RESEARCH Revista Mexicana déskca62 (2016) 240-250 MAY-JUNE 2016

Implications of the Ornstein-Uhlenbeck-like fractional
differential equation in cosmology

Rami Ahmad EI-Nabulsi
College of Mathematics and Information Science,
Neijiang Normal University, Neijiang, Sichuan 641112, China.
and Athens Institute for Education and Research, Athens, Greece,
e-mail: nabulsiahmadrami@yahoo.fr

Received 20 November 2015; accepted 4 February 2016

In this paper we introduce a generalized fractional scale factor and a time-dependent Hubble parameter obeying an “Ornstein-Uhlenbeck-like
fractional differential equation” which serves to describe the accelerated expansion of a non-singular universe with and without the presence
of scalar fields. Some hidden cosmological features were captured and discussed consequently.
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1. Introduccion with time [20,21]. Although there exist in literature a large
number of phenomenological theories to describe the accel-
In recent years, increasing attention has been focused on tiegated expansion of the universe [22-30], we consider that
applications of fractional differential and integral operators tousing fractional differential operators to describe cosmologi-
different branches of applied sciences and it has contributedegl scenarios is of considerable interest since fractional-order
lot to mathematical physics and theoretical physics [1-3]. Inderivatives and integrals are nonlocal operators and hence one
fact, the use of fractional calculus in many fundamental physexpects them to play important roles in cosmology [31,32].
ical problems has attracted theorists to pay more attention tbherefore, one expects more hidden properties are present in
accessible fractional calculus tools that can be used in solvingosmology with a GFSF that deserve to be captured and ana-
numerous problems of theoretical physics and quantum fieltyzed.
theories [4-15]. Recently, it was observed that fractional cal- The paper is organized as follows: in Sec. 2, we intro-
culus plays an interesting role as well in cosmology and theluce the main definitions and setups for the case of a FRW
physics of the early universe where some hidden propertieffat cosmology with a GFSF and a time-dependent Hubble
are captured and analyzed in details [16-18 and referencgmrameter and we discuss some features in the absence of the
therein]. In a more recent work, we have we have discusseskcalar field whereas the presence of the scalar field will be
the Friedman-Robertson-Walker (FRW) cosmology characdiscussed in Sec. 3; we consider the case of a cosmology
terized by a scale factor obeying different independent typewith a Gauss-Bonnet gravity for reasons that will be men-
of fractional differential equations with solutions given in tioned in the same section; finally conclusions and perspec-
terms of and generalized Kilbas-Saigo-Mittag-Leffler func-tives are given in Sec. 4.
tions [19]. It was observed that this new fractional cosmolog-
ical scenario exhibits some interesting results like the occur-
rence of an accelerated expansion of the universe dominatet FRW cosmology with a generalized frac-
by the dark energy (DE) and the occurrence of a repulsive  tional scale factor
gravity in the early stage of the universe and time-decaying
cosmological constant without the presence of scalar field8y using the following FRW metric for a flat universe
In this paper, we would like to generalize this approach by in-ds?> = —dt? + a2(t)(dr? 4 2(df? + sin® d¢)) wherea(t)
troducing a new generalized fractional form of the scale facis the scale factor, the Hubble parameter is defined usually
tor in terms of the Hubble parameter and discuss its implicaby H(t) = a(t)/a(t) and accordingly for the case of a con-
tions in the absence and in the presence of scalar fields. Ogtant Hubble parametee,g. H = Hy, it is easy to check
basic motivation to deal with a generalized fractional scaleusingda = aH (t)dt that the scale factor is obtained from
factor (GFSF) is based on the fact that the Hubble parametehe integral equatior(t) — a9 = Hp f(f a(u)du. How-
which describes the expansion of the universe is consideregler, there are some arguments that show that the Hubble
one of the most important parameter in cosmology as it iparameter is related to the scale factor [33-36]. In this pa-
used to estimate the age and the size of our universe. Coper, we will conjecture that the Hubble parameter varies as
siderable progress has been made in determining the Huli (¢t) = nHy + oF(t)/a wheren ando are real constants
ble constant and deducing its time-dependence since theand F(¢) is a time-dependent function. In that case, we
ries and observations predict that the Hubble parameter varigave da = a(t)H(t)dt = a(t)(nHo + oF(t)/a(t))dt =
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nHoya(t)dt+o F(t)dt and thereforé(t) = nHoa(t)+oF(t).  is the Mittag-Leffler function [38].

