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Convergence of resonance expansions in quantum wave buildup
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The convergence of stationary and dynamical resonance expansions that involve complex eigenenergies of the system is analyzed in th
calculation of the electronic probability density along the internal region of a resonant structure. We show that an appropriate selection of the
resonance contributions leads to results that are numerically indistinguishable from the exact Hermitian calculation. In particular, the role

played by the anti-resonances in the convergence process is emphasized. An interesting scaling property 6fithge8aguation, and

the stationary resonance expansion, useful for the analysis of convergence of families of systems, is also demonstrated. The convergence «
a dynamical resonance expansion based on a Moshinsky shutter setup, is explored in the full time domain. In particular, we explore the build
process of the electronic probability density in the transient regime, analyzing the contributions of different resonant states in the earliest
stages of the buildup process. We also analyze the asymptotic limit of very long times, converging in the latter case to the stationary solution
provided by the exact Hermitian calculation.
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1. Introduction general expression for the scattering amplitude that involved
an expansion in terms of the resonance poles and their corre-
Series expansions in quantum mechanics that involve dissponding residues. The proportionality between the Gamow
crete sets of basis functions have proven to be powerfustates and the residues at the complex poles was demonstrated
tools for describing wave amplitudes, propagators, and reby Garda-Caldebn et al.[5], leading to analytic expressions
lated physical quantities. Various species of basis functionsf continuum wave functions in terms o resonant states for
(e.g.quantum box eigenfunctions, harmonic oscillator eigen-three dimensional systems. These ideas where brought [9] to
functions, Hilbert-Schmidt basis, Kapur-Peierls basis) havahe context of electron transport in one-dimensional semicon-
been used in different physical applications [1]. A specialductor heterostructures, introducing a representation of the
set of basis functions that have proven to be very useful téreen’s function in terms of one-dimensional Gamow func-
expand Green’s propagators, and probability amplitudes, arons, and its crucial connection with the stationary wave-
the so called Gamow functions [2]. In the context of quan-function(z, k). The latter constitutes the basis of a reso-
tum decay, they correspond to complex eigenfunctions ofiance state formalism which has been successfully applied
Schiddinger’s equation with purely outgoing boundary con-for the study of resonant tunneling in potentials of arbitrary
ditions. A number of advantages of their use in resonancshape extended on a finite intervalk = < L, in both the
expansions are listed in [3], among which one of the mosstationary [9, 10], and dynamical regimes [11-15].
important is the fast convergence of the resonance expan- The convergence properties of the expansion of the wave-
sions. Along several decades, the properties and applicatiomignction+)(z, k) along the transmission region ¢ L) have
of Gamow states as basis functions have been the subject péen recently analyzed [14]. However, an analysis of the con-
investigation [3—6], mainly in the context of the theory of nu- vergence along the whole internal regiorc = < L has not
clear physics and scattering theory. been performed so far. In this work we analyze both station-
The notion of purely outgoing states was applied byary and dynamical resonance expansions of the wave func-
Siegert [7] to derive an analytical expression for the scattertions along the internal region of the potential. This kind
ing cross section, relevant for the study of nuclear reactionof analysis is required in dealing with problems that involve
In the latter approach, the relationship between the scatterinipe features of the probability density at short times and/or
problem and the poles of the correspondiiigatrix is man-  off-resonance conditions, where the contribution of multiple
ifested. Further developments by Peierls [8] led to a moreesonances is very important.
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The paper is organized as follows. In Sec. 2. we make
a brief presentation of the basic formulas for the resonance
expansion of the wavefunction along the internal region. In
Sec. 3. we analyze the convergence properties of the reso
nance expansion for double-delta systems at resonance, an
off-resonance conditions, for both the stationary and dynam-
ical cases. Finally, in Sec. 4. we present the conclusions.

2. Resonance expansion for the internal wave-
function

2.1. Stationary case

The expansion of the outgoing Green’s propag#tdr in
terms of resonant states and its connection with the scatter:
ing wave function are presented in detail in [15], and we shall
recall here the main equations.

