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The convergence of stationary and dynamical resonance expansions that involve complex eigenenergies of the system is analyzed in the
calculation of the electronic probability density along the internal region of a resonant structure. We show that an appropriate selection of the
resonance contributions leads to results that are numerically indistinguishable from the exact Hermitian calculation. In particular, the role
played by the anti-resonances in the convergence process is emphasized. An interesting scaling property of the Schrödinger equation, and
the stationary resonance expansion, useful for the analysis of convergence of families of systems, is also demonstrated. The convergence of
a dynamical resonance expansion based on a Moshinsky shutter setup, is explored in the full time domain. In particular, we explore the build
process of the electronic probability density in the transient regime, analyzing the contributions of different resonant states in the earliest
stages of the buildup process. We also analyze the asymptotic limit of very long times, converging in the latter case to the stationary solution
provided by the exact Hermitian calculation.
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1. Introduction

Series expansions in quantum mechanics that involve dis-
crete sets of basis functions have proven to be powerful
tools for describing wave amplitudes, propagators, and re-
lated physical quantities. Various species of basis functions
(e.g.quantum box eigenfunctions, harmonic oscillator eigen-
functions, Hilbert-Schmidt basis, Kapur-Peierls basis) have
been used in different physical applications [1]. A special
set of basis functions that have proven to be very useful to
expand Green’s propagators, and probability amplitudes, are
the so called Gamow functions [2]. In the context of quan-
tum decay, they correspond to complex eigenfunctions of
Schr̈odinger’s equation with purely outgoing boundary con-
ditions. A number of advantages of their use in resonance
expansions are listed in [3], among which one of the most
important is the fast convergence of the resonance expan-
sions. Along several decades, the properties and applications
of Gamow states as basis functions have been the subject of
investigation [3–6], mainly in the context of the theory of nu-
clear physics and scattering theory.

The notion of purely outgoing states was applied by
Siegert [7] to derive an analytical expression for the scatter-
ing cross section, relevant for the study of nuclear reactions.
In the latter approach, the relationship between the scattering
problem and the poles of the correspondingS-matrix is man-
ifested. Further developments by Peierls [8] led to a more

general expression for the scattering amplitude that involved
an expansion in terms of the resonance poles and their corre-
sponding residues. The proportionality between the Gamow
states and the residues at the complex poles was demonstrated
by Garćıa-Caldeŕonet al. [5], leading to analytic expressions
of continuum wave functions in terms o resonant states for
three dimensional systems. These ideas where brought [9] to
the context of electron transport in one-dimensional semicon-
ductor heterostructures, introducing a representation of the
Green’s function in terms of one-dimensional Gamow func-
tions, and its crucial connection with the stationary wave-
function ψ(x, k). The latter constitutes the basis of a reso-
nance state formalism which has been successfully applied
for the study of resonant tunneling in potentials of arbitrary
shape extended on a finite interval0 ≤ x ≤ L, in both the
stationary [9,10], and dynamical regimes [11–15].

The convergence properties of the expansion of the wave-
functionψ(x, k) along the transmission region (x > L) have
been recently analyzed [14]. However, an analysis of the con-
vergence along the whole internal region0 < x < L has not
been performed so far. In this work we analyze both station-
ary and dynamical resonance expansions of the wave func-
tions along the internal region of the potential. This kind
of analysis is required in dealing with problems that involve
the features of the probability density at short times and/or
off-resonance conditions, where the contribution of multiple
resonances is very important.
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The paper is organized as follows. In Sec. 2. we make
a brief presentation of the basic formulas for the resonance
expansion of the wavefunction along the internal region. In
Sec. 3. we analyze the convergence properties of the reso-
nance expansion for double-delta systems at resonance, and
off-resonance conditions, for both the stationary and dynam-
ical cases. Finally, in Sec. 4. we present the conclusions.

2. Resonance expansion for the internal wave-
function

2.1. Stationary case

The expansion of the outgoing Green’s propagatorG+ in
terms of resonant states and its connection with the scatter-
ing wave function are presented in detail in [15], and we shall
recall here the main equations.

