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Reduction of the Salpeter equation for massless constituents
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Different from the case of the nonrelativistic limit, it is shown in this paper that in the ultrarelativistic limit, theL = j, j+1 wave components
are large terms for both state with parityηP = (−1)j and state with parityηP = (−1)j+1. Moreover, it is found that the states with parity
ηP = (−1)j are degenerate with the states with parityηP = (−1)j+1 if the Lorentz structure of the interaction between the massless
constituents is four-vector or time-component of four-vector. The scalar interaction violates this degeneracy.
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1. Introduction

The Bethe-Salpeter equation [1] is the appropriate tool to deal
with bound-state problems within the framework of relativis-
tic quantum field theory. The nature of the Bethe-Salpeter
equation renders it difficult to deal with. It is a four dimen-
sional integral equation, and it requires the full propagators
for constituents as well as their interaction kernel from the
very beginning. Therefore, simplification is necessary, for
example, the ladder approximation and replacing full propa-
gators with free ones. Besides, more simplifications are often
used in practice when the Bethe-Salpeter equation is applied
to different problems, for instance, massless exchanging bo-
son [2], massless bound state [3], massless constituents [4],
large constituent’s mass [5] and so on.

Due to various practical reasons, the Salpeter equa-
tion [6], one of the three-dimensional reductions of the
Bethe-Salpeter equation, is frequently used in practice. From
the Salpeter wave function and Salpeter equation, it can be
found that theL = j wave components play dominant role
in the wave function for state with parityηP = (−1)j+1, and
theL = j±1 wave components are main terms for state with
parity ηP = (−1)j [7–9], whereL is the relative orbital an-
gular momentum quantum number,j is the spin of the bound
state. These features can be shown more obviously in the
nonrelativistic limit [10]. In addition, when taking the nonrel-
ativistic limit theL = j−1 wave components andL = j +1
wave components will decouple for state with parity(−1)j ,
and for state with parity(−1)j+1 the spin singlet and spin
triplet will decouple, too. In the limit of vanishing masses
of the two bound-state constituents, the Salpeter wave func-
tion and Salpeter equation will be simplified in this paper. It
maybe be not only of academic interest but also instructive
and useful to obtain the features of the Salpeter equation in
the ultrarelativistic limit, which are different from the fea-
tures obtained in the nonrelativistic limit.

This paper is organized as follows. In Sec. 2, the Salpeter
equation is briefly reviewed. In Sec. 3, the reduction of the
Salpeter equation for the massless constituents is presented.
The conclusion is given in Sec. 4.

2. Salpeter equation

Due to the problems in actual applications [4], the reduc-
tions of the Bethe-Salpeter equation are highly desirable
[1, 6, 11–13]. It has been shown [14] that there exist infi-
nite versions of the reduced Bethe-Salpeter equation. The
Salpeter equation is the most famous one, which is based
on the instantaneous approximation [6]. In this paper, the
Salpeter equation is employed.

Let us briefly review the Salpeter equation in this section.
The Salpeter equation for a fermion-antifermion bound state
reads in covariant form [10]

ψP (p⊥) =
Λ+

1 (p⊥) 6 P̂Γ(p⊥) 6 P̂Λ−2 (−p⊥)
M − ω1 − ω2

− Λ−1 (p⊥) 6 P̂Γ(p⊥) 6 P̂Λ+
2 (−p⊥)

M + ω1 + ω2
, (1)

whereM is the mass of the bound state,P is the bound-state
momentum, andp is the relative momentum.p‖ is the longi-
tudinal part ofp and parallel toP , p⊥ is the transverse part
of p and perpendicular toP [5,11,15]

P̂ =
P

M
, M =

√
P 2, pl = p · P̂ , p = p‖ + p⊥,

p‖ = plP̂ , p⊥ = p− plP̂ , d4p = dpld
3p⊥. (2)

In the rest frame of the bound state with momentum
P = (M,0), pl = p0, p‖ = (p0,0) andp⊥ = (0,p). Γ(p⊥)
is defined as

Γ(p⊥) =
∫

d3p′⊥
(2π)3

V (p⊥, p′⊥)ψP (p′⊥). (3)

The projection operators are written in covariant form as

Λ±i (p⊥) =
ωi ±Hi(p⊥)

