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Reduction of the Salpeter equation for massless constituents
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Different from the case of the nonrelativistic limit, it is shown in this paper that in the ultrarelativistic limif, thej, j 4 1 wave components
are large terms for both state with parify = (—1)’ and state with parity)» = (—1)7"*. Moreover, it is found that the states with parity
np = (—1)7 are degenerate with the states with parity = (—1)7*! if the Lorentz structure of the interaction between the massless
constituents is four-vector or time-component of four-vector. The scalar interaction violates this degeneracy.
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1. Introduction 2. Salpeter equation

The Bethe-Salpeter equation [1] is the appropriate tool to dedbue to the problems in actual applications [4], the reduc-
with bound-state problems within the framework of relativis- tions of the Bethe-Salpeter equation are highly desirable
tic quantum field theory. The nature of the Bethe-Salpetefl, 6, 11-13]. It has been shown [14] that there exist infi-
equation renders it difficult to deal with. It is a four dimen- nite versions of the reduced Bethe-Salpeter equation. The
sional integral equation, and it requires the full propagatorsSalpeter equation is the most famous one, which is based
for constituents as well as their interaction kernel from theon the instantaneous approximation [6]. In this paper, the
very beginning. Therefore, simplification is necessary, forSalpeter equation is employed.

example, the ladder approximation and replacing full propa-  Let us briefly review the Salpeter equation in this section.
gators with free ones. Besides, more simplifications are ofterhe Salpeter equation for a fermion-antifermion bound state
used in practice when the Bethe-Salpeter equation is applie@ads in covariant form [10]

to different problems, for instance, massless exchanging bo- A .

son [2], massless bound state [3], massless constituents [4], ~ Af(py) PT(p1) PA; (—pL)

M — wi — ws

large constituent’s mass [5] and so on.
AL (p1) PT(p1) PAS(—p1)

Yp(pL)

Due to various practical reasons, the Salpeter equa-
tion [6], one of the three-dimensional reductions of the - ) 1)
Bethe-Salpeter equation, is frequently used in practice. From M+ w1 + w2

the Salpeter wave function and Salpeter equatio_n, it can b§here)s is the mass of the bound stafe js the bound-state
found that thel. = j wave components play dominant role momentum, ang is the relative momentunp is the longi-

in the wave function for state with parity> = (—=1)’*!, and _tudinal part ofp and parallel toP, p, is the transverse part
the L = j 41 wave components are main terms for state withyt ,, and perpendicular t# [5, 11, 15]

paritynp = (—1)7 [7-9], whereL is the relative orbital an-

gular momentum quantum numbgiis the spin of the bound -~ P -

state. These features can be shown more obviously in the P=qp M= VP pi=p- P p=pptpL

nonrelativistic limit [10]. In addition, when taking the nonrel-

ativistic limit the L = j — 1 wave components and = j + 1

wave components will decouple for state with pafityl)?,

and for state with parityf—1)7*! the spin singlet and spin - Y ) .

triplet will decouplep, tog. Ir: the limit F())f vanigshing maspses b= (M0, p =p"p = (7", 0) andp, = (0,p). T'(p.)
. is defined as

of the two bound-state constituents, the Salpeter wave func-

tion and Salpeter equation will be simplified in this paper. It d3p'| , ,

maybe be not only of academic interest but also instructive LlpL) = /WV(M,}?L)ZDP(M) ®)

and useful to obtain the features of the Salpeter equation in

the ultrarelativistic limit, which are different from the fea- The projection operators are written in covariant form as

tures obtained in the nonrelativistic limit.

P =pP, piL=p-pP, d'p=dpdp,. 2

In the rest frame of the bound state with momentum

This paper is orgaqized as follows. In Sec. 2, thg Salpeter Aii(m) - %i(m)’ H;(py) :P(mi_ »1),
equation is briefly reviewed. In Sec. 3, the reduction of the Wi
Salpeter equation for the massless constituents is presented. o 2 5 _ 2 4
The conclusion is given in Sec. 4. wi=mptws, W= P “)
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with the properties Applying the constraints (7) on the Salpeter wave function (9)
N yields
AF(p)AF (p1) =0,
_ 92 =95=0. (10)
Af(p) +A7 (1) = 1, L
The normalization condition reads
AF (A (L) = AF (po), 3
d’p
Hi(p)AT (pr) = +wil\ (po). (5) /ﬁ@wﬁ = M. (11)
In case of massless constituenis, = my = 0, w1 = wy For simplicity, taken as an example, the interaction kernel