The outgoing Green’s propagatorG+ along the inter-
nal region of a one-dimensional finite range potentialV (x)
of arbitrary shape that extends on a finite spatial interval
0 ≤ x ≤ L, and vanishes elsewhere, can be derived using
the following analytical procedure. Let us consider the com-
plex integralI in thek-plane,

I =
i

2π

∫

C

dk′
G+(x, x′; k′)

k′ − k
, (1)

along the closed contourC, where we use the fact that
G+(x, x′; k) is a meromorphic function ofk that possesses
an infinite number of complex poleskn distributed ink-space
in a well known fashion, as depicted in Fig. 1. In this Fig. 1
we also show the details of the integration contourC which
is composed of a closed contourCR of radiusR about the
origin in the clockwise direction which excludes all the poles
{kn}, enclosed by infinitesimal small circular contoursCn,
and the pole atk′ = k enclosed by a circular contourCk,
where both paths are traced out in a counterclockwise direc-
tion. Using the fact that the integrand is analytic insideC, it
follows from Cauchy’s theorem thatI = 0, and hence Eq. (1)
reads∫

Ck

dk′
G+(x, x′; k′)

k′ − k
+

∑
n

∫

Cn

dk′
G+(x, x′; k′)

k′ − k

−
∫

CR

dk′
G+(x, x′; k′)

k′ − k
= 0. (2)

One may obtain the first two integral in Eq. (2) by us-
ing the residue theorem, and the fact that the residues
rn at the complex poles ofG+(x, x′; k′) are given by
rn = un(x)un(x′)/kn [15]. The last integral in Eq. (2) van-
ishes in the limitR →∞ due to the fact that when|k| → ∞,
G+(x, x′; k′) → 0. Following this procedure, we obtain the
discrete series expansion ofG+(x, x′; k′) given by

G+(x, x′; k) =
∞∑

n=−∞

un(x)un(x′)
2kn (k − kn)

. (3)

FIGURE 1. Closed contourC in the complexk-plane used to obtain
the discrete resonance expansion ofG+ given by Eq. (3). The con-
tour excludes all the complex poles of the integrand of Eq. (1), and
is composed by the following contours:CR of radiusR centered
about the origin in thek-plane following a clockwise direction, and
Ck that encloses the pole atk′ = k, and all theCn that encircle
the set of complex poles{kn} of G+, both in an anti-clockwise
direction.

where the indexn runs on both the third (n < 0), and fourth
(n > 0) quadrants.

Theun’s in the above equation are the one-dimensional
Gamow functions, which are eigensolutions of Schrödinger’s
equation,

d2un(x)
dx2

+
[
k2

n −
2m

~2
V (x)

]
un(x) = 0, (4)

with outgoing boundary conditions:

dun/dx|x=L = +iknun(L), dun/dx|x=0 = −iknun(0).

This set of eigenfunctions{un} constitute a basis of res-
onance states, which obey the following normalization con-
dition,

L∫

0

u2
n(x) dx + i

u2
n(0) + u2

n(L)
2 kn

= 1. (5)

In order to obtain an expansion of resonance states{un}
of the solutionψ(x, k) of Schr̈odinger’s equation along the
internal region of the potential, we use the relationship be-
tweenψ(x, k), and the outgoing Green functionG+ of the
system, given by [9]

ψ(x, k) = 2ikG+(0, x; k), 0 < x ≤ L, (6)
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FIGURE 2. Distribution of theS−matrix poles of the system in
the complexk-plane for a double delta potential with parameters:
λ = 10.0 eV Å, andL = 30.0 Å. The poles of the third and fourth
quadrant are related throughk−n = −k∗n (n = 1, 2, 3, ...), which
follows from time-reversal invariance.

which combined with Eq. (3), leads to the resonance expan-
sion forψ(x, k),

ψ(x, k) = ik

∞∑
n=−∞

un(0)un(x)
kn (k − kn)

, 0 < x ≤ L. (7)

As pointed out in [16], the above expansion does not apply
for the casex = x′ = 0. A nice feature of the resonance
expansion given by Eq. (7) is that it establish a link between
the spectrum of the system and the corresponding scattering
problem. The information regarding the spectrum manifests
itself in the set of complex poles{kn} of the system, which
are distributed in the complex k-plane as shown in Fig. 2.

Since in practice one considers a finite numberN of res-
onant terms in Eq. (7), let us define the solutionψN as the
truncated sum,

ψN (x, k) =
N∑

n=−N

cn(k)un(x), 0 < x ≤ L, (8)

which will be used in our numerical calculations, testing its
accuracy for different values ofN . The coefficients of the
sumcn(k) = ikun(0)[kn(k−kn)]−1 provide the partial con-
tributions of each resonance.