This equation is similar to the Ornstein-Uhlenbeck stochastic

differential equation [37]. The fractional version of this dif- 21

ferential equation may be written afD{a(t) = nHga(t) + o

oF(t) where Dja(t) = (1/T'(a)) [j(t — 1) 'a(r)dr  \e choose at the beginning(t) = Fyt*~' where F, is
is the Riemann-Liouville fractional integral (RLFI) with 4 (gg parameter andl is a real constant. Using the fact
oD{a(t) = a(t). We entitled this equation the “Ornstein- hat [39]:

Uhlenbeck-like fractional differential equation” (OULFDE).

Here0 < o < 1 is the fractional exponent. Applying t

the fractional integral operator to both LHS and RHS of 7t — 1)V Eq o (HG (t — T)Y)dT

oDfa(t) = nHoa®(t) + o(t) we can find the solution of

the OULFDE which is given by [37]:

=T\ taJr)\*l Ecx N Hote , 2
a(t) = ao Eq,a(nHyt) (A) aA(nHgt®), (2)

we can write the solution (1) as:

t
_ a—1 Qs d
+UO/F(7-)(t )"~ Ea,a(nHg (t — T)a)'T, (1) a(t) = ap E1.o (1HS®)

where I b + O'FOF()\)tOH_)\_l Ea,(x—&-)\(nH(?ta)' (3)
z
Bl = 2 WMo 0

0 We can set for simplicityg = n = Hy =0 = Fy =1

|  andthen Eq. (3) is simplified to:

al(t)= e at+A—1 o\ c- L at+A—1 — tk—a
()= E1 0 (t)+T (AT Eq o g2 (1) ;}mm T ;F(a TS
1 te t2a N B 1 $o t2a
@) Tt ey e <F(a) TT@a+n T@atoy )
_ atA- 1 DOt 1 T)eH-1\
IR m <F(a+1) T TRa+ N >t i (F(a+2) * F(3a+2/\)>t2 te @)

One particular choice of parameter is obtained if for in-

stance we seX = 1 — o which reduces Eg. (4) to:
tional coupling constant assumed both to be time-dependent

a(t) =1+T(1+a) andTH = (p + p)uru” + pg"” the stress-energy momen-
tum tensorp andp are respectively the pressure and density
w( oyt goy 1 e
. i Mg i = -
I(@)  T(a+tl) T(at2) of the perfect fluid and.* is the fluid rest-frame four veloc

ity. The field equations give the following Friedmann equa-
=14+T(1+ o)E; (%), (5)  tion a%/a® = 87Gp/3 + A/3 and the conservation equa-

L . . . i - i [ -
and therefore the scale factor is increasing with time ané'_On for the stress energy-momentum tenser Tt 0

a universe dominated by such a form of a scale factor i§VESA +87Gp + 87G(p + 3a(p + p)/a) = 0 [40]. For

accelerated with time and is non-singular. In conclusion,Complete determinacy of the system, we will adapt the equa-

Eq. (5) is the solution of the fractional differential equationtIon of state (EoSp - w(t)p wherew is t_he EqS param-
oD%a(t) = a(t) + t— and the Hubble parameter varies as &ter assumed to be time-dependent. It is believed that the

—a - . universe is presently in a stage of an accelerated expansion
H(t) =nHo+oF(t)/a=1+1"%/aormore explicitly as: (dark energs dominimce) ang decelerated expansior? in the
Hit)=1 past (dark matter dominance). Therefore, one naturally ex-
1 pects that the EoS parameter varies with time [41,42]. In
our model, we assumed that both and vary with time. This
e (1+F(1—0<) (ﬁJrr(alﬂ)t“er(alH) 2o )) choice is not new and it was considered in a large number
1 of cosmological scenarios [43-47]. In fact, a time-dependent
) (6) lambda is favored as a constant fails to explain the enormous
te(1+ (1~ a)Epa(t?)) difference between the cosmological constant inferred from
In our model the Einstein’s field equations that governobservation and the vacuum energy density obtained from
our model of consideration arB*” — ¢g"*R/2 + Ag'” = quantum field theories. Besides, a time-dependent gravita-
8rGT*H¥, A is the cosmological constar is the gravita- tional constant has many interesting cosmological and as-