The outgoing Green’s propagat6it along the inter-
nal region of a one-dimensional finite range potentidk)

of arbitrary shape that extends on a finite spatial intervalFlGURE 1. Closed contou€ in the complex:-plane used to obtain

0<z< .L' and Vé.lmSheS elsewhere, can be _derlved l"Smghe discrete resonance expansioit:of given by Eq. (3). The con-
the following analytical procedure. Let us consider the COM-5yr excludes all the complex poles of the integrand of Eq. (1), and

plex integrall in thek-plane, is composed by the following contour§!y, of radius R centered
i , Gz, 2’5 k) about the origin in thé-plane following a clockwise direction, and

I= o dk & (1) ¢, that encloses the pole &t = &, and all theC,, that encircle

C the set of complex pole$k, } of G*, both in an anti-clockwise

along the closed contou, where we use the fact that dIection

G*(z,2'; k) is a meromorphic function of that possesses
an infinite number of complex polés, distributed ink-space

in a well known fashion, as depicted in Fig. 1. In this Fig. 1
we also show the details of the integration contGuxhich

is composed of a closed contoliz of radius R about the

where the index runs on both the third( < 0), and fourth
(n > 0) quadrants.

Theu,,’s in the above equation are the one-dimensional
Gamow functions, which are eigensolutions of Sctinger’s

origin in the clockwise direction which excludes all the polesequa“on’
{kn}, enclosed by infinitesimal small circular contours, d2up (z) ,  2m
and the pole at’ = k enclosed by a circular contodry, Tda? + [k‘n - th(x)] up () =0, (4)

where both paths are traced out in a counterclockwise direc-
tion. Using the fact that the integrand is analytic insijét  with outgoing boundary conditions:
follows from Cauchy’s theorem thdt= 0, and hence Eq. (1)
reads
/dk’ G*(g/mx’; k") N Z /dk’ Gt(z, 2"} k) duy,/dz|e=1 = +iknun (L), duy/dz|s—o = —iknu,(0).
—k - kK —k
Cn

This set of eigenfunctionéu,, } constitute a basis of res-

G2t k) gq_ance states, which obey the following normalization con-
- dk fk == O (2) | IOI’],
Cr

Cy

k

L
One may obtain the first two integral in Eq. (2) by us- /ui(m) da _HM -1 (5)
ing the residue theorem, and the fact that the residues /
r, at the complex poles of3*(x,z';%k') are given by
Ty = Un(2)un(2")/kn [15]. The lastintegral in Eq. (2) van- In order to obtain an expansion of resonance states
ishes in the limit? — oo due to the fact that whejk| — oo,  of the solutiony(z, k) of Schibdinger’s equation along the
G*(z,2';k") — 0. Following this procedure, we obtain the internal region of the potential, we use the relationship be-
discrete series expansion@f(z, z’; k') given by tween(z, k), and the outgoing Green functigi™ of the
system, given by [9]

o0

G = S @)
. n;oo 2k (k — k) b, k) = 2ikGT(0, 23 k), 0 <z < L, ®)
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Re [k ] with H = —(h2/2m)d?/d2* + V(z), using the reflecting
Moshinsky shutter initial condition [15, 17] at= 0, namely
-1.0 -0.5 0.0 0.5 1.0
000 T ¥ T ¥ ¥ T ¥ I elkm _ e_zkm, x S O,
c|e U(x, k;t=0) = (10)
0, z > 0.
@) O
k_n kn The analytical solution that involves a resonance state expan-
— © © sion (RSE) with explicit time dependence reads,
~~-0.05} o 0 §
O O
- © © RS Uy (0)un ()
o o o ] - zmngoo WMM (kn,t)],  (11)
2010 wherey(z, k) is the stationary solution given by Eq. (7). The

time-dependence of the solution is contained in the Moshin-
FIGURE 2. Distribution of theS—matrix poles of the system in sky functions

the complexk-plane for a double delta potential with parameters:

A =10.0eVA, andL = 30.0 A. The poles of the third and fourth .
quadrant are related through,, = —k;, (n = 1,2, 3,...), which Mly(q,t)] = 9 wliy(g, 1)),
follows from time-reversal invariance.

