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1. Introduccion

In recent years, increasing attention has been focused on the
applications of fractional differential and integral operators to
different branches of applied sciences and it has contributed a
lot to mathematical physics and theoretical physics [1-3]. In
fact, the use of fractional calculus in many fundamental phys-
ical problems has attracted theorists to pay more attention to
accessible fractional calculus tools that can be used in solving
numerous problems of theoretical physics and quantum field
theories [4-15]. Recently, it was observed that fractional cal-
culus plays an interesting role as well in cosmology and the
physics of the early universe where some hidden properties
are captured and analyzed in details [16-18 and references
therein]. In a more recent work, we have we have discussed
the Friedman-Robertson-Walker (FRW) cosmology charac-
terized by a scale factor obeying different independent types
of fractional differential equations with solutions given in
terms of and generalized Kilbas-Saigo-Mittag-Leffler func-
tions [19]. It was observed that this new fractional cosmolog-
ical scenario exhibits some interesting results like the occur-
rence of an accelerated expansion of the universe dominated
by the dark energy (DE) and the occurrence of a repulsive
gravity in the early stage of the universe and time-decaying
cosmological constant without the presence of scalar fields.
In this paper, we would like to generalize this approach by in-
troducing a new generalized fractional form of the scale fac-
tor in terms of the Hubble parameter and discuss its implica-
tions in the absence and in the presence of scalar fields. Our
basic motivation to deal with a generalized fractional scale
factor (GFSF) is based on the fact that the Hubble parameter
which describes the expansion of the universe is considered
one of the most important parameter in cosmology as it is
used to estimate the age and the size of our universe. Con-
siderable progress has been made in determining the Hub-
ble constant and deducing its time-dependence since theo-
ries and observations predict that the Hubble parameter varies

with time [20,21]. Although there exist in literature a large
number of phenomenological theories to describe the accel-
erated expansion of the universe [22-30], we consider that
using fractional differential operators to describe cosmologi-
cal scenarios is of considerable interest since fractional-order
derivatives and integrals are nonlocal operators and hence one
expects them to play important roles in cosmology [31,32].
Therefore, one expects more hidden properties are present in
cosmology with a GFSF that deserve to be captured and ana-
lyzed.

The paper is organized as follows: in Sec. 2, we intro-
duce the main definitions and setups for the case of a FRW
flat cosmology with a GFSF and a time-dependent Hubble
parameter and we discuss some features in the absence of the
scalar field whereas the presence of the scalar field will be
discussed in Sec. 3; we consider the case of a cosmology
with a Gauss-Bonnet gravity for reasons that will be men-
tioned in the same section; finally conclusions and perspec-
tives are given in Sec. 4.

2. FRW cosmology with a generalized frac-
tional scale factor

By using the following FRW metric for a flat universe
ds2 = −dt2 + a2(t)(dr2 + r2(dθ2 + sin2 θdφ)) wherea(t)
is the scale factor, the Hubble parameter is defined usually
by H(t) = ȧ(t)/a(t) and accordingly for the case of a con-
stant Hubble parameter,e.g. H = H0, it is easy to check
usingda = aH(t)dt that the scale factor is obtained from
the integral equationa(t) − a0 = H0

∫ t

0
a(u)du. How-

ever, there are some arguments that show that the Hubble
parameter is related to the scale factor [33-36]. In this pa-
per, we will conjecture that the Hubble parameter varies as
H(t) = ηH0 + σF (t)/a whereη andσ are real constants
and F (t) is a time-dependent function. In that case, we
haveda = a(t)H(t)dt = a(t)(ηH0 + σF (t)/a(t))dt =
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ηH0a(t)dt+σF (t)dt and thereforėa(t) = ηH0a(t)+σF (t).
This equation is similar to the Ornstein-Uhlenbeck stochastic
differential equation [37]. The fractional version of this dif-
ferential equation may be written as:0Dα

t a(t) = ηHα
0 a(t) +

σF (t) where 0Dα
t a(t) = (1/Γ(α))

∫ t

0
(t − τ)α−1a(τ)dτ

is the Riemann-Liouville fractional integral (RLFI) with
0Dα

t a(t) = a(t). We entitled this equation the “Ornstein-
Uhlenbeck-like fractional differential equation” (OULFDE).
Here 0 < α < 1 is the fractional exponent. Applying
the fractional integral operator to both LHS and RHS of
0Dα

t a(t) = ηH0α
a(t) + σ(t) we can find the solution of

the OULFDE which is given by [37]:

a(t) = a0 E1,α(ηHα
0 tα)

+ σ

t∫

0

F (τ)(t− τ)α−1 Eα, α(ηHα
0 (t− τ)α)dτ, (1)

where

Eα,β(z) =
∞∑

k=0

zk

Γ(α + βk)

is the Mittag-Leffler function [38].