_|_

=1+
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trophysical consequences (see [43] and references therein) - ) r ' 6 ’ . i
we can now split the equatioh+87Gp + 87G(p + 3a(p + -02}
p)/a)=0 into two independent equation&+87Gp = 0 and
p+3a(p+p)/a=0. In order to solve the previous cosmolog-
ical equations, we conjecture that the cosmological constant -4t =2 -1
varies as\(t) = 3xa?/a® wherey is a real parameter. Such 3t
an ansatz was considered by many authors and has many in- 4 1
teresting cosmological consequences [48-50]. Using the re- -06} - ;'
lations 1
Ly a(#) = - (Bapla) — (8- DEas()) N
dx a,3 T oz @ B\T a,B -08F A
and - ; -1
lim E,p_1(z)/Eqp(x) =1
[51], the cosmological constant varies as: FIGURE 1. Variations ofw(t) for« = 1/4,1/3,1/2,2/3.
1 Eya1(t%) — (0 — 1)Epo(t*)\?
A(t):3x<a Loo1(E) (O‘E Bl )> ~
t 14+ T(1 — a)Ep () o0 wof
(1 (2—a)Bia1(t?) )2 ~
t*1+T(1 — a)Eq o(t9) 15f
2-a)\> 1
3X ([ o= ) = 7
X(F(l—a) {20 ) of .
Accordingly the Friedmann equation gives: -Vt
5 -
8rGp 1 2-a))° — 23
—x(1- —— 8
5~ X)(taf(l—a) ® e s

. . . 2 4 6 ] 10
The differential equatioh + 87 Gp = 0 gives now:8nGp =

6x(2 — a)*t72*71/T?(1 — a) and therefore using Eq. (8) FiGuRE 2. Variations ofG(t) for a = 1/4,1/3,1/2, 2/3.
we find G/G = 2xa/(1 — x)t or after simple integration
G = kt*x>/(1=x) wherek is a constant of integration. There-

fore the energy density decays as 0
_31-x) ( 2-0a) ? —2a/(1-x) 0
P~ sk (F(l ) ! ’ ®

with x < 1in order to obtain a positive energy density. The «
continuity equatiory + 3a(p + p)/a = 0 with p = w(t)p

gives now the following time-dependent EoS parameter: . ['lr“ toss r4
2a I 1Y 2 2
wlt) ~ -1+ — 2% 1 r 2
" 31 =) ’ er[135' it ot '1]
~(gth

1 2% 1 . . L L L -\z[7+7+?+?+1

« — ~—14 3(1 — )? (10) 05 10 15 20 25 30 15V: 3Vn Vi Vi

b T B ) oo X

FIGURE 3. Variations ofa(t) for o = 1/2,2/3 up to the ¥ four
For0 < a < 1, the EoS parameter decreases with timeorders.
and tends asymptotically toward = 1. Hence the uni-
verse in such a scenario is non-singular, accelerating witlariation of the gravitational constaﬁ;/G:2Xat*1/(1—X).
time and is dominated for very large time by a vacuum enfor x = 1/10, we find G/G = 2a/t. Fory = 103,
ergy. The cosmological constant decays in time, the gravitawe find a small relative variatiod’/G = 0.002«/¢ and
tional constant increases with time for< xy < 1. We plot  therefore for0 < o < 1, we find a relatively smalG /G,
in Figs. 1-4 the variations of the EoS parameter, the gravitae.g for o = 1/2, we find G/G = 103/t and therefore
tional constant, the scale factor and the cosmological constatite present day variation of the gravitational constant is
for x = 1/2 and different values af. Go/Go = 0.001/ty ~ 10~ 3yr~! which is in agreement
Fora > 2/3, the scale factor increases acceleratedly withwith recent observations [52,53]. Hefigis the present age
time than the rest values of. We can estimate the relative of the universe.
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FIGURE 4. Variations ofA(¢) for« =1/4,1/3,1/2,2/3.

2.2.
We can choosé ' (t) = Fyt* 'E,.\(—t*). Using the fact
that [37]:

t

/T)\_lEa))\(—Ta)(t — 7)) B al(t — 7)) dr

— ta+)\—1 E2a,a+)\ (tZOz)7 (11)
then from Eq. (1) the scale factor evolves as:
a(t) = Epo(t™) + t" T Egy 0 a (2%).  (12)

For\ = 1—aq, Eq. (12) is reduced tai(t) = E; o (t*) +
Esa,1(t?%) & Esa,1(t). Using

Bl = sy

we can write:
1
t) ~ E o tQ(x - -
a( ) 2 51( ) F(QOL)
t20¢ t4(x
13
T Tear D) TTEat2) (13)

243

FIGURE 5. Variations ofa(t) for F(t) = Fot* ™ Ea 1 (—t*) (blue
line) andF (t) = Fot*~* (red line) mainly fora = 1/2.
12¢
10}
0B}
06}
04t
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FIGURE 6. Variations ofA(t) for F'(t) = Fot* 'Eq x(—t*) (blue
line) andF(t) = Fut* ! (red line) mainly fora, = 1/2.

easy to check that in that case the energy density de-
cays with time as(t) o« t~**/(1=%) whereas in the pre-
vious case we foung(t) o t—2¢/(1=X) and that the
EoS parameter decays agt) ~ —1 + 4a/3(1 — x)t.