2.2. Dynamical case

Let us now consider the dynamical situation of incident par-
ticles on a resonant structure represented by the potential
V (x). The calculation of the dynamical probability density
|Ψ(x, k, t)|2 inside the system involves the solution of the
time-dependent Schrödinger equation,

(
i~

∂

∂t
− Ĥ

)
Ψ = 0, (9)

with Ĥ = −(~2/2m)∂2/∂x2 + V (x), using the reflecting
Moshinsky shutter initial condition [15,17] att = 0, namely

Ψ(x, k; t = 0) =

{
eikx − e−ikx, x ≤ 0,

0, x > 0.
(10)

The analytical solution that involves a resonance state expan-
sion (RSE) with explicit time dependence reads,

Ψ(x, k; t) = ψ(x, k)M [y (k, t)]− ψ∗(x, k)M [y (−k, t)]

− 2ik

∞∑
n=−∞

un(0)un(x)
k2 − k2

n

M [y (kn, t)] , (11)

whereψ(x, k) is the stationary solution given by Eq. (7). The
time-dependence of the solution is contained in the Moshin-
sky functions,

M [y(q, t)] =
1
2

w[iy(q, t)], (12)

wherew[iy(q, t)] is the complex error function [18], with
complex argument

y(q, t) = −e−iπ/4

(
~

2m

)1/2

q t1/2, (13)

whereq stands for±k or k±n.
In practice, the evaluation of the dynamical solution,

Eq. (11), is performed for a finite number of resonance
termsN. For our numerical calculations,we define a solution
ΨN (x, k; t) as

ΨN (x, k; t)=ψN (x, k)M [y (k, t)]−ψ∗N (x, k)M [y (−k, t)]

− 2ik

N∑

n=−N

un(0)un(x)
k2 − k2

n

M [y (kn, t)] , (14)

whereψN (x, k) is the stationary solution given by Eq. (8).
Equation (14) has been studied and applied mainly at

the boundary pointx = L since Ψ at that point relates
to transport properties of the system, such as the transmis-
sion coefficient and tunneling time. In the internal region
of the potential,ΨN (x, k; t) has been used to analyze the
buildup process, but these analysis has been performed only
in situations where the one-resonance approximation works
well [12, 15], which is the case of sharp and isolated reso-
nances,i.e. |εn±1 − εn| ¿ Γn. In a more general situation,
the contribution of various resonance poles should be consid-
ered in the resonance expansion. This is the case for example
of the buildup at very short times and/or at off-resonance inci-
dence energies. Hence, an analysis of the convergence of the
solution along the whole internal region is required. As we
shall illustrate below, the convergence is position dependent
i.e. the convergence is fast in certain points inside the sys-
tem, and slow in others. In addition to the above, attention
to the boundary valuex = 0 is needed since the above series
expansions do not apply at this point wheresubtractions[15]
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are required to ensure convergence (See however Refs. [19]
and [20] where Cordero and Garcı́a-Caldeŕon use an auxil-
iary function avoiding the use of subtractions), thus a slower
convergence of both solutions (11) and (7) is expected near
this special point. As we shall see, the probability density
exhibits this feature of the solution as a Gibbs phenomenon
nearx = 0.

Note that in the dynamical solution there are two kinds of
convergence to be considered. One of them is its convergence
to the stationary solution which is the asymptotic value that
should be reached ast → ∞. The other corresponds to the
behavior asN → ∞ whereN is the number of resonance
terms of the expansion.

3. Results

We are interested here in analyzing the convergence of the
resonance series expansions given by Eqs. (7) and (11) along
the internal region of the system for stationary and dynam-
ical descriptions, respectively. As an example, let us con-
sider the exactly solvable problem of a particle of energy
E = ~2k2/2m incident from the left (x < 0) on a sym-
metrical double delta potentialV (x) defined as

V (x) = λ [δ(x) + δ(x− L)]. (15)

The potential parameters are:λ = 10.0 eV Å, and
L = 30.0 Å. Here, and in the rest of the paper, the effective
mass is chosen asm = 0.067me, with me being the electron
mass. As shown in Fig. 2, for this system the poles of the
Green’s function have a symmetrical distribution in the third
and fourth quadrants of the complexk−plane.

As we shall show later, the contribution of the third-
quadrant poles,k−n (also calledanti-resonance states[3]) to
the series expansion of the internal wave function becomes
essential. The complex poleskn are related to the com-
plex energiesEn through the relationEn = ~2k2

n/2m =
εn − iΓn/2. From the value ofk1 (full circle in Fig. 2), the
first energy resonance has positionε1 = 0.349 eV and width
Γ1 = 0.146 eV.

3.1. Stationary case

We now analyze the convergence speed of the RSE by ex-
ploring the probability density along the whole internal re-
gion of the system. In what follows we perform a comparison
of the probability density calculated with the solution given
by Eq. (8) for different values ofN , and the exact solution
φ(x, k) to Schr̈odinger’s equation,

[
− ~

2

2m

d2

dx2
+ V (x)

]
φ(x, k) = E φ(x, k), (16)

along the internal region. The latter is calculated by a stan-
dard approach of quantum mechanics that deals with the one-
dimensional scattering of plane waves incidence from the left

of the potentialV (x) given by Eq. (15). The solution of
Eq. (16) reads,

φ(x, k) =





eikx + R(k) e−ikx, x ≤ 0;

A(k) eikx + B(k) e−ikx, 0 ≤ x ≤ L;

T (k) eikx, x ≥ L.