=w, AT (p1) = AT (p1). takes the form
Applying the energy projectordi(p,) from the left
hand side and\¥(—p,) from the right hand side to the Vipr — 7)) = Vs +7° @7 Vo + v, @ ¥*V4, (12)
Salpeter equation (1) leads to
whereVj is scalar function corresponding to interactions of

(M —wy — wz)wﬁ_(m) the scalar typéel is the time-component Lorentz-vector part,
4 R L andV,, is the Lorentz-vector part. Other types of interaction
= A7 (p1) PE(p1) PA; (=po), kernels can be treated in similar way. The coupled equations
(M +w;y +w)v3t (p) for 0T are obtained from Egs. (6) and (9)
_ A ~ 3.,/
= A0 PTOD) PP O Mgy =2~ [ GV~ Vs -

together with the constraints on the Salpeter wave function

d3p/
Mgs = 2wgy + /71'(V0+‘/5+4VU)Q1. (13)
prpL) =vp"(p1) =0, (7) J (2m)?
s L
Wherewﬁi(m) _ AI‘L(pL)i/JP(m)Aét(—m)- In the nonrelativistic limit, staté* is P wave state, the P

Let the bound state be normalized as'ave components; andgg are large terms, while the S wave
(P|P") = (21)32Pyd(P — P'). Then the explicit form componentg; andg, are mall and are relativistic corrections
of the normalization condition for the Salpeter wave function!© 95 @ndgs. Butin the ultrarelativistic limitgs = g5 = 0,

reads g1 andgg are large terms, and the coupled Eqgs. (13) are on
g1 andgg. In the ultrarelativistic limit, the energy projection
d*p o —_ _ operatorA (p, ) = (1F P #.)/2 and Egs. (6), (7) choose
/ (27r)3Tr{ Petpr) PAT(p0)Y(p)As (=p1) the g; andgg as large terms. In the nonrelativistic limit, we

. . can find thaty; andg, are chosen as main terms by inspect-
= Piopr) PAI(ZMW(PL)A;(*PU} =2M, (8) ingthe energy projection operatdf (p, ) = (1+ P)/2, the
. Salpeter wave function (9) and the Salpeter Eq. (6).
wherey (p1) = ~°¢T(p1 )7’
3.2. State0~

3. Salpeter equation for massless constituents o, siaten—, the Salpeter wave function reads
In this section, we will consider the Salpeter wave function
and Salpeter equation for bound state with massless con-

stituents. In the ultrarelativistic Ilmml =mz =0,thecon- 114 constraints on the Salpeter wave function (14) are
straints on the Salpeter wave function as well as the Salpeter

WO (1) =° |g1+ Pgot Brgs+ Bo PQG] : (14)

equation will be different from that obtained in the nonrela- g2 = g5 = 0. (15)
tivistic limit.
The normalization condition is
3.1. State0™ 3
g 4 B
. /73 9196 = M. (16)
For state)™, the Salpeter wave function reads (2m)

+ - - The coupled equations read
V0 (pL) = 1+ Pgat Brgs+ BL Pge. 9) peceq
dS / . .

wherep!| = p!/ /. When the scalar functiong are not to Mgy =2wge — / (2:)% (Vo + Vi)p1 - D'\ g,
be integratedy; = ¢;(w), i = 1,2,5,6, and whery; are to

i — _ ’ d3 /
be integratedg; = g,»(q’), w' = 4/—p?. g1 andg; are S Mgs =2wg, +/ pé (Vo — V, + 4V, )1 (17)
wave components, whilg; andgs are P wave components. (2m)
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In the nonrelativistic limit, staté— is S wave state, therefore, where [16]

the S wave componengs andg are large terms, while the P

wave componentsgs andgG are small and corrections to the g7 — mewwlmujﬁ‘f Pl

S wave components. Different from the case of the nonrela-

tivistic limit, g; andgs are large terms in the ultrarelativistic _ s >

limit. Sg = ZP.“‘l"'/Ljul"'l/jgﬂlylplj_Q .. 'prf .. ~pJ_J. (21)
It is interesting that for both psudoscalar state and

scalar stat®™, the constraints and the normalization condi- | . .