2ωi
, Hi(p⊥) = 6 P̂ (mi− 6p⊥),

ωi =
√

m2
i + $2, $ =

√
−p2

⊥ (4)
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with the properties

Λ∓i (p⊥)Λ±i (p⊥) = 0,

Λ+
i (p⊥) + Λ−i (p⊥) = 1,

Λ±i (p⊥)Λ±i (p⊥) = Λ±i (p⊥),

Hi(p⊥)Λ±i (p⊥) = ±ωiΛ±i (p⊥). (5)

In case of massless constituents,m1 = m2 = 0, ω1 = ω2

= $, Λ∓1 (p⊥) = Λ∓2 (p⊥).
Applying the energy projectorsΛ±1 (p⊥) from the left

hand side andΛ±2 (−p⊥) from the right hand side to the
Salpeter equation (1) leads to

(M − ω1 − ω2)ψ+−
P (p⊥)

= Λ+
1 (p⊥) 6 P̂Γ(p⊥) 6 P̂Λ−2 (−p⊥),

(M + ω1 + ω2)ψ−+
P (p⊥)

= −Λ−1 (p⊥) 6 P̂Γ(p⊥) 6 P̂Λ+
2 (−p⊥) (6)

together with the constraints on the Salpeter wave function

ψ++
P (p⊥) = ψ−−P (p⊥) = 0, (7)

whereψ±±P (p⊥) = Λ±1 (p⊥)ψP (p⊥)Λ±2 (−p⊥).
Let the bound state be normalized as

〈P |P ′〉 = (2π)32P0δ(P − P′). Then the explicit form
of the normalization condition for the Salpeter wave function
reads

∫
d3p⊥
(2π)3

Tr
{
6 P̂ψ(p⊥) 6 P̂Λ+

1 (p⊥)ψ(p⊥)Λ−2 (−p⊥)

− 6 P̂ψ(p⊥) 6 P̂Λ−1 (p⊥)ψ(p⊥)Λ+
2 (−p⊥)

}
= 2M, (8)

whereψ(p⊥) = γ0ψ†(p⊥)γ0.

3. Salpeter equation for massless constituents

In this section, we will consider the Salpeter wave function
and Salpeter equation for bound state with massless con-
stituents. In the ultrarelativistic limitm1 = m2 = 0, the con-
straints on the Salpeter wave function as well as the Salpeter
equation will be different from that obtained in the nonrela-
tivistic limit.

3.1. State0+

For state0+, the Salpeter wave function reads

ψ0+
(p⊥) = g1+ 6 P̂ g2+ 6 p̂⊥g5+ 6 p̂⊥ 6 P̂ g6, (9)

wherep̂µ
⊥ = pµ

⊥/$. When the scalar functionsgi are not to
be integrated,gi ≡ gi($), i = 1, 2, 5, 6, and whengi are to

be integrated,gi ≡ gi($′), $′ =
√
−p

′2
⊥ . g1 andg2 are S

wave components, whileg5 andg6 are P wave components.

Applying the constraints (7) on the Salpeter wave function (9)
yields

g2 = g5 = 0. (10)

The normalization condition reads
∫

d3p⊥
(2π)3

4g1g6 = M. (11)

For simplicity, taken as an example, the interaction kernel
takes the form

V (p⊥ − p′⊥) = Vs + γ0 ⊗ γ0V0 + γµ ⊗ γµVv, (12)

whereVs is scalar function corresponding to interactions of
the scalar type,V0 is the time-component Lorentz-vector part,
andVv is the Lorentz-vector part. Other types of interaction
kernels can be treated in similar way. The coupled equations
for 0+ are obtained from Eqs. (6) and (9)

Mg1 = 2$g6 −
∫

d3p′⊥
(2π)3

(V0 − Vs)p̂⊥ · p̂′⊥g6,

Mg6 = 2$g1 +
∫

d3p′⊥
(2π)3

(V0 + Vs + 4Vv)g1. (13)

In the nonrelativistic limit, state0+ is P wave state, the P
wave componentsg5 andg6 are large terms, while the S wave
componentsg1 andg2 are mall and are relativistic corrections
to g5 andg6. But in the ultrarelativistic limit,g2 = g5 = 0,
g1 andg6 are large terms, and the coupled Eqs. (13) are on
g1 andg6. In the ultrarelativistic limit, the energy projection
operatorΛ±i (p⊥) = (1∓ 6 P̂ 6p⊥)/2 and Eqs. (6), (7) choose
theg1 andg6 as large terms. In the nonrelativistic limit, we
can find thatg1 andg2 are chosen as main terms by inspect-
ing the energy projection operatorΛ±i (p⊥) = (1± 6 P̂ )/2, the
Salpeter wave function (9) and the Salpeter Eq. (6).