In that case as well, the gravitational constant increases
with time as G = kt™*/0=x) with 0 < y < 1.

The universe is therefore asymptotically dominated by
a cosmological constant. In summary, the phenomeno-
logical law H(t) = nHy + oF(t)/a and the OULFDE
oDfa(t) = nHga(t) + oF(t) reveal new inter-
esting properties not found in the standard FRW

The scale factor in that case increases faster than in the prevhodel mainly the occurrence of a non-singular uni-

ous case and the universe is non-singular. Toillustrate gl’aph/erse and its accelerated expansion with time.

For

ically, we plot in Fig. 5 the variations of the scale factor for F(t) = Fot’* 1 E, A (—t*), the universe is accelerated more

both cased’(t) = Fyt’ ' E, \(—t*) and F(t) = Fyt* !
mainly fora = 1/2.
For A(t) = 3xa?/a?, we find

A(t) = (3x/4a*t ) ( Eq.0(t?¥)/ Ega.1 (t2%))?
~ 3x /40t o 1

whereas forF'(t) = Fot*~! we find A(t) oc t~2* and there-

speedily than for'(t) = Fyt*~! and is dominated for vary
large time by a vacuum energy. One may argue that for

F(t) = Fot* 'Eq A (—tY)Egaa(—t**)Ezan(—t3%) ...
E'rL(y,)\(_tna) = F0t>\71H?:1Eio¢,)\(_tia)7

we find a(t) ~ t*T*1E, 4 nasa (1) and accordingly the

fore the cosmological constant in that cases decays mongniverse expands vary rapidly with time and the cosmologi-
rapidly than in the previous case as show in Fig. 6. It iscal constant decays speedily with time and is non-singular. It

is notable to note that far = 1, the scale factor exhibits an
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exponentially behavior which corresponds for inflation or su-is a topological invariant, ghost-free in Minkowski back-
perinflation depending on the form &f(¢) since the Mittag-  ground, its appearance alone in the action can be neglected

Leffler function reduces to the exponential function. as a total divergence. However, if coupled, it affects the
It is noteworthy that fora = 1 and foroc = 0, cosmological dynamics in presence of dynamically evolving

i.e. absence off(t), the fractional differential equation dilaton and modulus fields at the one-loop level of string ef-

oDfa(t) = nHga(t) + oF(t) is reduced to fective action and may have desirable features in many cos-

oDfa(t) = nHEa(t) which is nothing than the definition mological scenariose.g. avoiding the initial singularity of
of the Hubble parameter. In that case, Eq. (3) which giveshe universe [61]. Many of inflationary potentials are disfa-
the evolution of the scale factor with time is reduced ac-vored when constrained to Planck CMB data due mainly to
cordingly toa(t) = apE;.; which is an exponential growth the large tensor-to-scalar ratio yet it was argued in [62] that
and corresponds to an inflationary scenario. This proves thaton-minimal coupling to the GB term may set these poten-
our basic solutions which are represented merely by Egs. (9)ials in good agreement with the Planck data. There are many
(10) and (13) are due to the use of the new mathematical tootesearch papers discussing the scalar field cosmology with
These solutions are interesting otherwise the model gives rig8B curvature corrections as possible solutions to DE with a
to internal inflation which is not favored in cosmology. field-dependent scalar potential [63-66]. In this section, we
investigate a cosmological FRW model in which a single dy-
3. FRW cosmology with a generalized frac- namical scalar field _is mi_nimally coupled to gravity in the
tional scale factor and with a scalar field presence of the GB |nva_r|ant_ and a_scale factor gover_ned by
the OULFDE. However, in this section we assume thas
Despite that the OULFDE offers the standard FRW modefonstant and we sérG: = ¢ = h = 1. The action of the
many desirable features in the absence of scalar fields it wiff’€0rY is:
be of interest to know the effects of OULFDE on the FRW

model with single scalar field. It is believed that scalar fields s (R 1 .