(12)

wherew[iy(q,t)] is the complex error function [18], with
which combined with Eq. (3), leads to the resonance expartomplex argument

sion fory(x, k), B\ /2
. y(q,t) _ _e—zw/4 () qt1/27 (13)

Yl k) =ik Y unOunl@) o o (g 2m
ne—oo kn (K — kn) whereq stands fortk or ki,
) ) ) In practice, the evaluation of the dynamical solution,
As pointed out in [16], the above expansion does not appheq.  (11), is performed for a finite number of resonance
for the caser = «" = 0. A nice feature of the resonance termsN. For our numerical calculations,we define a solution
expansion given by Eqg. (7) is that it establish a link betweeny (. k. ¢) as
the spectrum of the system and the corresponding scattering
problem. The information regarding the spectrum manifestst v (z, k; t)=vyn (z, k) M [y (k,t)] =& (2, k)M [y (—k, )]
itself in the set of complex pole&k,, } of the system, which N (O ()
are distributed in the complex k-plane as shown in Fig. 2. . U (0)un (2
Since in practice one considers a finite numieof res- 2k ZN k2 — k2 Mly ka0, (14)
onant terms in Eq. (7), let us define the solutibg as the "
truncated sum, whereyy (z, k) is the stationary solution given by Eq. (8).
Equation (14) has been studied and applied mainly at
the boundary pointt = L since ¥ at that point relates
Un(z. k) = Z cn(k)un(z), 0 <z <L, ®) 1 transport properties of the system, such as the transmis-
n=-N sion coefficient and tunneling time. In the internal region

which will be used in our numerical calculations, testing itsOf the potential, Uy (z, k;t) has been used to analyze the
accuracy for different values of. The coefficients of the buildup process, but these analysis has been performed only
suMcy, (k) = ik, (0)[kn (k—ky, )] ! provide the partial con- in situations where the one-resonance approximation works
tributions of each resonance. well [12, 15], which is the case of sharp and isolated reso-
nancesij.e. [e,+1 — €,| < T',,. In @ more general situation,
the contribution of various resonance poles should be consid-
ered in the resonance expansion. This is the case for example

Let us now consider the dynamical situation of incident par-Of the buildup at very short times and/or at off-resonance inci-

ticles on a resonant structure represented by the potentidence energies. Hence, an analysis of the convergence of the

V(z). The calculation of the dynamical probability density Selution along the whole internal region is required. As we
1W(z, k, t)|? inside the system involves the solution of the shall illustrate below, the convergence is position dependent
K Y .

N

2.2. Dynamical case

time-dependent Schdinger equation, i.e. the convergence is fast in certain points inside the sys-
tem, and slow in others. In addition to the above, attention
0 = to the boundary valug = 0 is needed since the above series

(’hat o H> v=0 ©) expansions do not apply at this point whetdtractiongd15]
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are required to ensure convergence (See however Refs. [16f the potentialV (z) given by Eq. (15). The solution of
and [20] where Cordero and GaémeCaldeon use an auxil- Eq. (16) reads,
iary function avoiding the use of subtractions), thus a slower cike 4 R(k) e=ike 2 <0
convergence of both solutions (11) and (7) is expected near ’ -
this special point. As we shall see, the probability density ¢, ) = { A(k)e™™ + B(k)e =, 0
exhibits this feature of the solution as a Gibbs phenomenon
nearr = 0. T(k) et =, x> L.