2.1.

We choose at the beginningF (t) = F0t
λ−1 whereF0 is

a real parameter andλ is a real constant. Using the fact
that [39]:

t∫

0

τλ−1(t− τ)α−1 Eα,α(ηHα
0 (t− τ)α)dτ

= Γ(λ)tα+λ−1 Eα,α+λ(ηHα
0 tα), (2)

we can write the solution (1) as:

a(t) = a0 E1,α(ηHα
0 tα)

+ σF0Γ(λ)tα+λ−1 Eα,α+λ(ηHα
0 tα). (3)

We can set for simplicitya0 = η = Hα
0 = σ = F0 = 1

and then Eq. (3) is simplified to:

a(t)= E1,α(tα)+Γ(λ)tα+λ−1 Eα,α+λ(tα)=
∞∑

k=0

tkα

Γ(α + k)
+ Γ(λ)tα+λ−1

∞∑

k=0

tkα

Γ(α + (α + λ)k)
,

=
1

Γ(α)
+

tα

Γ(α + 1)
+

t2α

Γ(α+2)
+ . . . +Γ(α+2)tα+λ−1

(
1

Γ(α)
+

tα

Γ(2α + λ)
+

t2α

Γ(3α + 2λ)
+ . . .

)

=
1

Γ(α)
(1 + Γ(λ)tα+λ−1) +

(
1

Γ(α + 1)
+

Γ(λ)tα+λ−1

Γ(2α + λ)

)
tα +

(
1

Γ(α + 2)
+

Γ(λ)tα+λ−1

Γ(3α + 2λ)

)
t2α + . . . (4)

One particular choice of parameter is obtained if for in-
stance we setλ = 1− α which reduces Eq. (4) to:

a(t) = 1 + Γ(1 + α)

×
(

1
Γ(α)

+
1

Γ(α + 1)
tα +

1
Γ(α + 2)

t2α + . . .

)

≡ 1 + Γ(1 + α)E1,α(tα), (5)

and therefore the scale factor is increasing with time and
a universe dominated by such a form of a scale factor is
accelerated with time and is non-singular. In conclusion,
Eq. (5) is the solution of the fractional differential equation
0Dα

t a(t) = a(t) + t−α and the Hubble parameter varies as
H(t) = ηH0 + σF (t)/a = 1 + t−α/a or more explicitly as:

H(t) = 1

+
1

tα
(
1+Γ(1−α)

(
1

Γ(α)+
1

Γ(α+1) t
α+ 1

Γ(α+2) t
2α+ . . .

))

≡ 1 +
1

tα(1 + Γ(1− α)E1,α(tα))
. (6)

In our model the Einstein’s field equations that govern
our model of consideration areRµν − gµνR/2 + Λgµν =
8πGTµν , Λ is the cosmological constant,G is the gravita-

tional coupling constant assumed both to be time-dependent
andTµν = (p + ρ)uµuν + pgµν the stress-energy momen-
tum tensor.p andρ are respectively the pressure and density
of the perfect fluid anduµ is the fluid rest-frame four veloc-
ity. The field equations give the following Friedmann equa-
tion ȧ2/a2 = 8πGρ/3 + Λ/3 and the conservation equa-
tion for the stress energy-momentum tensori.e. Tµν

:ν = 0
gives Λ̇ + 8πĠρ + 8πG(ρ̇ + 3ȧ(ρ + p)/a) = 0 [40]. For
complete determinacy of the system, we will adopt the equa-
tion of state (EoS)p = ω(t)ρ whereω is the EoS param-
eter assumed to be time-dependent. It is believed that the
universe is presently in a stage of an accelerated expansion
(dark energy dominance) and decelerated expansion in the
past (dark matter dominance). Therefore, one naturally ex-
pects that the EoS parameter varies with time [41,42]. In
our model, we assumed that both and vary with time. This
choice is not new and it was considered in a large number
of cosmological scenarios [43-47]. In fact, a time-dependent
lambda is favored as a constant fails to explain the enormous
difference between the cosmological constant inferred from
observation and the vacuum energy density obtained from
quantum field theories. Besides, a time-dependent gravita-
tional constant has many interesting cosmological and as-
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trophysical consequences (see [43] and references therein).
we can now split the equatioṅΛ+8πĠρ + 8πG(ρ̇ + 3ȧ(ρ +
p)/a)=0 into two independent equations:Λ̇+8πĠρ = 0 and
ρ̇+3ȧ(ρ+p)/a=0. In order to solve the previous cosmolog-
ical equations, we conjecture that the cosmological constant
varies asΛ(t) = 3χȧ2/a2 whereχ is a real parameter. Such
an ansatz was considered by many authors and has many in-
teresting cosmological consequences [48-50]. Using the re-
lations

d

dx
Eα,β(x) =

1
αx

(Eα,β(x)− (β − 1)Eα,β(x))

and
lim

x−→∞
Eα,β−1(x)/Eα,β(x) ≈ 1

[51], the cosmological constant varies as:

Λ(t) =3χ

(
1
tα

E1,α−1(tα)− (α− 1)E1,α(tα)
1 + Γ(1− α)E1,α(tα)

)2

t→+∞
≈

3χ

(
1
tα

(2− α)E1,α−1(tα)
1 + Γ(1− α)E1,α(tα)

)2

≈

3χ

(
(2− α)
Γ(1− α)

)2 1
t2α

(7)

Accordingly the Friedmann equation gives:

8πGρ

3
≈ (1− χ)

(
1
tα

(2− α)
Γ(1− α)

)2

(8)

The differential equatioṅΛ+8πĠρ = 0 gives now:8πĠρ =
6χα(2 − α)2t−2α−1/Γ2(1 − α) and therefore using Eq. (8)
we find Ġ/G = 2χα/(1 − χ)t or after simple integration
G = kt2χα/(1−χ) wherek is a constant of integration. There-
fore the energy density decays as

ρ =
3(1− χ)

8πk

(
(2− α)
Γ(1− α)

)2

t−2α/(1−χ), (9)

with χ < 1 in order to obtain a positive energy density. The
continuity equationρ̇ + 3ȧ(ρ + p)/a = 0 with p = ω(t)ρ
gives now the following time-dependent EoS parameter:

ω(t) ≈ −1 +
2α

3(1− χ)

× 1
t + t1−α

1+Γ(1−α) E1,α(tα) t→+∞
≈ −1 +

2α

3(1− χ)
1
t
. (10)

For 0 < α < 1, the EoS parameter decreases with time
and tends asymptotically towardω = 1. Hence the uni-
verse in such a scenario is non-singular, accelerating with
time and is dominated for very large time by a vacuum en-
ergy. The cosmological constant decays in time, the gravita-
tional constant increases with time for0 < χ < 1. We plot
in Figs. 1-4 the variations of the EoS parameter, the gravita-
tional constant, the scale factor and the cosmological constant
for χ = 1/2 and different values ofα.

Forα ≥ 2/3, the scale factor increases acceleratedly with
time than the rest values ofα. We can estimate the relative

FIGURE 1. Variations ofω(t) for α = 1/4, 1/3, 1/2, 2/3.

FIGURE 2. Variations ofG(t) for α = 1/4, 1/3, 1/2, 2/3.

FIGURE 3. Variations ofa(t) for α = 1/2, 2/3 up to the 1st four
orders.

variation of the gravitational constantĠ/G=2χαt−1/(1−χ).
For χ = 1/10, we find Ġ/G = 2α/t. For χ = 103,
we find a small relative variatioṅG/G = 0.002α/t and
therefore for0 < α < 1, we find a relatively smallĠ/G,
e.g. for α = 1/2, we find Ġ/G = 103/t and therefore
the present day variation of the gravitational constant is
Ġ0/G0 = 0.001/t0 ≈ 10−13yr−1 which is in agreement
with recent observations [52,53]. Heret0 is the present age
of the universe.
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FIGURE 4. Variations ofΛ(t) for α = 1/4, 1/3, 1/2, 2/3.

2.2.

We can chooseF (t) = F0t
λ−1Eα,λ(−tα). Using the fact

that [37]:

t∫

0

τλ−1Eα,λ(−τα)(t− τ)α−1Eα,α((t− τ)α)dτ

= tα+λ−1E2α,α+λ(t2α), (11)

then from Eq. (1) the scale factor evolves as:

a(t) = E1,α(tα) + tα+λ−1E2α,α+λ(t2α). (12)

Forλ = 1−α, Eq. (12) is reduced to:a(t) = E1,α(tα)+
E2α,1(t2α) ≈ E2α,1(t2α). Using

Eα,β(z) =
∞∑

k=0

zk

Γ(α + βk)
,

we can write:

a(t) ≈ E2α,1(t2α) =
1

Γ(2α)

+
t2α

Γ(2α + 1)
+

t4α

Γ(2α + 2)
(13)

The scale factor in that case increases faster than in the previ-
ous case and the universe is non-singular. To illustrate graph-
ically, we plot in Fig. 5 the variations of the scale factor for
both casesF (t) = F0t

λ−1Eα,λ(−tα) andF (t) = F0t
λ−1

mainly forα = 1/2.
ForΛ(t) = 3χȧ2/a2, we find

Λ(t) = (3χ/4α2t4α)( Eα.0(t2α)/ E2α.1(t2α))2

≈ 3χ/4α2t4α ∝ t−4α

whereas forF (t) = F0t
λ−1 we findΛ(t) ∝ t−2α and there-

fore the cosmological constant in that cases decays more
rapidly than in the previous case as show in Fig. 6. It is

FIGURE 5. Variations ofa(t) for F (t) = F0t
λ−1Eα,λ(−tα) (blue

line) andF (t) = F0t
λ−1 (red line) mainly forα = 1/2.