can account for both an accelerated exponentially expansion 5= /\/ng x(? ~ 50099

of the early universe as well for the late-time accelerated ex-

pansion of the universe [54,55]. However, there are recent ap- - V(o) + f(¢)G) + Smatten (14)
proaches which suggest that a non-minimally coupled field to

the scalar curvature can generate dark energy and even dark

matter [56]. It is notable that the coupling of the scalar fieldwhereg is the metric,V (¢) is the scalar potential assumed
to curvature appears in alternative theories of gravities whictiere to be flat and of the forii(¢) = A, A is a real parame-
could be responsible after compactification of higher dimenter,G = R®> — 4R, R"” + Ry, R*'*° is the GB invariant,
sions for the current accelerated expansion. Some nice altef{¢) is a coupling function which works as the effective po-
natives theories include the string-inspired dilaton gravitiestential for the inflaton field an@mater= [ v/—9d*z LimatteriS
Kaluza-Klein theory, M/string theory and higher derivative the action for ordinary matter with Lagrangiéaterfor per-
theories with correction terms of higher-orders in the curvafect fluid with densityp and pressurg. In fact, a flat potential
ture [57,58]. These correction terms may play a significani.e., a cosmological constant is consistent with the field mov-
role in the inflationary epoch. The leading quadratic correcing along an almost flat potential like a pseudo-Goldstone
tion terms correspond to the Gauss-Bonnet (GB) curvaturfoson and is in agreement with observations [67]. There-
invariant which appears in the tree-level effective action offore one expects that < 1. The resulting field equation
the heterotic string [59,60]. In four-dimension, the GB termis obtained after varying the total action with respect to the
| metric:

1 1

R = SR 5 (040076 — 10,000 - 3 (-V(0) + f(6)G) - ATV F(O)R

+2f(¢) (RR* — 2RER? + RFPOTRY L — 2R“”"”RPU) +4(V,VHf(¢))R"P +4(V,V"f(¢))R"P
+ 29" (V2 f(9))R — 4(V2 f(9))RM — 49" (V Vo [(9))RP7 + 4(V, Vo f(9)) RIPVT = TH. (15)
g"v is the metric tensor component§/v is the contra-

covariant derivative and™*” is the usual stress energy-
momentum tensor. Considering the spatially-flat Friedmann-

Robertson-Walker (FRW) metric, the dynamical equations  _ of7 1 3f2 — 1&2 —V($) + 8H2¢'5ﬁ
are given by [68]: 2 d¢
1y oo o B wd*f - df 5. df
2(;5 3H* +V(9) 24¢d¢H +p=0, (16) +8H¢ d¢2+16HH¢d¢+16H <z>d¢+p. (17)
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By varying the action over the scalar field, we obtain:

. .4V P )
¢+3H¢+d¢ 24d¢>(HH + H*) =0. (18)

In addition, the continuity equation for the present model
p+ 3H(p + p) = 0 is still satisfied. In this section, [
we chooseF (t) = Fot* 'E, . (—t*) which gives the fol- 04871
lowing evolution of the scale factos(t) =~ FEa, 1(t>)
and consequently the time-dependent Hubble parameter 0.496
H(t) = (1/2082)(Eza,0(2)/Eza1(£2)) ~ (1/2at). -

0499}

0498}

XTrT T

T S S WS T VA R S S SHN U SH SR S S

°

Besides, we assume that the coupling function varies as - = e -

f(@) = foo® wherefy is a real parameter set equal to unity 100
for simplicitg ande is a real cpnstant [_69]. From Eq. (1_8), the £,cuRE 8. Variations of(1).
following 2"-order differential equation holds accordingly:
. 3 . 6Gegpt! 1 1 1.0
- — =] =0. 19 t
o+ 2ait2e ¢ 26 (40421520‘ t) (19) 08
The dynamics depends accordingly on the value of the o06¢F
fractional parametett. We discuss the following two inde- 04
pendent cases: “r
0.2
3.1. ] :
[ 8 10
Fora = 1/2, the following Z‘d-order linear differential equa- -0.2
tion for the scalar field+3¢ /¢t = 0 holdsVe and the solution
is given bye(t) = co +c1t~2 wherec; andc, are integration o
constants. For illustration purpose, we cangs@t) = 0 and ~ FIGURE 9. Variations ofu(t) for e = 1.
¢(1) = 1 which gives the following evolution for the scalar
field ¢(t) = (1 —t~2)/2 and accordingly, the energy density
behaves as: 05t
3 1 1 __
p(t):tj_ﬁ_A+24Et76¢E 17 (20) l
10

We plotin Fig. 7 the variations of the energy density with 2& . .