Note that in the dynamical solution there are two kinds ofB computing the coefficients (k) and B(k) by means of
convergence to be considered. One ofthem is its CONVEIGeNGfa well known transfer matrix technique we obtain the cor-

to the stationary solution which is the asymptotic value thatresponding wavefunction for the internal region
should be reached @s— oco. The other corresponds to the '

N

x<L; (17)

behavior asV — oo where N is the number of resonance ol k) = k (k +ir) ek @=L) — jge=ikl@=L)7
terms of the expansion. ’ (k + k)2 e~ kL — (jg)2 ikl |’

0<z<L, (18)
3. Results

where we have defined= m\/h?.

. . . In order to measure the degree of proximity between the

We are interested here in analyzing the convergence of the . ; i
X . ; curves of the probability density computed with Egs. (8)
resonance series expansions given by Egs. (7) and (11) alo% d (18) (a procedure that involves the comparison of a large
the internal region of the system for stationary and dynam- pre . b g
. - . number of points) we use a computational tool that provide
ical descriptions, respectively. As an example, let us con- ~ :
. : us with a global estimate of the degree of convergence of the
sider the exactly solvable problem of a particle of energy

E — h2k?/2m incident from the left ¢ < 0) on a sym- probability density gomputed from Eq. (8) in terms of a sin-
metrical double delta potenti&i(x) defined as gle parameter. We introduce such a paramptas the (per-

centual)global degree of convergentetween|vy (x, k)|?
V(z) = A[5(z) + 6(x — L)] (15) and|¢(x, k)| along the whole intervad < z < L, defined

. by
o —_ 2
The potential parameters areA = 10.0 eV A, and p =100 x (1 = &), (19)
L = 30.0 A. Here, and in the rest of the paper, the effectivewhere
mass is chosen as = 0.067m., with m. being the electron L 9 9
mass. As shown in Fig. 2, for this system the poles of the 2 _ Jo ’|¢(1:,k)| — [¥n (k)] da
Green'’s function have a symmetrical distribution in the third foL p(x, k)|2 dr
and fourth quadrants of the complexplane. ) ) L
As we shall show later, the contribution of the third- Insofar, agy (z, k)[* and|e(x, k)|* become alikeg™ will
quadrant poles;_, (also callecanti-resonance statdg]) to € negligible and sp will approach tol00%. _
the series expansion of the internal wave function becomes TN€ \galues of the stationary probability density
essential. The complex polds, are related to the com- |¥n(2;k)| calculated from Eq. (8) are shown in Fig. 3
plex energies, through the relationt,, = 512k2/2m = (red solid line) for an incidence energy near (and below) the
n — n - .

e, — il', /2. From the value of; (full circle in Fig. 2), the first resonancefr = e; — I'y = 0.203 eV. Here we plot

first energy resonance has positign= 0.349 eV and width [~ (z,%)|* vs z along the internal region of the potential
Iy = 0.146 eV. varying the numbe/ of the truncated expansion (8). Notice

that this sum include2N resonance terms since it runs over
both negative and positive. We illustrate here the cases for
N =1,N =4, N =30, andN = 500. The exact probabil-
We now analyze the convergence speed of the RSE by ey density [¢(z, k),|2’ calculated by a standard approach of
ploring the probability density along the whole internal re- dU&ntum mechanics, is included for comparison (blue dashed
gion of the system. In what follows we perform a comparison{n€)- AS we can appreciate in the different graphs of this

of the probability density calculated with the solution given 19ure. the convergence is faster at points close te- L,
by Eq. (8) for different values o, and the exact solution and it gradually becomes slower as we move from right to
¢(x, k) to Schbdinger's equation, the left edge of the system. Near the paint= 0 the ap-

proximate curve exhibits a Gibbs phenomenon characterized
B2 J2 by a series of oscillations that fade out &sis increased.
T 9m dz? +V(z)| ¢(z,k) = E¢(z,k),  (16)  The values ofp for each of the cases shown in Fig. 3 are
included in each graph, illustrating the improvement intro-
along the internal region. The latter is calculated by a standuced with the increase &. For N = 1 the approximation
dard approach of quantum mechanics that deals with the onés far from reproducing the exact curve as we see in Fig. 3(a).
dimensional scattering of plane waves incidence from the lefBy increasing the numbeN of resonance terms (with the