3.2. State0−

For state0−, the Salpeter wave function reads

ψ0−(p⊥) = γ5
[
g1+ 6 P̂ g2+ 6 p̂⊥g5+ 6 p̂⊥ 6 P̂ g6

]
. (14)

The constraints on the Salpeter wave function (14) are

g2 = g5 = 0. (15)

The normalization condition is
∫

d3p⊥
(2π)3

4g1g6 = M. (16)

The coupled equations read

Mg1 =2$g6 −
∫

d3p′⊥
(2π)3

(V0 + Vs)p̂⊥ · p̂′⊥g6,

Mg6 =2$g1 +
∫

d3p′⊥
(2π)3

(V0 − Vs + 4Vv)g1. (17)
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In the nonrelativistic limit, state0− is S wave state, therefore,
the S wave componentsg1 andg2 are large terms, while the P
wave componentsg5 andg6 are small and corrections to the
S wave components. Different from the case of the nonrela-
tivistic limit, g1 andg6 are large terms in the ultrarelativistic
limit.

It is interesting that for both psudoscalar state0− and
scalar state0+, the constraints and the normalization condi-
tions are the same, see Eqs. (10), (11), (15) and (16). In case
of the nonrelativistic limit, state0+ is P wave state and state
0− is S wave state. But in case of the massless constituents,
the wave components are the same for both state0− and state
0+, the S wave componentg1 and the P wave componentg6

are large. Moreover, if the interaction is vector or time com-
ponent of vector, Eqs. (13) and (17) imply the existence of
the degeneracy of the spectra, but the scalar interactionVs

will destroy the degeneracy.

3.3. State with parity ηP = (−1)j

For state with parityηP = (−1)j (j > 0), the general form
of the Salpeter wave function reads [8,9]

ψj(p⊥) = εµ1···µj p̂
µ2
⊥ · · · p̂µj

⊥

[
p̂µ1
⊥ (g1+ 6 P̂ g2)

+ γµ1
⊥ (g3+ 6 P̂ g4) +

(
p̂µ1
⊥ 6 p̂⊥ +

j

2j + 1
γµ1

)

× (g5+ 6 P̂ g6) + σµ1ν p̂⊥ν(g7+ 6 P̂ g8)
]
, (18)

where γµ
‖ = 6 P̂ P̂µ, γµ

⊥ = γµ − γµ
‖ , σµν = [γµ

⊥, γν
⊥],

gi ≡ gi($), i = 1, 2, 3, 4, 5, 6, 7, 8. g3, g4 are pureL = j−1
wave components, andg5, g6 are pureL = j + 1 states.g1,
g2, g7 andg8 areL = j wave components. In the nonrela-
tivistic limit, g3, g4, g5 andg6 are main terms [9], whileg1,
g2, g7, andg8 are small terms, which are relativistic correc-
tions in wave function.

The constraints on the Salpeter wave function (18) read
in the ultrarelativistic limit

g2 = g7 = 0, g4 = − j

2j + 1
g6, g3 =

j + 1
2j + 1

g5. (19)

In the nonrelativistic limit, for state with parity(−1)j , the
L = j − 1 wave componentsg3, g4 and theL = j + 1 wave
componentsg5, g6 are large. But in case of massless con-
stituents,L = j wave componentsg1 andg8 are large which
are small in the nonrelativistic limit.

Using Eqs. (8) and (18), the normalization condition can
be obtained

∫
d3p⊥
(2π)3

4
[
Sj

1g1g6 − (Sj
1 + Sj

2)g5g8

]
= M, (20)

where [16]

Sj
1 =

∑
Pµ1···µjν1···νj p̂

µ1
⊥ · · · p̂µj

⊥ p̂ν1
⊥ · · · p̂νj

⊥ ,

Sj
2 =

∑
Pµ1···µjν1···νj

gµ1ν1 p̂µ2
⊥ · · · p̂µj

⊥ p̂ν2
⊥ · · · p̂νj

⊥ . (21)

The definition ofPµ1···µjν1···νj
in Eq. (21) is in appendix.