time fore = 1 ande = 2 assumingA =~ 0 and in Fig. 8 the
variations of the scalar field with time: -05t
Figure 7 shows that for = 2 the energy density was
negative at the early stage of the evolution. A negative en-
ergy density in the early universe was discussed recently ~
in [70] and has many physical impacts on inflationary epoch
Fore = 1, the continuity equation + 3H (p + p) = 0 with

10F

FIGURE 10. Variations ofw(t) fore = 2.

p = w(t)p gives the following time-dependent EoS parame-

st ter:

2673 — ¢4 448t 7
3t—3 — =4 4+ 2447

af w(t)=-1+

Fore = 2, we find

2673 — ¢4 4 4847 — 9613

) 2 3 4 5 _ 3tttdi w(t) = -1+

_-3t5ut4-2at424
7

6 =3 — =4 4 24¢77 — 24¢-13°

(21)

(22)

Their variations with time are plotted in Figs. 9 and 10.

Fore = 1 the EoS parameter decreases with time and
tends toward a stable value close to -0.335 which is within
FIGURE 7. Variations ofp(t) for e = 1 ande = 2. the range of observational limits [71,72] whereasdoe 2,
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the EoS parameter decreases from a larger positive value to-
ward a negative stable value close as well to -0.335. This case
shows that the early universe is not necessarily dominated by
a negative pressure matter with a positive energy density. The ol
behavior of the EoS parameter shows thatfer 1 ande = 2 ‘
the phantom-divide line is not crossed in our scenario.
3.2.
Fora = 1/4 ande = 1, the following Z%-order linear differ- o5
ential equation for the scalar field B
- 6 . 96 4 1
¢+ Wﬁb B (tl/g -7 = 07> (23)  FIGURE 13. Variations ofw(t) for ¢ = 1 anda = 1/4.
and the solution is given by: Accordingly, the EoS parameter varies asymptotically as
1 128 9 4
o(t) = ege12VE <\/z+ ) B L =2 4 2560t
12/ Vi wit) ~ =1+ G a0 27)

wherecz andc4 are integration constants. We set for nu-
merical illustrationsp(1) = 0 and¢(1) = 1 which reduces
Eq. (24) to:

We plot in Figs. 11-13 respectively the variations of the
scalar field, the energy density and the EoS parameter with
time:

L 12-12v2 1024 ) In that case the EoS parameter tends asymptotically to-
t)=- 84Vt +T) — ——+933), (25 ) :
o(t) 8 (e ( Vi ) Vit (25) wardw = —1 at the present epoch. The universe in non-
Accordingly, the energy density varies as; singular, expandmg acceleratedly with tlme_ and is dominated
by a cosmological constant at very late time. The energy

p(t) =12t71 4+ 192 (64t‘3/2 _ 63612—12\/5) £=3/2 density was negative in the past, increases toward a posi-
tive value then decreases toward zero with time. The expan-

1 (64t*3/2 - 63e12*12\/5)2 _A (26) sion of the early universe is due to the negative energy den-

2 ' sity with the negative pressure and the late-time accelerated

expansion comes from the positive energy and the negative
pressure which behave like a dark energy. It is amazing that
the non-singular universe is expanding with time whereas a

100 f o . : "
: transition from a negative energy density to a positive energy
density occurs during its dynamical evolution. Similar sce-
- nario occurs in [73] and negative energies density in acceler-
50

ated universe was discussed recently in [74].

Let us at the end mention that for the case of a time-
dependent gravitational constant and cosmological constant
with A(t) = 3xa?/a? and a general a nearly flat potential
v(p) < 1, we findA(t) = 3x/4a’t*® as obtained in the pre-
vious section whereas Eq. (16) takes now the general form:

FIGURE 11. Variations of¢(t) fore = 1 anda = 1/4.

1., 3H? cdf g A
—¢* — — + V(¢p) - 249p——H — =0, (28
4000 f and accordingly, we find after simple algebra assuming
9 = = i = —t2
w0l N a=1/2ande = lie ¢(t) = (1—1t2)/2
— 31—-x) 1 24
[ 2 3 4 5 pt)~ ——" 5+ - (29)
- 4000 f Assumingy < 1 then the differential equatiod +
[ 81Gp = 0 then gives asymptotically after simple algebra
—6000 3 G(t) = 3t/8w which shows that the gravitational coupling
constant increases linearly with time and therefore the energy
FIGURE 12. Variations ofp(t) for e = 1 anda = 1/4. density is positive and decays g@) ~ 2/t> + 24/t°.
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non-singular universe is then accelerating with time, its en-
15} ergy density is positive and decays with time, the gravita-
tional constant increases with time whereas the cosmological
constant decays in time and there is no place to dark energy in
such a scenario. Accelerated expansion of the universe free
from a dark energy component is discussed recently in [72]

10

05p _ 12 based on thermodynamical frameworks. Figures 14 and 15
t3412 illustrate respectively the variations oft) versusp(t) and
. _2) the variations of\ (¢) versusG(t) with time:
2 * ° 8 10 €8 The present time relative variation of the linearly increas-
FIGURE 14. Variations ofw(t) VeI’SUSp(t). |ng gravitational constant |§0/G0 = Hj which is also

within the range of observations.