(20)

3.1. Stationary case
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FIGURE 3. Comparison of the probability density of the approximate solution, Eq. (8) (red solid line), with the corresponding exact
calculation, Eq. (18) (blue dashed line), at off-resonance incidence energy. The ninuised in the expansion (8) and the value)afre
indicated in the graphs. In (d)y is the value op when the contribution of the polés.,, is not included (black dotted line).

contribution of the third-quadrant poles included), a bet- YN (2, k) = cn(k) un () + c—n(k) u) (). (21)
ter description is accomplished as shown in Figs. 3(b), (c) . ] )
and (d). Moreover, if the chosen resonance is sharp and isoliated

The relative importance of the poles of the third andlén+1 — enl > F_n, the Contributi_on of the pole of the third
fourth quadrants in the complexplane, is further empha- duadrantk_,, will become negligible so thae_, (k)| <
sized in Fig. 3(d), where we have included an additional plof¢(¥)|- In such a case, the contribution at, (k) can be
(black dotted line), which corresponds to the calculation Ofgnored, and
Y |? where we have intentionally suppressed the contribu- ~
lion|s associated to the poles of the third quadrant, that is, only V(@) ~ en (k) un (@) (22)
the N resonance terms with positivewere included in the may provide an excellent approximation.
sum. Itis clearly evident that a poor description is obtained  To illustrate this case, let as consider a symmetrical
when the contribution of those poles is ignored. In fact, indouble-delta resonator with stronger barriers and the inci-
the absence of such contributiopsieduces from 99.85% to dence energy chosen at the first resonarite= ;. In
the valuep, =73.23%. The above comparison illustrates thethis example A = 40.0 eV A, L = 30.0 A, and the po-
importance of the terms with negative index in the resonancsition and width of the first resonance are = 0.522 eV,
expansion [Eq. (7)]. andT'; = 0.023 eV, respectively. This resonance is sharp

We stress out however that there are situations in whickenough to ignore the contribution bf 1, in fact we have here
the contributions of the third quadrant poles can be neglectedc; /c—1| = 174.33, and the result is illustrated in Fig. 4. The
The simplest situation occurs when the incidence energgpproximate calculation from Eq. (22) (red solid line), using
matches one of the resonances, #ay= ¢,. In this case, the single polek; of the fourth quadrant (see full circle in
we expect that the contribution of the corresponding resoFig. 2(a)), agrees quite well with that given by the exact cal-
nance will dominate over the rest, and hence the approximazulation|¢|? (blue dashed line), specially in the case of sharp
tion with N = 1 may be sufficient in the expansion, that is and isolated resonances. According to Eq. (19), the global

degree of convergence is accomplished up te 99.73%.
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FIGURE 4. The one-term resonance expansion formula given by ) . '
Eq. (22) (red solid line) accurately describes the exact calculationFIGURE 5. Behavior ofp for different systems sharing the same
(blue dashed line) at resonance conditih= ;. Even though  ProductAL for incidence energies below the first resonance. The

the contribution of the polé_; is not included, the proximityo deviations from resonance arg; (red solid line), andl'y (blue
is almost100%. dashed line). Notice how for a given deviation (in unitdg) the

three systems share the same curve.
This shows that the additional contribution from the poles
k_,, of the third quadrant is not essential in this case. the convergence properties of the resonance expansion for all
Abe systems with the samel. As we show analytically in
the Appendix, the above is regularities are explained in terms
9f a scaling property of the Sdbdinger equation (valid for
these potentials) that leaves invarightand hence the value