tions are the same, see Egs. (10), (11), (15) and (16). In ca%?r']r;% Egs. (6) and (18), the coupled equations can be ob

of the nonrelativistic limit, staté+ is P wave state and state

0~ is S wave state. But in case of the massless constituents, d?’Pl le

the wave components are the same for both statend state g1 = 2wGs — / (2m)3 g7

0T, the S wave componept and the P wave componedgy !

are large. Moreover, if the interaction is vector or time com- By T

ponent of vector, Eqs. (13) and (17) imply the_exsten_ce of Mgs = 2wg, +/ PLB %(% YV, +4V)g1,

the degeneracy of the spectra, but the scalar interagfjon (2) Sy

will destroy the degeneracy.

The definition of Py, ....i;1,...,; In EQ. (21) is in appendix.

(Vo = Vo)pL - 91 g6,

Mgs = 2wgs _/ dBp; (Ps .ﬁ;Tg — )
2m)® (8] +S))

3.3. State with parity np = (—1)/

For state with parity)p = (—1)7 (j > 0), the general form x (Vo + Vs +2V0) gs,
of the Salpeter wave function reads [8, 9]
&p', (b -9\ T] +T9 + T +TY)

Mgs = 2wgs +/

_ R T R 3 7L o
W (pL) = €y, B Y {pil (914 Pgo) (2m) (57 +53)
- N x (Vo — Vs +2Vy)gs, 22
+ ' (g3+ Pga) + (PT L+ 551 1’7‘“) (Vo )95 (22)
where
X (g5+ Pgs) + "V pi, (g7 + Pgs)], (18) ; N L A
) ( Tf:zpﬂl"'ﬂjl’l'”wplj} plj_ NNy
K Ppp meo_ no_ M nyo mov . " ~u o v
where = PP i = " =of o = LI ST,

gi = gi(w),i1=1,2,3,4,5,6,7,8. g3, g4 are purel, = j—1
wave components, ang, g are pureL = j + 1 states.gy,
92, g7 andgs are L = j wave components. In the nonrela-  T9=> Py, v,y g™ P - P
tivistic limit, g3, g4, g5 andgg are main terms [9], while,

g2, g7, andgg are small terms, which are relativistic correc-

~ ~ ~ b V2 AV
tions in wave function. T{=  Pusgor DD B0 0
The constraints on the Salpeter wave function (18) read
. - . . . . ~ 1 ~ INTREEN % ~ V_‘
in the ultrarelativistic limit T!= Z Priseoonsy ul-A-ujp’jpfp’f .. -p‘fp’f N x)
G=gr =0, gi—— _J go, g3 = j_+ 1 gs. (19) In Eqg. (22), there are two sets of coupled equations in which
2j+1 2j+1 g1 andgg are coupled, angs andgg are coupled, bu;, gs

andgs, gs are decoupled. When not considering the nonrel-
In the nonrelativistic limit, for state with parity—1)7, the  ativistic limit or ultrarelativistic limit, the obtained coupled
L = j — 1 wave componentgs, g4 and theL = j + 1 wave  equations are ogs, g4, g5 andgg, which are coupled to each
componentsys, gs are large. But in case of massless con-other,i.e., theL = j — 1 wave componentg; andg, and the
stituents,L. = j wave componentg; andgs are large which L = j + 1 wave componentgs andgg are coupled. In the

are small in the nonrelativistic limit. nonrelativistic limit, the. = 5 — 1 wave components and the
Using Egs. (8) and (18), the normalization condition canL = j + 1 wave components are decoupled, andthe j
be obtained wave components are small terms. But in the ultrarelativistic

limit, the L = j wave componentg, andgs become large.
B>p y y y The constraints (19) rule out the exotic states with parity
/ (2w)34 {519196 — (51 + 52)9598] =M, (20) np = (—1)7 and charge-conjugation parity> = (—1)7+!
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[8,9], i.e., such states cannot be constructed by the Salpetéhe Salpeter wave functions and the normalization conditions
equation, which is consistent with the results obtained by L-Sre the same for states with different parity, see Egs. (19),

coupling analysis in the nonrelativistic limit.
3.4. State with parity np = (—1)7+1

For state with parity)p = (—1)’*! (j > 0), the general form
of the Salpeter wave function reads

W (pL) =7 €, P DY {ﬁ}f (91t Pg2)

j 1
2+ 1 )

x (gs+ Pge) + 0" pru(gr+ Pgs)], (24)

+ "1 (g3 + Pga) + (ﬁ’f P+

whereg, g2, g7, andgg are main terms which are pufe= j
wave component [9]. Whiles, g4, g5 andgg are small terms,
which are relativistic corrections in wave function.