Fora = 2/3 ande = 1, we findA(t) ~ 9x/16t3/3 and
oz from Eq. (19), we get:
[ - 9 . 27 9 1
0.15
——|=—=—=--]1=0 30
ot 4t4/3¢ 2t4 <16t4/3 t) ’ (30)
0.10
and the solution is given by:
0osf _ 0.003
t2 27
gl L -a(a(Z)
0.2 04 06 0.8 10 8 2Vt
FIGURE 15. Variations ofA (t) versusG(t). + iV (ijté +t+ 7;;%) > - 8% + ¢, (31)
Accordingly, the EoS parameter decaysuwdg) = —1 +

(t=* 4 24t~7/(t~* + 12¢t~7) and asymptotically it tends to- wherecs; andcg are constants of integratioj(z) is the ex-

ward 0 which corresponds for a pressureless matter. Thé@onential integral. To illustrate numerically, we ggt) = 0
| and¢(1) = 1 which reduces Eq. (31) to:

3739771 (Ei () — & () ) - 76¢3(173%) (320% + 10897+ 720) ¢ + 4% (167996 — 288)
) = 10247 t3

(32)

Asymptotically, att = oo, we can approximate Eq. (32)
by #(t) ~ —19te~27/4/8 and therefore the energy density Iregime. The dynamics of the scalar field is obtained from

varies as Eqg. (19) which will be reduced to
27(1 —x)  1539e27/4 .3 . 6esl /11
t) ~ — . 33 = h— — )=
O~ 578G 64t 33) R LT, (tz t) 0. (34)
Assumingy < 1 then we obtain from the differential

equationA + 87Gp = 0 for very large timeG(t) ~ 2.4t*/3
which corresponds for an increasing gravitational constant 10
and therefore the energy density is positive and decays as g 5
p(t) ~ 0.000056t~*. Hence, the EoS parameter decays as .
w(t) = —1 + 0.17t'/3 which increases slowly in time. The * U T

non-singular universe is accelerating with time, its energy _g 5
density is positive and decays with time, the gravitational
constant increases with time whereas the cosmological con- —1:0
stant decays in time and the EoS parameter increases from-1_, s
toward a positive value asymptotically. We plot in Figs. 15-
18 the variations of.
We left other values of for interested readers. _25
It is notable that forx = 1 ando = 0, the scale factor
a(t) ~ Eg1 1(t?) which corresponds for a super-inflationary FIGURE 16. Variations of¢(t) represented by Eq. (32).

-20
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FIGURE 17. Variations ofA(¢) versusG(t).
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FIGURE 18. Variations ofp(t) with time.
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FIGURE 19. Variations ofw(t) with time.

proves that our solutions are due to the use of the new math-
ematical tool and give rise to more generalized solutions and
cosmological features.

4. Conclusions and Perspectives

In this paper, we have tried to show that fractional calculus
plays an important role in modern cosmology and a num-
ber of properties were hidden and deserve to be captured.
Through this paper, we have considered a GFSF which obeys
the OULFDE with a particular Hubble parameter of the form
H(t) = nHy + o F(t)/a. Such a particular form of the Hub-
ble parameter allows the scale factor of the universe to sat-
isfy a differential equation similar to the Ornstein-Uhlenbeck
stochastic differential equation. In this work, we have con-
sidered the fractional version of this equation which is the
OULFDE which gives already a non-singular acceleratedly
expanding universe due to the mathematical properties of the
Mittag-Leffler function obtained in the corresponding solu-
tion. We have considered the flat FRW model in the absence
and in the presence of a scalar field.

In the absence of the scalar field and for the case of
a flat FRW model with time-dependent gravitational con-
stant and a time-dependent cosmological constant varying as
A(t) = 3xa?/a?, it was observed that foF (1) = Fyt* !
XEqa(—t*) and fora = 1/2, the non-singular universe
is dominated by a decaying cosmological constant, a decay-
ing positive energy density and the gravitational constant in-
creases with tim&® < x < 1. The universe is therefore
asymptotically dominated by a cosmological constant. It is
interesting to obtain such interesting properties without the
presence of scalar fields and higher-order corrections terms
or even modifying the gravity theory. Far < 1, the cos-
mological constant is too small and the present day variation
of the gravitational constant is relatively small and within the
range of observations.