(17)

By computing the coefficientsA(k) andB(k) by means of
the well known transfer matrix technique we obtain the cor-
responding wavefunction for the internal region,

φ(x, k) = k

[
(k + iκ) eik(x−L) − iκe−ik(x−L)

(k + iκ)2 e−ikL − (iκ)2 eikL

]
;

0 ≤ x ≤ L, (18)

where we have definedκ = mλ/~2.
In order to measure the degree of proximity between the

curves of the probability density computed with Eqs. (8)
and (18) (a procedure that involves the comparison of a large
number of points) we use a computational tool that provide
us with a global estimate of the degree of convergence of the
probability density computed from Eq. (8) in terms of a sin-
gle parameter. We introduce such a parameterp as the (per-
centual)global degree of convergencebetween|ψN (x, k)|2
and|φ(x, k)|2 along the whole interval0 ≤ x ≤ L, defined
by

p = 100× (1− ξ2), (19)

where

ξ2 =

∫ L

0

∣∣∣|φ(x, k)|2 − |ψN (x, k)|2
∣∣∣ dx

∫ L

0
|φ(x, k)|2 dx

. (20)

Insofar, as|ψN (x, k)|2 and |φ(x, k)|2 become alike,ξ2 will
be negligible and sop will approach to100%.

The values of the stationary probability density
|ψN (x, k)|2 calculated from Eq. (8) are shown in Fig. 3
(red solid line) for an incidence energy near (and below) the
first resonance,E = ε1 − Γ1 = 0.203 eV. Here we plot
|ψN (x, k)|2 vs x along the internal region of the potential
varying the numberN of the truncated expansion (8). Notice
that this sum includes2N resonance terms since it runs over
both negative and positiven. We illustrate here the cases for
N = 1, N = 4, N = 30, andN = 500. The exact probabil-
ity density |φ(x, k)|2, calculated by a standard approach of
quantum mechanics, is included for comparison (blue dashed
line). As we can appreciate in the different graphs of this
figure, the convergence is faster at points close tox = L,
and it gradually becomes slower as we move from right to
the left edge of the system. Near the pointx = 0 the ap-
proximate curve exhibits a Gibbs phenomenon characterized
by a series of oscillations that fade out asN is increased.
The values ofp for each of the cases shown in Fig. 3 are
included in each graph, illustrating the improvement intro-
duced with the increase ofN . ForN = 1 the approximation
is far from reproducing the exact curve as we see in Fig. 3(a).
By increasing the numberN of resonance terms (with the
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FIGURE 3. Comparison of the probability density of the approximate solution, Eq. (8) (red solid line), with the corresponding exact
calculation, Eq. (18) (blue dashed line), at off-resonance incidence energy. The numberN used in the expansion (8) and the value ofp are
indicated in the graphs. In (d),p0 is the value ofp when the contribution of the polesk−n is not included (black dotted line).

contribution of the third-quadrant poles included), a bet-
ter description is accomplished as shown in Figs. 3(b), (c)
and (d).

The relative importance of the poles of the third and
fourth quadrants in the complexk-plane, is further empha-
sized in Fig. 3(d), where we have included an additional plot
(black dotted line), which corresponds to the calculation of
|ψN |2 where we have intentionally suppressed the contribu-
tions associated to the poles of the third quadrant, that is, only
theN resonance terms with positiven were included in the
sum. It is clearly evident that a poor description is obtained
when the contribution of those poles is ignored. In fact, in
the absence of such contributions,p reduces from 99.85% to
the valuep0 =73.23%. The above comparison illustrates the
importance of the terms with negative index in the resonance
expansion [Eq. (7)].

We stress out however that there are situations in which
the contributions of the third quadrant poles can be neglected.
The simplest situation occurs when the incidence energy
matches one of the resonances, sayE = εn. In this case,
we expect that the contribution of the corresponding reso-
nance will dominate over the rest, and hence the approxima-
tion with N = 1 may be sufficient in the expansion, that is

ψN (x, k) ≈ cn(k) un(x) + c−n(k)u∗n(x). (21)

Moreover, if the chosen resonance is sharp and isolatedi.e.
|εn+1 − εn| À Γn, the contribution of the pole of the third
quadrant,k−n, will become negligible so that|c−n(k)| ¿
|cn(k)|. In such a case, the contribution ofc−n(k) can be
ignored, and