FIGURE 6. Variations ofΛ(t) for F (t) = F0t
λ−1Eα,λ(−tα) (blue

line) andF (t) = F0t
λ−1 (red line) mainly forα = 1/2.

easy to check that in that case the energy density de-
cays with time asρ(t) ∝ t−4α/(1−χ) whereas in the pre-
vious case we foundρ(t) ∝ t−2α/(1−χ) and that the
EoS parameter decays asω(t) ≈ −1 + 4α/3(1 − χ)t.
In that case as well, the gravitational constant increases
with time as G = kt4χα/(1−χ) with 0 < χ < 1.
The universe is therefore asymptotically dominated by
a cosmological constant. In summary, the phenomeno-
logical law H(t) = ηH0 + σF (t)/a and the OULFDE
0Dα

t a(t) = ηHα
0 a(t) + σF (t) reveal new inter-

esting properties not found in the standard FRW
model mainly the occurrence of a non-singular uni-
verse and its accelerated expansion with time. For
F (t) = F0t

λ−1Eα,λ(−tα), the universe is accelerated more
speedily than forF (t) = F0t

λ−1 and is dominated for vary
large time by a vacuum energy. One may argue that for

F (t) = F0t
λ−1Eα,λ(−tα)E2α,λ(−t2α)E3α,λ(−t3α) . . .

Enα,λ(−tnα) ≡ F0t
λ−1Πn

i=1Eiα,λ(−tiα),

we find a(t) ≈ tα+λ−1Enα.nα+λ(tnα) and accordingly the
universe expands vary rapidly with time and the cosmologi-
cal constant decays speedily with time and is non-singular. It
is notable to note that forα = 1, the scale factor exhibits an
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exponentially behavior which corresponds for inflation or su-
perinflation depending on the form ofF (t) since the Mittag-
Leffler function reduces to the exponential function.

It is noteworthy that forα = 1 and for σ = 0,
i.e. absence ofF (t), the fractional differential equation
0Dα

t a(t) = ηHα
0 a(t) + σF (t) is reduced to

0Dα
t a(t) = ηH1

0a(t) which is nothing than the definition
of the Hubble parameter. In that case, Eq. (3) which gives
the evolution of the scale factor with time is reduced ac-
cordingly toa(t) = a0E1.1 which is an exponential growth
and corresponds to an inflationary scenario. This proves that
our basic solutions which are represented merely by Eqs. (9),
(10) and (13) are due to the use of the new mathematical tool.
These solutions are interesting otherwise the model gives rise
to internal inflation which is not favored in cosmology.

3. FRW cosmology with a generalized frac-
tional scale factor and with a scalar field

Despite that the OULFDE offers the standard FRW model
many desirable features in the absence of scalar fields it will
be of interest to know the effects of OULFDE on the FRW
model with single scalar field. It is believed that scalar fields
can account for both an accelerated exponentially expansion
of the early universe as well for the late-time accelerated ex-
pansion of the universe [54,55]. However, there are recent ap-
proaches which suggest that a non-minimally coupled field to
the scalar curvature can generate dark energy and even dark
matter [56]. It is notable that the coupling of the scalar field
to curvature appears in alternative theories of gravities which
could be responsible after compactification of higher dimen-
sions for the current accelerated expansion. Some nice alter-
natives theories include the string-inspired dilaton gravities,
Kaluza-Klein theory, M/string theory and higher derivative
theories with correction terms of higher-orders in the curva-
ture [57,58]. These correction terms may play a significant
role in the inflationary epoch. The leading quadratic correc-
tion terms correspond to the Gauss-Bonnet (GB) curvature
invariant which appears in the tree-level effective action of
the heterotic string [59,60]. In four-dimension, the GB term

is a topological invariant, ghost-free in Minkowski back-
ground, its appearance alone in the action can be neglected
as a total divergence. However, if coupled, it affects the
cosmological dynamics in presence of dynamically evolving
dilaton and modulus fields at the one-loop level of string ef-
fective action and may have desirable features in many cos-
mological scenarios,e.g. avoiding the initial singularity of
the universe [61]. Many of inflationary potentials are disfa-
vored when constrained to Planck CMB data due mainly to
the large tensor-to-scalar ratio yet it was argued in [62] that
non-minimal coupling to the GB term may set these poten-
tials in good agreement with the Planck data. There are many
research papers discussing the scalar field cosmology with
GB curvature corrections as possible solutions to DE with a
field-dependent scalar potential [63-66]. In this section, we
investigate a cosmological FRW model in which a single dy-
namical scalar field is minimally coupled to gravity in the
presence of the GB invariant and a scale factor governed by
the OULFDE. However, in this section we assume thatG is
constant and we set8πG = c = h = 1. The action of the
theory is:

S =
∫ √−gd4x

(
R

2
− 1

2
∂µφ∂µφ

− V (φ) + f(φ)G
)

+ Smatter, (14)

whereg is the metric,V (φ) is the scalar potential assumed
here to be flat and of the formV (φ) = Λ, Λ is a real parame-
ter,G = R2− 4RµνRµν +RµνρσRµνρσ is the GB invariant,
f(φ) is a coupling function which works as the effective po-
tential for the inflaton field andSmatter =

∫ √−gd4xLmatter is
the action for ordinary matter with LagrangianLmatterfor per-
fect fluid with densityρ and pressurep. In fact, a flat potential
i.e., a cosmological constant is consistent with the field mov-
ing along an almost flat potential like a pseudo-Goldstone
boson and is in agreement with observations [67]. There-
fore one expects thatΛ ¿ 1. The resulting field equation
is obtained after varying the total action with respect to the
metric:

Rµν − 1
2
gµνR− 1

2

(
∂µφ∂νφ− 1

2
gµν∂ρφ∂ρφ

)
− 1

2
gµν(−V (φ) + f(φ)G)− 2(∇µ∇νf(φ))R

+ 2f(φ)
(
RRµν − 2Rµ

σRνρ + RµρστRν
ρστ − 2RµρσνRρσ

)
+ 4(∇ρ∇µf(φ))Rνρ + 4(∇ρ∇νf(φ))Rνρ

+ 2gµν(∇2f(φ))R− 4(∇2f(φ))Rµν − 4gµν(∇ρ∇σf(φ))Rρσ + 4(∇ρ∇σf(φ))Rµρνσ = Tµν . (15)

gµν is the metric tensor components,∇ν is the contra-
covariant derivative andTµν is the usual stress energy-
momentum tensor. Considering the spatially-flat Friedmann-
Robertson-Walker (FRW) metric, the dynamical equations
are given by [68]:

1
2
φ̇2 − 3H2 + V (φ)− 24φ̇

df

dφ
H3 + ρ = 0, (16)

− 2Ḣ+3Ḣ2 =
1
2
φ̇2 − V (φ) + 8H2φ̈

df

dφ

+ 8Hφ̇2 d2f

dφ2
+ 16HḢφ̇

df

dφ
+ 16H3φ̇

df

dφ
+ p. (17)
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By varying the action over the scalar field, we obtain:

φ̈ + 3Hφ̇ +
dV

dφ
− 24

df

dφ
(ḢH2 + H2) = 0. (18)

In addition, the continuity equation for the present model
ρ̇ + 3H(p + ρ) = 0 is still satisfied. In this section,
we chooseF (t) = F0t

λ−1Eα,λ(−tα) which gives the fol-
lowing evolution of the scale factora(t) ≈ E2α,1(t2α)
and consequently the time-dependent Hubble parameter
H(t) = (1/2αt2α)(E2α,0(t2α)/E2α,1(t2α)) ≈ (1/2αt2α).
Besides, we assume that the coupling function varies as
f(φ) = f0φ

ε wheref0 is a real parameter set equal to unity
for simplicity andε is a real constant [69]. From Eq. (18), the
following 2nd-order differential equation holds accordingly:

φ̈ +
3

2αt2α
φ̇− 6εφε−1

α2t6α

(
1

4α2t2α
− 1

t

)
= 0. (19)

The dynamics depends accordingly on the value of the
fractional parameterα. We discuss the following two inde-
pendent cases:

3.1.

Forα = 1/2, the following 2nd-order linear differential equa-
tion for the scalar field̈φ+3φ̇/t = 0 holds∀ε and the solution
is given byφ(t) = c2 +c1t

−2 wherec1 andc2 are integration
constants. For illustration purpose, we can setφ(1) = 0 and
φ̇(1) = 1 which gives the following evolution for the scalar
field φ(t) = (1− t−2)/2 and accordingly, the energy density
behaves as:

ρ(t) =
3
t2
− 1

t3
− Λ + 24ε

1
t6

φε−1, (20)

We plot in Fig. 7 the variations of the energy density with
time for ε = 1 andε = 2 assumingΛ ≈ 0 and in Fig. 8 the
variations of the scalar field with time:

Figure 7 shows that forε = 2 the energy density was
negative at the early stage of the evolution. A negative en-
ergy density in the early universe was discussed recently
in [70] and has many physical impacts on inflationary epoch.
Forε = 1, the continuity equatioṅρ + 3H(p + ρ) = 0 with

FIGURE 7. Variations ofρ(t) for ε = 1 andε = 2.

FIGURE 8. Variations ofφ(t).