N

In the two examples discussed above, where we analy
the behavior of the resonance sum (8) as a functioN ahe
convergence proved to be more efficient in the system with
higher value of\L i.e. a smallerN is needed in order to ac-
complish a given value gf. It turns out that systems charac- of p.
terized by the same produkL exhibit an identical behavior,
provided that the incidence energy is properly chosen. Thig.2, Dynamical case
is relevant because it can predict the behavior of families of
systems with differenk andL but with the same produdtL.  We are interested here in the analysis of the buildup process

In order to illustrate the gradual increasepofvith N, a  of the electronic probability density inside the system using
p vs N plot is shown in Fig. 5 for the same double-delta the time-dependent solution given by the resonance expan-
system (which from now on we call system A), and same in-ssion (14), which can describe the evolution|&fy (z, k; t)|?
cidence energy (solid line). If the difference between the infrom the transient to the stationary regime. Notice that the
cidence energy and the nearest resonance is increased, metationary solution)y (x, k) is included in the dynamical ex-
resonances are needed in the expansion to keep the proximipyession (14), and hence the analysis of convergence per-
level. Thep vs N plot for E = ¢; — 2I'; = 0.0580 eV~ formed in Sec. 3.1. is also relevant for the dynamical case
(dashed line) is also shown in Fig. 5. In system A, thei.e. its convergence guarantees the correct behavior of the
product of the potential parameters wak = 300.0 eV A2 first two terms in Eq. (14). However, the behavior of the
Some interesting regularities appear when we consider difsum in Eq. (14) includes both the spatial and the time depen-
ferent systems with the same produdt. To illustrate this dence, and should be analyzed separately, specially at short
point, let us consider two additional systems= 5.0 eV A,  times. Previous studies of the buildup process based on the
andL = 60.0 A (system B), with resonance parametersshutter approach have been performed at resonance [11, 15],
e; = 0.08732 eV, andI'; = 0.0364 eV; and\ = 3.0 eV  and near-resonance [12]. Those studies have in common the
A, andL = 100.0 A (system C), with resonance parametersfact that the systems fulfill the condition of sharp and isolated
e1 = 0.0314 eV, andI'y = 0.01310 eV. The corresponding resonances.e.T',, < |e, — e,+1| ) and not too short times,
vs N plots for the same deviations from resonance (in units otonditions that guarantees that the one-term approximation
I';) considered in systemPe. E =¢; —nI'; (n=1,2) are  i.e. N = 1in the expansion fop (z, k; t), works well. We
shown in Fig. 5. As we can see, all the graphs correspondingre extending here the analysis to situations where the above
to the same value of coincide. We have used three different conditions not necessarily are satisfied, and as a consequence
symbols on the curves (a hollow dot for system A, a crosghe one-resonance approximation no longer applies.
for system B, and and a vertical line for system C) and their  As an example, let us consider the problem of a particle
positions on each of the curves completely overlap. of energyE incident from the left £ < 0) on a symmetri-

This numerical invariance is interesting by itself, and use-cal double delta potential [Eq. (15)], with the same system
ful for the present study since it will enable us to characterizgparameters as in Fig. 2. In order to study the probability
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density in the whole time-domain, we introduce an alterna-care must be taken in choosing the appropriate integration in-
tive solution based on a continuum wave expansion (CWE)terval in order to account for all the relevant contributions in

The latter is based on a standard approach in quantum mé-space to the time-dependent wave function.

chanics that has been used to explore numerically [21], and The values of the time-dependent probability density

analytically [22] the dynamical aspects of sharp wavepacketsV (z, k; t)|? calculated using the RSE approach through the
in momentum space (cutoff plane waves) in potential barrievaluation of Eq. (14) along the internal region of a dou-

ers. In the present study we have adapted the method uséte delta resonator are shown in Fig. 6 for an incidence
by Brouard and Muga [22] to analyze the dynamics in theenergy near (and below) the first resonanEe= ¢; — I'y

well region of the double delta potential. We begin with the= 0.203 eV, and different values ofV. Here we plot

following expansion [22], |W(z, k;t)|? vsx along the internal region of the potential for
- different fixed times and varying the numhb¥rof resonance
CWE dk’ terms in the truncated expansion given by Eq. (14). Notice
v (x,k,t) = . . S
/o that this sum include2N resonance terms since it runs over
—o0 both negative and positive. We illustrate here the cases for

/ N —iRk'2t/2m N =1, N = 30, andN = 500. Snapshots of¥(z, k;t)|?