ψN (x, k) ≈ cn(k) un(x) (22)

may provide an excellent approximation.
To illustrate this case, let as consider a symmetrical

double-delta resonator with stronger barriers and the inci-
dence energy chosen at the first resonance,E = ε1. In
this example,λ = 40.0 eV Å, L = 30.0 Å, and the po-
sition and width of the first resonance areε1 = 0.522 eV,
andΓ1 = 0.023 eV, respectively. This resonance is sharp
enough to ignore the contribution ofk−1, in fact we have here
|c1/c−1| = 174.33, and the result is illustrated in Fig. 4. The
approximate calculation from Eq. (22) (red solid line), using
the single polek1 of the fourth quadrant (see full circle in
Fig. 2(a)), agrees quite well with that given by the exact cal-
culation|φ|2 (blue dashed line), specially in the case of sharp
and isolated resonances. According to Eq. (19), the global
degree of convergence is accomplished up top = 99.73%.
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FIGURE 4. The one-term resonance expansion formula given by
Eq. (22) (red solid line) accurately describes the exact calculation
(blue dashed line) at resonance condition,E = ε1. Even though
the contribution of the polek−1 is not included, the proximityp0

is almost100%.

This shows that the additional contribution from the poles
k−n of the third quadrant is not essential in this case.

In the two examples discussed above, where we analyze
the behavior of the resonance sum (8) as a function ofN , the
convergence proved to be more efficient in the system with a
higher value ofλL i.e. a smallerN is needed in order to ac-
complish a given value ofp. It turns out that systems charac-
terized by the same productλL exhibit an identical behavior,
provided that the incidence energy is properly chosen. This
is relevant because it can predict the behavior of families of
systems with differentλ andL but with the same productλL.

In order to illustrate the gradual increase ofp with N , a
p vs N plot is shown in Fig. 5 for the same double-delta
system (which from now on we call system A), and same in-
cidence energy (solid line). If the difference between the in-
cidence energy and the nearest resonance is increased, more
resonances are needed in the expansion to keep the proximity
level. Thep vs N plot for E = ε1 − 2Γ1 = 0.0580 eV
(dashed line) is also shown in Fig. 5. In system A, the
product of the potential parameters wasλL = 300.0 eV Å2.
Some interesting regularities appear when we consider dif-
ferent systems with the same productλL. To illustrate this
point, let us consider two additional systems:λ = 5.0 eV Å,
and L = 60.0 Å (system B), with resonance parameters
ε1 = 0.08732 eV, andΓ1 = 0.0364 eV; andλ = 3.0 eV
Å, andL = 100.0 Å (system C), with resonance parameters
ε1 = 0.0314 eV, andΓ1 = 0.01310 eV. The correspondingp
vsN plots for the same deviations from resonance (in units of
Γ1) considered in system Ai.e. E = ε1 − ηΓ1 (η = 1, 2) are
shown in Fig. 5. As we can see, all the graphs corresponding
to the same value ofη coincide. We have used three different
symbols on the curves (a hollow dot for system A, a cross
for system B, and and a vertical line for system C) and their
positions on each of the curves completely overlap.

This numerical invariance is interesting by itself, and use-
ful for the present study since it will enable us to characterize

FIGURE 5. Behavior ofp for different systems sharing the same
productλL for incidence energies below the first resonance. The
deviations from resonance are:Γ1 (red solid line), and2Γ1 (blue
dashed line). Notice how for a given deviation (in units ofΓ1) the
three systems share the same curve.

the convergence properties of the resonance expansion for all
the systems with the sameλL. As we show analytically in
the Appendix, the above is regularities are explained in terms
of a scaling property of the Schrödinger equation (valid for
these potentials) that leaves invariantξ2 and hence the value
of p.

3.2. Dynamical case

We are interested here in the analysis of the buildup process
of the electronic probability density inside the system using
the time-dependent solution given by the resonance expan-
sion (14), which can describe the evolution of|ΨN (x, k; t)|2
from the transient to the stationary regime. Notice that the
stationary solutionψN (x, k) is included in the dynamical ex-
pression (14), and hence the analysis of convergence per-
formed in Sec. 3.1. is also relevant for the dynamical case
i.e. its convergence guarantees the correct behavior of the
first two terms in Eq. (14). However, the behavior of the
sum in Eq. (14) includes both the spatial and the time depen-
dence, and should be analyzed separately, specially at short
times. Previous studies of the buildup process based on the
shutter approach have been performed at resonance [11, 15],
and near-resonance [12]. Those studies have in common the
fact that the systems fulfill the condition of sharp and isolated
resonances (i.e. Γn ¿ |εn − εn±1| ) and not too short times,
conditions that guarantees that the one-term approximation
i.e. N = 1 in the expansion forψN (x, k; t), works well. We
are extending here the analysis to situations where the above
conditions not necessarily are satisfied, and as a consequence
the one-resonance approximation no longer applies.