FIGURE 9. Variations ofω(t) for ε = 1.

FIGURE 10. Variations ofω(t) for ε = 2.

p = ω(t)ρ gives the following time-dependent EoS parame-
ter:

ω(t) = −1 +
2t−3 − t−4 + 48t−7

3t−3 − t−4 + 24t−7
. (21)

Forε = 2, we find

ω(t) = −1 +
2t−3 − t−4 + 48t−7 − 96t−13

3t−3 − t−4 + 24t−7 − 24t−13
. (22)

Their variations with time are plotted in Figs. 9 and 10.
For ε = 1 the EoS parameter decreases with time and

tends toward a stable value close to -0.335 which is within
the range of observational limits [71,72] whereas forε = 2,
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the EoS parameter decreases from a larger positive value to-
ward a negative stable value close as well to -0.335. This case
shows that the early universe is not necessarily dominated by
a negative pressure matter with a positive energy density. The
behavior of the EoS parameter shows that forε = 1 andε = 2
the phantom-divide line is not crossed in our scenario.

3.2.

Forα = 1/4 andε = 1, the following 2nd-order linear differ-
ential equation for the scalar field

φ̈ +
6

t1/2
φ̇− 96

t3/2

(
4

t1/2
− 1

t
= 0,

)
(23)

and the solution is given by:

φ(t) = c3e
−12

√
t

(√
t +

1
12

)
− 128√

t
+ c4, (24)

wherec3 and c4 are integration constants. We set for nu-
merical illustrationsφ(1) = 0 andφ̇(1) = 1 which reduces
Eq. (24) to:

φ(t) =
1
8

(
e12−12

√
t(84

√
t + 7)− 1024√

t
+ 933

)
, (25)

Accordingly, the energy density varies as:

ρ(t) = 12t−1 + 192
(
64t−3/2 − 63e12−12

√
t
)

t−3/2

− 1
2

(
64t−3/2 − 63e12−12

√
t
)2

− Λ. (26)

FIGURE 11. Variations ofφ(t) for ε = 1 andα = 1/4.

FIGURE 12. Variations ofρ(t) for ε = 1 andα = 1/4.

FIGURE 13. Variations ofω(t) for ε = 1 andα = 1/4.

Accordingly, the EoS parameter varies asymptotically as

ω(t) ≈ −1 +
t−2 + 2560t−4

6t−3/2 + 5120t−7/2
. (27)

We plot in Figs. 11-13 respectively the variations of the
scalar field, the energy density and the EoS parameter with
time:

In that case the EoS parameter tends asymptotically to-
ward ω = −1 at the present epoch. The universe in non-
singular, expanding acceleratedly with time and is dominated
by a cosmological constant at very late time. The energy
density was negative in the past, increases toward a posi-
tive value then decreases toward zero with time. The expan-
sion of the early universe is due to the negative energy den-
sity with the negative pressure and the late-time accelerated
expansion comes from the positive energy and the negative
pressure which behave like a dark energy. It is amazing that
the non-singular universe is expanding with time whereas a
transition from a negative energy density to a positive energy
density occurs during its dynamical evolution. Similar sce-
nario occurs in [73] and negative energies density in acceler-
ated universe was discussed recently in [74].

Let us at the end mention that for the case of a time-
dependent gravitational constant and cosmological constant
with Λ(t) = 3χȧ2/a2 and a general a nearly flat potential
v(φ) ¿ 1, we findΛ(t) ≈ 3χ/4α2t4α as obtained in the pre-
vious section whereas Eq. (16) takes now the general form:

1
2
φ̇2 − 3H2

8πG
+ V (φ)− 24φ̇

df

dφ
H3 + ρ +

Λ
8πG

= 0, (28)

and accordingly, we find after simple algebra assuming
α = 1/2 andε = 1 i.e. φ(t) = (1− t−2)/2

ρ(t) ≈ 3(1− χ)
8πGt2

− 1
t3

+
24
t6

. (29)

Assumingχ ¿ 1 then the differential equatioṅΛ +
8πĠρ = 0 then gives asymptotically after simple algebra
G(t) ≈ 3t/8π which shows that the gravitational coupling
constant increases linearly with time and therefore the energy
density is positive and decays asρ(t) ≈ 2/t3 + 24/t6.
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FIGURE 14. Variations ofω(t) versusρ(t).

FIGURE 15. Variations ofΛ(t) versusG(t).

Accordingly, the EoS parameter decays asω(t) = −1 +
(t−4 + 24t−7/(t−4 + 12t−7) and asymptotically it tends to-
ward 0 which corresponds for a pressureless matter. The

non-singular universe is then accelerating with time, its en-
ergy density is positive and decays with time, the gravita-
tional constant increases with time whereas the cosmological
constant decays in time and there is no place to dark energy in
such a scenario. Accelerated expansion of the universe free
from a dark energy component is discussed recently in [72]
based on thermodynamical frameworks. Figures 14 and 15
illustrate respectively the variations ofω(t) versusρ(t) and
the variations ofΛ(t) versusG(t) with time:

The present time relative variation of the linearly increas-
ing gravitational constant iṡG0/G0 = H0 which is also
within the range of observations.

