)-entropy for1/fα signals. Parameter
q and q′ are set toq = 7 and q′ = 4. Scaling index range is
α ∈ (−1, 1) and the length of the signal ranges in the interval
N ∈ (24, 213).

further the effect ofq′ on the shape of wavelet(q, q′) entropy
planes, Fig. 2 displays a particular example whenq = 13,
N = 10 and negativeq′. Note that asq′ decreases, the en-
tropies increase more rapidly and the range of constant en-
tropies decreases. Figure 3 displays another example when
N = 12, q = 7 but using positive values of the nonextensiv-
ity parameterq′. Note that for this case, entropies increase
more rapidly with higher values ofq′ and the range of zero
entropies decreases. From this, it is concluded that the rate
at which entropies increase is boosted wheneverq′ becomes
more negative orq′ becomes more positive (mantainingN
andq fixed). Figure 4 displays another wavelet entropy plane
obtained whenq = 9 andq′ → 1. Note that in this case,
wavelet entropies are monotonically decreasing and normal-
ized to1. This behaviour is similar to the one observed for
the wavelet Tsallisq-entropy [23] and the parameterq, in
this case, permits to stretch the range over which constant
entropies are observed. In contrast to Fig. 1, the wavelet
(q, q′)-entropy plane of Fig. 4 is not sensitive to the length
of the signal. Note that Fig. 1 and Fig. 4 provide alterna-
tive ways of characterizing complexity. The configuration of
Fig. 1 treats purely random1/f signals (α = 0) with zero
entropies while the configuration ofq andq′ values of Fig. 4
assigns unity entropies to these random signals.

4. Applications

Wavelet (q, q′)-entropy may have several applications not
only for the analysis/estimation of1/fα signals but also for
the characterization of the complexities of any random sig-
nal. For1/fα signal analysis and estimation, wavelet(q, q′)-
entropy may help increase the accuracy of estimating algo-
rithms by identifying and eliminating level-shifts that bias the
estimations. Moreover, based on the results of Sec. 3, wavelet
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FIGURE 5. Classification of signals as stationary or nonstation-
ary. Top plot: concatenated stationary and nonstationary signal,
first half part is a stationary signal and second half corresponds to
a nonstationary one. Bottom plot: wavelet(q, q′)-entropy of con-
catenated signal computed in sliding windows.

(q, q′)-entropy can also be used for classifying1/f signals as
stationary/nonstationary, extended fBms from fBms, among
others. The1/f signal classification problem as stationary or
nonstationary is fundamental for1/f signal estimation since
the selection of the estimators of the parameterα is based on
the stationarity nature of the signal. Some estimators work
only in stationary signals while others are more suitable un-
der nonstationary ones [24, 25]. Classification of1/fα sig-
nals as stationary or nonstationary can be performed with
wavelet(q, q′)-entropy in two different ways using different
configuration of values for the nonextensivity parametersq
andq′. First, by adjusting the range of zero frequencies in
Fig. 1 toα ∈ (−1, 1), an efficient way to classify1/f signals
reduces to the problem of identifying signals with zero en-
tropies from varying ones. Therefore, a methodology for dis-
criminating stationary signals from nonstationary ones is to
compute entropies in sliding windows and to detect regions of
zero entropies (which correspond to stationary signals) from
regions of entropies that present variable behaviour (nonsta-
tionary signals). A second approach which is similar to the
above one is based on the behaviour of entropies of Fig. 4. In
this case, stationary behaviour is distinguished from nonsta-
tionary one based on the fact that stationary signals experi-
ment constant unity entropies while entropies for nonstation-
ary signals vary. Figure 5 provides a simple demonstration
of the stationarity/nonstationarity classification capabilities
of wavelet(q, q′)-entropy. Top plot represents a concatenated
time series in which the first time points up to the middle of
the duration are from a stationary signal and the rest come
from a nonstationary signal. Bottom plot of Fig. 5 display
the wavelet(q, q′)-entropy from the concatenated signal us-
ing sliding windows of lengthW = 1024, q = 8 andq′ = 6.
Note that the entropies for the first part of the signal (station-
ary) are zero while entropies corresponding to the second

FIGURE 6. Level-shift detection and location using wavelet(q, q′)-
entropy. Top plot displays a fGn with three level-shifts. for illus-
trative purposes, the level-shifts are plotted in white. Bottom plot:
wavelet(q, q′)-entropy for the signal with three level-shifts.

half part vary. This simple example demonstrates that a ro-
bust and powerful technique for discriminating1/fα signals
based on wavelet(q, q′)-entropy can be obtained. Another in-
teresting application of wavelet(q, q′)-entropy is in the field
of level-shift detection and location. It has been shown in
the work of Stoev [35] that a single level-shift has the effect
of overestimatingH yielding H > 1, thus, wavelet(q, q′)-
entropy applied to a segment with a single level-shift will
result in an entropy value suddently decaying to zero (or su-
dently increasing above zero) resembling an impulse shaped
form. Therefore, the wavelet(q, q′)-entropy of signal with
level-shifts will result in a signal composed of impulses. The
location and strength of the impulse is related to the loca-
tion and amplitude of the level-shift. With the use of wavelet
(q, q′)-entropy, a level-shift detection/location problem be-
comes in a peak detection and location problem. Figure 6
displays an example in which a signal with3 level-shifts is
detected by the use of wavelet(q, q′)-entropy. Therefore,
with the use of wavelet(q, q′)-entropy, an efficient and fast
methodology for detecting and locating weak level-shifts can
be designed. Many other applications can be perfomed with
the use of wavelet(q, q′)-entropy, the purpose of this article,
however is not to investigate applications but to present the
wavelet(q, q′)-entropy, their theoretical properties on1/fα

signals and highlight some potential applications.

5. Conclusions

In this article, a novel wavelet(q, q′)-entropy for the anal-
ysis of 1/fα signals was proposed. The entropy was ob-
tained as a waveler-domain extension of the(q, q′) entropy
of Borges and permits to quantify the complexities and in-
formation content of random signals and systems using the
DWT. Closed-form expressions for this entropy are found
for the class of1/fα signals and based on this, wavelet
(q, q′)-entropy planes are obtained. Wavelet(q, q′)-entropy
planes, as demonstrated, are not only useful for explaining
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the complexities of1/f signals but also for identifying poten-
tial applications for their analysis/estimation. A detail study
of the behaviour of wavelet(q, q′)-entropy planes was pre-
sented for a variety of values of parametersq andq′. Finally,
two possible application areas of the wavelet(q, q′)-entropy,
specifically for classifying1/fα signals and for detecting
level-shifts within fGn signals were outlined. It was shown
that wavelet(q, q′)-entropy may provide promising and ro-

bust techniques for signal classification and level-shift detec-
tion/location.
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