As an example, let us consider the problem of a particle
of energyE incident from the left (x < 0) on a symmetri-
cal double delta potential [Eq. (15)], with the same system
parameters as in Fig. 2. In order to study the probability
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density in the whole time-domain, we introduce an alterna-
tive solution based on a continuum wave expansion (CWE).
The latter is based on a standard approach in quantum me-
chanics that has been used to explore numerically [21], and
analytically [22] the dynamical aspects of sharp wavepackets
in momentum space (cutoff plane waves) in potential barri-
ers. In the present study we have adapted the method used
by Brouard and Muga [22] to analyze the dynamics in the
well region of the double delta potential. We begin with the
following expansion [22],

ΨCWE(x, k, t) =

∞∫

−∞

dk′√
2π

× φ(x, k′)C(k, k′) e−i~k′2t/2m, (23)

that deals with an integration of the stationary wavefunction
φ(x, k) along the internal region, in our example given by
Eq. (18), with an expansion coefficientC(k, k′) defined as,

C(k, k′) =

∞∫

−∞
dx′ ϕ∗k′(x

′)Ψ(x′, k, 0). (24)

By substituting in Eq. (24) the initial conditionΨ(x′, k, 0)
given by Eq. (10), we obtain the result,

C(k, k′) =
i√
2π

[
1

k′ − k + iε
− 1

k′ + k + iε

]
, (25)

whereε is an infinitesimal positive number used to guaran-
tee the convergence of the integrals in Eq. (24). We calcu-
late the expression forΨCWE(x, k, t) by using Eq. (25) into
Eq. (23), and using following the identity,

1
k′ ± k + iε

= P
1

k′ ± k
− π i δ(k′ ± k), (26)

whereP stands for theCauchy Principal Value. After a few
algebraic manipulations, we obtain the CWE time-dependent
wave function along the internal region,

ΨCWE(x, k; t) =
ik

π

∞∫

−∞
dk′ φ(x, k′)

×
[

e−i~k′2t/2m − e−i~k2t/2m

k′2 − k2

]
. (27)

Both the RSE and the CWE dynamical solutions can describe
the buildup process from the transient to the stationary regime
through the evaluation of the electronic probability density
|Ψ(x, k; t)|2 inside the system, using respectively the time-
dependent solutions given by Eqs. (14) and (27). In the
evaluation of the former, the analysis of the convergence of
both the stationary solution given by Eq. (8), and the sum in
Eq. (14) asN → ∞ is relevant here in order to guarantee
the correct description of the buildup process from the tran-
sient to the stationary regime. In the evaluation of the latter,

care must be taken in choosing the appropriate integration in-
terval in order to account for all the relevant contributions in
k-space to the time-dependent wave function.

The values of the time-dependent probability density
|Ψ(x, k; t)|2 calculated using the RSE approach through the
evaluation of Eq. (14) along the internal region of a dou-
ble delta resonator are shown in Fig. 6 for an incidence
energy near (and below) the first resonance,E = ε1 − Γ1

= 0.203 eV, and different values ofN . Here we plot
|Ψ(x, k; t)|2 vsx along the internal region of the potential for
different fixed times and varying the numberN of resonance
terms in the truncated expansion given by Eq. (14). Notice
that this sum includes2N resonance terms since it runs over
both negative and positiven. We illustrate here the cases for
N = 1, N = 30, andN = 500. Snapshots of|Ψ(x, k; t)|2
taken along the transient regime are shown in Fig. 6(a), (b),
and (c) at the timest = 0.1τ , t = 0.6τ , andt = 1.7τ , re-
spectively, whereτ is the lifetime of the lowest resonance,
τ = ~/Γ1 = 4.5 fs.

The calculation performed with the CWE approach,
Eq. (27), is also included in these graphs (dashed red line)
for the same chosen fixed times. As we can appreciate in
each of these different graphs of Fig. 6, the resonance state
expansion time-dependent probability density gradually con-
verges around the asymmetric curve (CWE case) asN is in-
creased. Since we are dealing with a scattering problem at
off-resonance condition, it is expected that the resulting prob-
ability density inside the system becomes asymmetric. The
symmetrical single resonance approximation,N = 1, is far
from reproducing the probability density, specially at short
times, as shown in Fig. 6(a) where the contribution of the
ground state becomes very small. This is becauset = 0.1τ is
only a small fraction of the corresponding lifetime and such
a resonant state requires more time to be constructed inside
the resonant structure, and the tunneling in this early stage
is dominated by the higher resonances (N > 1) in a filter-
ing process which privileges the passage of the faster com-
ponents of the incident wave. As the number of resonance
terms is increased toN = 30, the RSE curves tend to re-
produce the CWE calculation along the whole internal re-
gion of the potential except for the small oscillations (Gibbs
phenomenon) near the left edgex = 0 of the system. For
N = 500, these oscillations almost fade out and the RSE and
CWE curves become numerically indistinguishable for long
enoughN . This is an interesting result not only because the
formalisms beyond Eqs. (11) and (27) are quite different. A
final snapshot is included in Fig. 6(d) att = 30.0τ , which is
a sufficient long time that guarantees that the stationary situa-
tion is essentially reached at this time, as the transient regime
typically extends over about ten lifetimes [23]. Also in this
asymptotic limit, the RSE and CWE calculations agree quite
well for N = 500.