X ¢la, k) Ok, ke (&) taken along the transient regime are shown in Fig. 6(a), (b),
that deals with an integration of the stationary wavefunctiorand (c) at the time¢ = 0.17, ¢ = 0.67, andt = 1.77, re-
#(z, k) along the internal region, in our example given by spectively, wherer is the lifetime of the lowest resonance,
Eq. (18), with an expansion coefficiefi{k, k') defined as, 7 =n/I'1 =4.5fs.

The calculation performed with the CWE approach,

oo

. D . Eq. (27), is also included in these graphs (dashed red line)
C(k, k') = / dz’ ¢ (a") ¥(2', k, 0). (24)  for the same chosen fixed times. As we can appreciate in
—o0 each of these different graphs of Fig. 6, the resonance state

expansion time-dependent probability density gradually con-
verges around the asymmetric curve (CWE casey as in-
creased. Since we are dealing with a scattering problem at
, i 1 1 off-resonance condition, it is expected that the resulting prob-
Ck k) = V2 {k’ “k+ie K +katicl’ (25) ability density inside the system becomes asymmetric. The
symmetrical single resonance approximatidh= 1, is far
wheree is an infinitesimal pOSitive number used to guaran-from reproducing the probab|||ty density, Specia”y at short
tee the convergence of the integrals in Eq. (24). We calcutimes, as shown in Fig. 6(a) where the contribution of the
late the expression fob "V ¥ (x, k, t) by using Eq. (25) into  ground state becomes very small. This is becaus®. 17 is

By substituting in Eq. (24) the initial conditio («’, k, 0)
given by Eq. (10), we obtain the result,

Eg. (23), and using following the identity, only a small fraction of the corresponding lifetime and such
1 1 o a resonant state requires more time to be constructed inside
ki P~ mid(k' £ k), (26)  the resonant structure, and the tunneling in this early stage

o is dominated by the higher resonanc@é & 1) in a filter-
whereP stands for theCauchy Principal ValueAfter afew  ing process which privileges the passage of the faster com-
algebraic manipulations, we obtain the CWE time-dependenjonents of the incident wave. As the number of resonance

wave function along the internal region, terms is increased t& = 30, the RSE curves tend to re-
oo produce the CWE calculation along the whole internal re-
\IICWE(w kit) = ik /dk' oz, k') gion of the potential except for the small oscillations (Gibbs
Y ’ phenomenon) near the left edge= 0 of the system. For

— 00

N = 500, these oscillations almost fade out and the RSE and
CWE curves become numerically indistinguishable for long
] . (27) enoughN. This is an interesting result not only because the
formalisms beyond Eqgs. (11) and (27) are quite different. A

Both the RSE and the CWE dynamical solutions can describBnal snapshot is included in Fig. 6(d)#t 30.07, which is

the buildup process from the transient to the stationary regim@ sufficient long time that guarantees that the stationary situa-
through the evaluation of the electronic probability densitytion is essentially reached at this time, as the transient regime
|U(x, k;t)|? inside the system, using respectively the time-typically extends over about ten lifetimes [23]. Also in this
dependent solutions given by Egs. (14) and (27). In theasymptotic limit, the RSE and CWE calculations agree quite
evaluation of the former, the analysis of the convergence ofvell for N = 500.