(20), (25) and (26). Moreover, we can obtain from Egs. (13),
(17), (22) and (27) that there are degenerate doubles with the
same spin but with different parity if the interaction is vec-
tor or time-component of vector. And the scalar interaction
will destroy this degeneracy. These results maybe be only of
academic interest. Nevertheless, it is instructive to pursue the
insight of the bound states in the ultrarelativistic limit.

4. Conclusion

In this paper, we have presented the reduction of the Salpeter
equation for the massless constituents. It is shownithatj
andL = j + 1 wave components play main roles for both
states with different parity in the ultrarelativistic limit while

in the nonrelativistic limit,L = j wave components are large
terms fornp = (—1)7*! state, andl = j + 1 wave com-
ponents are main terms fo = (—1)7 state. And in the

The constraints on the Salpeter wave function (24) read ultrarelativistic limit, there exists degeneracy of the spectra

9229 :O g4_—— ] g
T ’ 2j+16’
j+1
= . 25
93 2j+195 (25)

which are the same as the constraints for state with pari

(—1)7, see Eq. (19).
In case of the ultrarelativistic limit, the normalization
condition reads
d*p.

[ s

which is the same as Eq. (20).
The coupled equations read

4 [5{9196 — (S +83)g598 | = M, (26)

dp!, T} -
(23 ?{(VO + Vs)bL - P\ ges
d3p', 2{
(2m)? 59
d*pl) (pu-P) T3 —TJ)
(2m)3 (8] +S))

X (VO - ‘/s -+ 2Vv)987

Mg, = 2wgs —/

Mg = 2wg; +/ (Vo — Vs +4V,) g1,

Mgs = 2wgs —/

d*py (o 0\ T +T3 + T3 + T9)
(2m)? (51 +53)
X (Vo + Vs +2V,)gs.

Mgg :2wg5+/

(27)
Egs. (22) and (27) are different only in the signigfterm.

In the nonrelativistic limit, the constraints on the Salpeter

ty

of the states with the same spin but with different parity if the
interaction is vector or time component of vector. However,
the scalar interaction will destroy the degeneracy.

Appendix
A. Polarization tensor

For completeness, we list the formulas which are useful in
this paper. It is known that the polarization tensor is totally
symmetric, transverse, and traceléss,

PPle, e =0, e =0. (Al)

€papa- = Cuopr-es

The usual spin-1 polarization vectet(j,,) obeys the rela-
tions [17]

Puelt(jm) =0, ZGZ(jm)Gu(jm) = Pﬂua
Jm
P,P,
Puv = =9 + L (A.2)

M2

The polarization tensat*” (4., ) is for a particle of spin-2 and
it obeys

PMEHV(j’m) = 07 " = EVM7 EZ = 07
. /- ) 1
Z EMV(]m>€Oé,3(jm) = 5 (Puapuﬁ + Puapﬂﬁ)
jﬂl
1
— 2PuPas. (A3)

wave functions, the normalization conditions and the spec-

tra for the states with parity—1)7 and (—1)7*! are differ-

For integer spin, the expression @GP+ Hivivi(j P)

ent [10]. But in the ultrarelativistic limit, the constraints on reads [16]
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2
R e () P
J= P(p)

P(v)

J J
l]:[pum + a{P“lMP"lW Hpmw 4.

i=1 =3

J
+ ajpﬂllwplh V2 .. PHar—1H2r DV2r—1V2r H PHiVi 4L
,
i=2r+1
a?ﬂpmmpulw C PRI PY-1V) for even |

, (A.4)
PHiH2PVIV2 L PHj—2Hi -1 PVi—2Vi -1 DKV for odd j

J
Ui-1)/2
where the sum is over all permutationsgoédndv, and

ARy 4! (25 —2r — )N
ai_<_2> MG -2 (2j -0 (A.5)

In the above formulay! gives the factorial ofi, n! = n(n—1) - - -, andn!! gives the double factorial of, n!! = n(n—2) - - -.
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