In order to compare with the stationary limit, we also in-
cluded in each of the graphs of Fig. 6 the exact stationary
probability density of the double delta potential calculated by
the solutionφ(x, k) of the time-independent Schrödinger’s
equation (solid violet line with crosses). As we can see, at
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FIGURE 6. Comparison of the time-dependent probability density using the RSE of Eq. (14) for different numberN of resonance terms
with the calculation using the CWE of Eq. (27), at the fixed times: (a)t = 0.1τ , (b) t = 0.6τ , (c) t = 1.7τ and (d)t = 30.0τ , where
τ = 4.5 fs is the lifetime of the first resonance. In fact, as illustrated in (d), the dynamical probability density perfectly coincides with the
exact stationary value (violet solid line with crosses) in the limit of very long times.

short times the stationary limit is still far from being reached,
and only a small part of the stationary curve can be appre-
ciated in the upper right corner of the graphs in Figs. 6(a)
and (b). As time goes on, the time-dependent solutions
evolve towards the stationary solution as we can appreciate
in Figs. 6 (c) and 6 (d). In fact, both dynamical proba-
bility densities (RSE and CWE) become indistinguishable
from the stationary case in Fig. 6(d), satisfying the limit
|Ψ(x, k; t → ∞)|2 → |φ(x, k)|2, a requirement that must
be fulfilled by both dynamical solutions.

The Gibbs phenomenon observed in the vicinity ofx = 0
in the RSE curves for finiteN is due to the fact that the
Green’s function that led to the derivation of the series ex-
pansion of Eq. (7) is not defined at the pointx = 0 [15].
However, as illustrated in Fig. 6, just by increasing the num-
berN of resonance terms to a few tens (with the contribution
of the third-quadrant poles included), an excellent description
can be accomplished forx > 0.

The analysis presented so far illustrates the equivalence
of RSE and CWE approaches in the calculation of the inter-
nal probability density in the full time domain from the tran-
sient to the stationary regime in a typical resonant structure.
One of the advantages of the RSE approach is the possibil-

ity to handle analytical expressions that allows us to study
the physics of the dynamical processes more deeply. With
the RSE we can analyze separately the contribution of the in-
dividual resonant states to the buildup time scales. On the
other hand, using the CWE, for a given position and time we
integrate numerically Eq. (27) along thek-space and obtain
a single numerical value ofΨCWE(x, k; t) which involves
the contributions of the whole spectrum, making no distinc-
tion among the contributions of the different resonant states
of the system.

4. Conclusions

The convergence of two resonance expansions, one station-
ary and the other dynamic, is analyzed in the calculation of
the probability density in the internal region of a double-delta
resonator. In the stationary case we investigate the equiva-
lence of the solutions obtained by this approach, and the so-
lution obtained by the standard continuum wave expansion
method, finding that both approaches lead to results that are
numerically indistinguishable from each other, provided that
a relevant set of terms are included in the expansion. The
importance of the anti-resonances (associated to the poles in
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the third quadrant) on the resonance expansion is also dis-
cussed. In particular, it is found that in the case of sharp
and isolated resonances, and incidence at resonance, the con-
tribution of the anti-resonances can be ignored. However,
if the above condition is not satisfied, the contributions of
the anti-resonances must be included in the solution in order
to ensure convergence of the resonant expansion. We also
demonstrate a useful scaling property that leaves invariant the
Schr̈odinger’s equation and the resonance expansion, which
allows us to characterize the degree of convergence of fami-
lies of double delta systems with the same productλL.