Using Eqs. (6) and (18), the coupled equations can be ob-
tained

Mg1 = 2$g6 −
∫

d3p′⊥
(2π)3

T j
1

Sj
1

(V0 − Vs)p̂⊥ · p̂′⊥g6,

Mg6 = 2$g1 +
∫

d3p′⊥
(2π)3

T j
1

Sj
1

(V0 + Vs + 4Vv)g1,

Mg5 = 2$g8 −
∫

d3p′⊥
(2π)3

(p̂⊥ · p̂′⊥T j
3 − T j

5 )
(Sj

1 + Sj
2)

× (V0 + Vs + 2Vv) g8,

Mg8 = 2$g5 +
∫

d3p′⊥
(2π)3

(p̂⊥ · p̂′⊥T j
1 + T j

2 + T j
3 + T j

4 )
(Sj

1 + Sj
2)

× (V0 − Vs + 2Vv)g5, (22)

where

T j
1 =

∑
Pµ1···µjν1···νj p̂

µ1
⊥ · · · p̂µj

⊥ p̂′
ν1

⊥ · · · p̂′
νj

⊥ ,

T j
2 =

∑
Pµ1···µjν1···νj

p̂′
µ1

⊥ p̂′
ν1

⊥ p̂µ2
⊥ · · · p̂µj

⊥ p̂′
ν2

⊥ · · · p̂′
νj

⊥ ,

T j
3 =

∑
Pµ1···µjν1···νj g

µ1ν1 p̂µ2
⊥ · · · p̂µj

⊥ p̂′
ν2

⊥ · · · p̂′
νj

⊥ .

T j
4 =

∑
Pµ1···µjν1···νj p̂

µ1
⊥ p̂ν1

⊥ p̂µ2
⊥ · · · p̂µj

⊥ p̂′
ν2

⊥ · · · p̂′
νj

⊥ ,

T j
5 =

∑
Pµ1···µjν1···νj p̂

′µ1

⊥ p̂ν1
⊥ p̂µ2

⊥ · · · p̂µj

⊥ p̂′
ν2

⊥ · · · p̂′
νj

⊥ . (23)

In Eq. (22), there are two sets of coupled equations in which
g1 andg6 are coupled, andg5 andg8 are coupled, butg1, g6

andg5, g8 are decoupled. When not considering the nonrel-
ativistic limit or ultrarelativistic limit, the obtained coupled
equations are ong3, g4, g5 andg6, which are coupled to each
other,i.e., theL = j− 1 wave componentsg3 andg4 and the
L = j + 1 wave componentsg5 andg6 are coupled. In the
nonrelativistic limit, theL = j−1 wave components and the
L = j + 1 wave components are decoupled, and theL = j
wave components are small terms. But in the ultrarelativistic
limit, the L = j wave componentsg1 andg8 become large.

The constraints (19) rule out the exotic states with parity
ηP = (−1)j and charge-conjugation parityηP = (−1)j+1
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[8, 9], i.e., such states cannot be constructed by the Salpeter
equation, which is consistent with the results obtained by L-S
coupling analysis in the nonrelativistic limit.

3.4. State with parity ηP = (−1)j+1

For state with parityηP = (−1)j+1 (j > 0), the general form
of the Salpeter wave function reads

ψj(p⊥) = γ5εµ1···µj p̂
µ2
⊥ · · · p̂µj

⊥

[
p̂µ1
⊥ (g1+ 6 P̂ g2)

+ γµ1(g3+ 6 P̂ g4) +
(

p̂µ1
⊥ 6 p̂⊥ +

j

2j + 1
γµ1

)

× (g5+ 6 P̂ g6) + σµ1ν p̂⊥ν(g7+ 6 P̂ g8)
]
, (24)

whereg1, g2, g7, andg8 are main terms which are pureL = j
wave component [9]. Whileg3, g4, g5 andg6 are small terms,
which are relativistic corrections in wave function.

The constraints on the Salpeter wave function (24) read

g2 = g7 = 0, g4 = − j

2j + 1
g6,

g3 =
j + 1
2j + 1

g5. (25)

which are the same as the constraints for state with parity
(−1)j , see Eq. (19).