For α = 2/3 andε = 1, we findΛ(t) ≈ 9χ/16t8/3 and
from Eq. (19), we get:

φ̈ +
9

4t4/3
φ̇− 27

2t4

(
9

16t4/3
− 1

t

)
= 0, (30)

and the solution is given by:

φ(t) = c5

(
Ei

(
27

2 3
√

t

)

+ e
27

4 3√t

(
27
8

t
2
3 + t +

729
32

3
√

t

) )
− 9

8t3
+ c6, (31)

wherec5 andc6 are constants of integration;Ei(x) is the ex-
ponential integral. To illustrate numerically, we setφ(1) = 0
andφ̇(1) = 1 which reduces Eq. (31) to:

φ(t) =
373977e

3
4

(
Ei

(
27

2 3√t

)
− Ei

(
27
4

)
t3

)
− 76e

3
4

(
1+ 9

3√t

) (
32t

2
3 + 108 3

√
t + 729

)
t

10
3 + 4e

15
2

(
16799t3 − 288

)

1024e
15
2 t3

. (32)

Asymptotically, att = ∞, we can approximate Eq. (32)
by φ(t) ≈ −19te−27/4/8 and therefore the energy density
varies as

ρ(t) ≈ 27(1− χ)
16t8/38πG

− 1539e−27/4

64t4
. (33)

Assumingχ ¿ 1 then we obtain from the differential
equationΛ̇ + 8πĠρ = 0 for very large timeG(t) ≈ 2.4t4/3

which corresponds for an increasing gravitational constant
and therefore the energy density is positive and decays as
ρ(t) ≈ 0.000056t−4. Hence, the EoS parameter decays as
ω(t) ≈ −1 + 0.17t1/3 which increases slowly in time. The
non-singular universe is accelerating with time, its energy
density is positive and decays with time, the gravitational
constant increases with time whereas the cosmological con-
stant decays in time and the EoS parameter increases from -1
toward a positive value asymptotically. We plot in Figs. 15-
18 the variations of.

We left other values of for interested readers.
It is notable that forα = 1 andσ = 0, the scale factor

a(t) ≈ E21,1(t2) which corresponds for a super-inflationary

regime. The dynamics of the scalar field is obtained from
Eq. (19) which will be reduced to

φ̈ +
3

2t2
φ̇− 6εφε−1

t6

(
1
t2
− 1

t

)
= 0 . (34)

FIGURE 16. Variations ofφ(t) represented by Eq. (32).
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FIGURE 17. Variations ofΛ(t) versusG(t).

FIGURE 18. Variations ofρ(t) with time.

FIGURE 19. Variations ofω(t) with time.

The dynamics therefore differs from previous solutions
obtained forα 6= 1. For example, forε = 1, the solution is
given by:

φ(t) = −3
2
c7Ei

(
3
2t

)
+ c8te

3
2t + c9

+
1
t5

(
189.63t6 + 284.4444t5 log t− 213.333t4

− 53.333t3 − 13.333t2 − 3t− 0.8
)
, (35)

which differs completely from previous solutions obtained.
c7, . . . , c9 are constants of integration The solution depends
on initial conditions and is constrained byt > 0. This also

proves that our solutions are due to the use of the new math-
ematical tool and give rise to more generalized solutions and
cosmological features.

4. Conclusions and Perspectives

In this paper, we have tried to show that fractional calculus
plays an important role in modern cosmology and a num-
ber of properties were hidden and deserve to be captured.
Through this paper, we have considered a GFSF which obeys
the OULFDE with a particular Hubble parameter of the form
H(t) = ηH0 + σF (t)/a. Such a particular form of the Hub-
ble parameter allows the scale factor of the universe to sat-
isfy a differential equation similar to the Ornstein-Uhlenbeck
stochastic differential equation. In this work, we have con-
sidered the fractional version of this equation which is the
OULFDE which gives already a non-singular acceleratedly
expanding universe due to the mathematical properties of the
Mittag-Leffler function obtained in the corresponding solu-
tion. We have considered the flat FRW model in the absence
and in the presence of a scalar field.