In the dynamical case we used the time-dependent res-
onance expansion to calculate the probability density ana-
lyzing its convergence at different times within the transient
regime, as well as in the asymptotic long time regime (sta-
tionary limit). In the short time regime, it is found that the
main contribution to the solution comes from higher reso-
nancesN > 1 instead of from the ground stateN = 1, in
contrast to the stationary case where the lower state provide
the main contribution. The above occurs as a consequence
of the different time scale at which the resonance state con-
tributes to the buildup of the wave function. The tunneling
in these early stages is dominated by the higher resonances
(N > 1) in a filtering process that privileges the passage
of the faster components of the incident wave. In the limit
of very long times, the time-dependent probability density
evolves towards the stationary value, and becomes indistin-
guishable from the stationary case. As a final remark, we
emphasize the fact that RSE approaches provide us with al-
ternative ways to obtain reliable solutions in quantum trans-
port problems. In addition to the above, we also have the
advantage of deriving analytical expressions that allows us to
analyze more deeply the underlying physics of the dynami-
cal processes. In the particular problem studied here, we can
analyze separately the contribution of the individual resonant
states to the buildup time scales.

Appendix

A.

Let introduce the dimensionless variablex′ defined by

x′ =
x

L
, (A.1)

demanding that the Schrödinger equation remains invariant.
This leads in a natural way to the definition of two dimen-
sionless parameters,

α =
2m

~2
λL (A.2)

and
k′ = kL. (A.3)

With the above definitions the Schrödinger equation can be
rewritten as

d2 φ(x′, k′)
dx′2

+
[
k′2 − V (x′)

]
φ(x′, k′) = 0, (A.4)

where the potential is now given by

V (x′) = α [δ(x′) + δ(x′ − 1)].

With the above rescaling procedure, the Schrödinger
equation (and hence its solution) depends only on the two
parametersα andk′, whose particular values rather to rep-
resent a single system, correspond to families of potentials
whose solutions exhibit the same behavior.

One can also use the relations given by (A.1), (A.2), and
(A.3) to rescale the main equations of the resonance formal-
ism that led to Eq. (7). By performing this procedure, it can
be shown along the same lines as in [15], that the resonance
expansion for the rescaled wave function is given by,

ψ(x′, k′) = ik′
∞∑

n=−∞

un(0) un(x′)
k′n (k′ − k′n)

; 0 < x′ ≤ 1, (A.5)

which has the same form as Eq. (7), and hence is also in-
variant under the above rescaling. Here, the rescaled eigen-
functionsun(x′), obey the Schr̈odinger equation with com-
plex eigenvaluesEn = ~2k′2n /2m = ε′n − iΓ′/2 , where
k′n = knL. Also from the relation betweenk andk′ given
by (A.3), it is straightforward to show that the energies are
related byE′ = EL2, whereE′ = ~2k′2/2m. Similar rela-
tions hold for the position and width of the resonances,i.e.,
ε′n = εnL2 andΓ′n = ΓnL2. Notice that (A.5) also holds for
a finite number of terms in the expansionsi.e. it also holds
for the approximate solutionψN (x, k).

Since |ψN (x, k)|2 = |ψN (x′, k′)|2 and |φ(x, k)|2 =
|φ(x′, k′)|2, it follows straightforwardly thatξ2 is also invari-
ant under the rescaling,i.e.,

ξ2 =

∫ L

0

[
|φ(x, k)|2 − |ψN (x, k)|2

]
dx

∫ L

0
|φ(x, k)|2 dx

=

∫ 1

0

[
|φ(x′, k′)|2 − |ψN (x′, k′)|2

]
dx′

∫ 1

0
|φ(x′, k′)|2 dx′

= ξ′2. (A.6)

With this result, we have shown in general that all systems
with the same combination of parameters (α, k′) will have
the same value ofp for a givenN .

Still, in order to demonstrate that this is in fact the case
of the regularity exhibited by the family of systems A, B
and C of Fig. 5 (sharing the same parameterα), we need
to show that all systems share the same parameterk′. We
do this by considering another relevant property of the sys-
tem. Consider two different double-delta resonators (λa,
La) and (λb, Lb) with the same value ofα, whose cor-
responding off-resonance incidence energies are given by
Ea = εa

n + ∆Ea
n, andEb = εb

n + ∆Eb
n, where∆Ea

n and
∆Eb

n are their deviations from resonance. Since the sys-
tems are arbitrary, it is clear that their corresponding wave-
numberska = [2mEa]1/2/~, andkb = [2mEb]1/2/~ will
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be in general different, and so their corresponding rescaled
wave-numberska′ = kaLa andkb′ = kbLb. However, when-
ever the deviations from resonance are given in units of the
corresponding resonance widthΓn i.e. ∆Ea

n = ηΓa
n, and

∆Eb
n = ηΓb

n for a givenη, the uniqueness of the rescaled
wave-numbers is fulfilled, that iska′ = kb′. This explains
why systems A, B, and C of Fig. 5 fulfill the invariance prop-
erty given by (A.6).
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