In case of the ultrarelativistic limit, the normalization
condition reads

∫
d3p⊥
(2π)3

4
[
Sj

1g1g6 − (Sj
1 + Sj

2)g5g8

]
= M, (26)

which is the same as Eq. (20).
The coupled equations read

Mg1 = 2$g6 −
∫

d3p′⊥
(2π)3

T j
1

Sj
1

(V0 + Vs)p̂⊥ · p̂′⊥g6,

Mg6 = 2$g1 +
∫

d3p′⊥
(2π)3

T j
1

Sj
1

(V0 − Vs + 4Vv)g1,

Mg5 = 2$g8 −
∫

d3p′⊥
(2π)3

(p̂⊥ · p̂′⊥T j
3 − T j

5 )
(Sj

1 + Sj
2)

× (V0 − Vs + 2Vv)g8,

Mg8 = 2$g5 +
∫

d3p′⊥
(2π)3

(p̂⊥ · p̂′⊥T j
1 + T j

2 + T j
3 + T j

4 )
(Sj

1 + Sj
2)

× (V0 + Vs + 2Vv)g5. (27)

Eqs. (22) and (27) are different only in the sign ofVs term.
In the nonrelativistic limit, the constraints on the Salpeter

wave functions, the normalization conditions and the spec-
tra for the states with parity(−1)j and(−1)j+1 are differ-
ent [10]. But in the ultrarelativistic limit, the constraints on

the Salpeter wave functions and the normalization conditions
are the same for states with different parity, see Eqs. (19),
(20), (25) and (26). Moreover, we can obtain from Eqs. (13),
(17), (22) and (27) that there are degenerate doubles with the
same spin but with different parity if the interaction is vec-
tor or time-component of vector. And the scalar interaction
will destroy this degeneracy. These results maybe be only of
academic interest. Nevertheless, it is instructive to pursue the
insight of the bound states in the ultrarelativistic limit.

4. Conclusion

In this paper, we have presented the reduction of the Salpeter
equation for the massless constituents. It is shown thatL = j
andL = j + 1 wave components play main roles for both
states with different parity in the ultrarelativistic limit while
in the nonrelativistic limit,L = j wave components are large
terms forηP = (−1)j+1 state, andL = j ± 1 wave com-
ponents are main terms forηP = (−1)j state. And in the
ultrarelativistic limit, there exists degeneracy of the spectra
of the states with the same spin but with different parity if the
interaction is vector or time component of vector. However,
the scalar interaction will destroy the degeneracy.

Appendix

A. Polarization tensor

For completeness, we list the formulas which are useful in
this paper. It is known that the polarization tensor is totally
symmetric, transverse, and traceless,i.e.,

εµ1µ2··· = εµ2µ1···, Pµ1εµ1µ2··· = 0, εµ
µν··· = 0. (A.1)

The usual spin-1 polarization vectorεµ(jm) obeys the rela-
tions [17]

Pµεµ(jm) = 0,
∑

jm

ε∗µ(jm)εν(jm) = Pµν ,

Pµν ≡ −gµν +
PµPν

M2
. (A.2)

The polarization tensorεµν(jm) is for a particle of spin-2 and
it obeys

Pµεµν(jm) = 0, εµν = ενµ, εµ
µ = 0,

∑

jm

ε∗µν(jm)εαβ(jm) =
1
2

(PµαPνβ + PναPµβ)

− 1
3
PµνPαβ . (A.3)

For integer spin, the expression ofPµ1···µjν1···νj (j, P )
reads [16]
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Pµ1···µjν1···νj (j, P ) =
∑

jz

ε∗µ1···µj εν1···νj =
(

1
j!

)2 ∑

P (µ)
P (ν)

[
j∏

i=1

Pµiνi + aj
1Pµ1µ2Pν1ν2

j∏

i=3

Pµiνi + · · ·

+ aj
rPµ1µ2Pν1ν2 · · · Pµ2r−1µ2rPν2r−1ν2r

j∏

i=2r+1

Pµiνi + · · ·

+





aj
j/2Pµ1µ2Pν1ν2 · · · Pµj−1µjPνj−1νj , for even j

aj
(j−1)/2Pµ1µ2Pν1ν2 · · · Pµj−2µj−1Pνj−2νj−1Pµjνj , for odd j

]
, (A.4)

where the sum is over all permutations ofµ andν, and

aj
r =

(
−1

2

)r
j!

r!(j − 2r)!
(2j − 2r − 1)!!

(2j − 1)!!
. (A.5)

In the above formula,n! gives the factorial ofn, n! = n(n− 1) · · · , andn!! gives the double factorial ofn, n!! = n(n− 2) · · · .
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