In the absence of the scalar field and for the case of
a flat FRW model with time-dependent gravitational con-
stant and a time-dependent cosmological constant varying as
Λ(t) = 3χȧ2/a2, it was observed that forF (t) = F0t

λ−1

×Eα,λ(−tα) and for α = 1/2, the non-singular universe
is dominated by a decaying cosmological constant, a decay-
ing positive energy density and the gravitational constant in-
creases with time0 < χ < 1. The universe is therefore
asymptotically dominated by a cosmological constant. It is
interesting to obtain such interesting properties without the
presence of scalar fields and higher-order corrections terms
or even modifying the gravity theory. Forχ ¿ 1, the cos-
mological constant is too small and the present day variation
of the gravitational constant is relatively small and within the
range of observations.

In the presence of the scalar field and higher-order GB
curvature term, the dynamical equations offer some new fea-
tures. For the case of a constantG andΛ, the dynamics de-
pend on the form of the GB coupling functionf(φ) ∝ φε.
For ε = 1 andα = 1/2 the EoS parameter decreases with
time and tends asymptotically toward -0.335 whereas for
ε = 2, the EoS parameter was positive at early time then de-
creases toward -0.335. This special feature signifies that the
early universe is not essentially dominated by a negative pres-
sure matter with a positive energy density. Forα = 1/4, the
EoS parameter tends asymptotically toω = −1. The energy
density of the universe was negative in the early epoch, then
a transition from a negative value to a positive value occurs
and finally it decreases toward zero at late time. However,
in the presence of time-dependentsG andΛ, it was observed
that forα = 1/2, the non-singular acceleratedly expanding
universe is dominated by a positive energy density which de-
cays with time, a linearly increasing gravitational constant, a
decaying cosmological constant and an EoS parameter which
tends to zero at very large time. This scenario is free from the
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presence of the DE component. Forα = 2/3 andε = 1, the
non-singular acceleratedly expanding universe is dominated
by a decaying positive energy density with time, an increas-
ing gravitational constant and a decaying cosmological con-
stant whereas the EoS parameter increases from -1 toward a
positive value asymptotically.

These features prove that fractional calculus deserves to
be considered seriously in cosmology and physics of the early
universe. Both the GFSF and the OULFDE offers new in-
sights in modern cosmology and it will be of interest to ex-
plore in details in the future their impacts on the dark en-
ergy problem and the quantum physics of the universe. It
will be interesting to explore in the upcoming work whether
the present fractional model may be tested by future observa-
tional data fittings.

Appendix

A.

In this appendix, we introduce briefly the main ideas of frac-
tional calculus. In fact, fractional calculus plays an important
role in different branches of sciences ranging from applied
sciences to theoretical physics [1,2]. Letf be a function de-
fined on[a, b]. The most widely used definition of an inte-
gral of fractional order is via an integral transform, called the
Riemann-Liouville fractional integral which hold two main
forms: left and right and they are defined respectively by:

aIα
t f(t) =

1
Γ(α)

t∫

a

f(τ)(t− τ)α−1dτ,

tI
α
t f(t) =

1
Γ(α)

b∫

t

f(τ)(τ − t)α−1dτ,

where Re(α) > 0. The left and right Riemann-Liouville frac-
tional derivatives are defined by:

aDα
t f(t) =

dn
aIn−α

t f(t)
dtn

=
1

Γ(n− α)
dn

dtn

t∫

a

f(τ)(t− τ)n−α−1dτ,

tD
α
b f(t) = (−1)n dn

tI
n−α
b f(t)
dtn

=
(−1)n

Γ(n− α)
dn

dtn

t∫

a

f(τ)(τ − t)n−α−1dτ.

These operators are linear and obey the fractional integra-
tion rules:

b∫

a

g(t)aIα
t f(t)dt =

b∫

a

f(t)tI
α
b g(t)dt ,

b∫

a

g(t)aDα
t f(t)dt =

b∫

a

f(t)tD
α
b g(t)dt ,

whereg ∈ Lp(a, b), f ∈ Lq(a, b), p ≥ 1, q ≥ 1 and
1/p+1/q ≤ 1+α [75]. Some interesting properties may arise
mainly the Riemann-Liouville fractional derivative of a non-
zero constantC0 is aDα

t C0 = C0t
−α/Γ(1 − α) for α ≤ 1

and the fact thataDα
t aDβ

t f(t) 6= aDα+β
t f(t) since [76]:

aDα
t aDβ

t f(t) = aDα+β
t f(t)

−
n∑

j=1

aDβ−j
t f(c+)

(t− c)−α−j

Γ(1− α− j)
.

In reality, fractional derivatives and integrals operators
are not limited to the Riemann-Liouville operator. In recent
years, several sections of local fractional derivative had been
introduced depending on the problem under study. As a re-
sult, the fractional calculus theory has become important for
modeling problems of fractal mathematics, stochastic pro-
cesses and theoretical physics. The theory of fractional dif-
ferential equations is useful to model physical problems wit
memory. Numerous works were done and there is an exten-
sive literature dealing with the theory of fractional differen-
tial equations and their applications in different branches of
science (see [75] and references therein).
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