In the presence of the scalar field and higher-order GB
curvature term, the dynamical equations offer some new fea-
tures. For the case of a constantand A, the dynamics de-
pend on the form of the GB coupling functigi{¢) o~ ¢°.
Fore = 1 anda = 1/2 the EoS parameter decreases with
time and tends asymptotically toward -0.335 whereas for

The dynamics therefore differs from previous solutionse = 2, the EoS parameter was positive at early time then de-

obtained forae # 1. For example, foe = 1, the solution is
given by:

3 _.(3 3
o(t) = 7507E| <2t) + cste + cg

1
+ 5 (189.63t6 + 284.4444¢% log t — 213.333t*

— 53.333t% — 13.333t% — 3t — 0.8), (35)

creases toward -0.335. This special feature signifies that the
early universe is not essentially dominated by a negative pres-
sure matter with a positive energy density. ko 1/4, the

EoS parameter tends asymptotically.te= —1. The energy
density of the universe was negative in the early epoch, then
a transition from a negative value to a positive value occurs
and finally it decreases toward zero at late time. However,
in the presence of time-dependeatsaindA, it was observed
that fora. = 1/2, the non-singular acceleratedly expanding
universe is dominated by a positive energy density which de-

which differs completely from previous solutions obtained.cays with time, a linearly increasing gravitational constant, a
c7, ..., co are constants of integration The solution dependsiecaying cosmological constant and an EoS parameter which

on initial conditions and is constrained by> 0. This also

tends to zero at very large time. This scenario is free from the
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4 ()

presence of the DE component. ko= 2/3 ande = 1, the o _
J(t) = (1=

non-singular acceleratedly expanding universe is dominated D
by a decaying positive energy density with time, an increas-
ing gravitational constant and a decaying cosmological con- _ 1 /f el
stant whereas the EoS parameter increases from -1 toward a (n—a) dt”
positive value asymptotically.

These features prove that fractional calculus deserves to These operators are linear and obey the fractional integra-
be considered seriously in cosmology and physics of the earlion rules:

universe. Both the GFSF and the OULFDE offers new in- b b

sights in modern cosmology and it will be of interest to ex- o o

plore in details in the future their impacts on the dark en- / (t)al, dt = /f Ig(t)dt,
ergy problem and the quantum physics of the universe. It a

will be interesting to explore in the upcoming work whether b

t_he present _frgctional model may be tested by future observa- /g(t)anf(t)dt _ /f(t)th‘g(t)dt,
tional data fittings.

a

whereg € Ly(a,b), f € Lg(a,b),p > 1, ¢ > 1 and

Appendix 1/p+1/q < 1+a/[75]. Some interesting properties may arise
mainly the Riemann-Liouville fractional derivative of a non-
A. zero constant is ,D¥Cy = Cot~*/T(1 —a) fora < 1

and the fact thag D Dﬁf( t) # DO f(t) since [76]:
In this appendix, we introduce briefly the main ideas of frac-

tional calculus. In fact, fractional calculus plays an important oD DL F(1) = o DITP £ (1)

role in different branches of sciences ranging from applied " )

sciences to theoretical physics [1,2]. Lebe a function de- _ Z aDtB_jf(ch) (t—c)— 7 .

fined on[a,b]. The most widely used definition of an inte- '(l—a-yj)

gral of fractional order is via an integral transform, called the

Riemann-Liouville fractional integral which hold two main In reality, fractional derivatives and integrals operators

forms: left and right and they are defined respectively by: are not limited to the Riemann-Liouville operator. In recent
years, several sections of local fractional derivative had been

1 ¢ introduced depending on the problem under study. As a re-

AP f() = Tia) / f(r)(t — ) tdr, sult, the fractional calculus theory has become important for
() modeling problems of fractal mathematics, stochastic pro-

b cesses and theoretical physics. The theory of fractional dif-

1 ferential equations is useful to model physical problems wit

« a 1
i f(t) = w5 [ (T dr, N k d d there i -
F(a memory. Numerous works were done and there is an exten
t sive literature dealing with the theory of fractional differen-

tial equations and their applications in different branches of

where R¢x) > 0. The left and right Riemann-Liouville frac- science (see [75] and references therein).

tional derivatives are defined by:
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