both the stationary solution given by Eq. (8), and the sum in  In order to compare with the stationary limit, we also in-
Eq. (14) asN — oo is relevant here in order to guarantee cluded in each of the graphs of Fig. 6 the exact stationary
the correct description of the buildup process from the tranProbability density of the double delta potential calculated by

sient to the stationary regime. In the evaluation of the latterthe solutiong(z, k) of the time-independent Sdsinger’s
equation (solid violet line with crosses). As we can see, at

e—ihk"®t/2m _ ,—ihk*t/2m
X
k/2 — k2
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FIGURE 6. Comparison of the time-dependent probability density using the RSE of Eq. (14) for different ndintiferesonance terms

with the calculation using the CWE of Eq. (27), at the fixed times:t(&) 0.17, (b)t = 0.67, (c)t = 1.77 and (d)t = 30.07, where

7 = 4.5 fs is the lifetime of the first resonance. In fact, as illustrated in (d), the dynamical probability density perfectly coincides with the
exact stationary value (violet solid line with crosses) in the limit of very long times.

short times the stationary limit is still far from being reached,ity to handle analytical expressions that allows us to study
and only a small part of the stationary curve can be apprethe physics of the dynamical processes more deeply. With
ciated in the upper right corner of the graphs in Figs. 6(athe RSE we can analyze separately the contribution of the in-
and (b). As time goes on, the time-dependent solutionslividual resonant states to the buildup time scales. On the
evolve towards the stationary solution as we can appreciatether hand, using the CWE, for a given position and time we
in Figs. 6 (c) and 6 (d). In fact, both dynamical proba- integrate numerically Eq. (27) along tihespace and obtain
bility densities (RSE and CWE) become indistinguishablea single numerical value o “" ¥ (z, k;t) which involves
from the stationary case in Fig. 6(d), satisfying the limit the contributions of the whole spectrum, making no distinc-
|U(z, k;t — o0)|?> — |é(x,k)|?, a requirement that must tion among the contributions of the different resonant states
be fulfilled by both dynamical solutions. of the system.

The Gibbs phenomenon observed in the vicinity of 0
in the RSE curves for finitéV is due to the fact that the
Green’s function that led to the derivation of the series ex-

pansion of Eq. (7) is not defined at the point= 0 [15].  The convergence of two resonance expansions, one station-
However, as illustrated in Fig. 6, just by increasing the num-ary and the other dynamic, is analyzed in the calculation of
ber N of resonance terms to a few tens (with the contributionthe probability density in the internal region of a double-delta
of the third-quadrant poles included), an excellent descriptioResonator. In the stationary case we investigate the equiva-
can be accomplished far > 0. lence of the solutions obtained by this approach, and the so-
The analysis presented so far illustrates the equivalendation obtained by the standard continuum wave expansion
of RSE and CWE approaches in the calculation of the intermethod, finding that both approaches lead to results that are
nal probability density in the full time domain from the tran- numerically indistinguishable from each other, provided that
sient to the stationary regime in a typical resonant structurea relevant set of terms are included in the expansion. The
One of the advantages of the RSE approach is the possibilmportance of the anti-resonances (associated to the poles in

Conclusions
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the third quadrant) on the resonance expansion is also disvhere the potential is now given by

cussed. In particular, it is found that in the case of sharp

and isolated resonances, and incidence at resonance, the con- V(z')=alé(z") +6(z" —1)].

tribution of the anti-resonances can be ignored. However,

if the above condition is not satisfied, the contributions of  \jith the above rescaling procedure, the ®cimger

the anti-resonances must be included in the solution in ordegquation (and hence its solution) depends only on the two
to ensure convergence of the resonant expansion. We al$@yrametersy and &/, whose particular values rather to rep-
demonstrate a useful scaling property that leaves invariant thesent a single system, correspond to families of potentials
Schibdinger’s equation and the resonance expansion, whicljhose solutions exhibit the same behavior.

allows us to characterize the degree of convergence of fami- One can also use the relations given by (A.1), (A.2), and

lies of double deIFa systems with the same product (A.3) to rescale the main equations of the resonance formal-
In the dynamical case we used the time-dependent régsm that led to Eq. (7). By performing this procedure, it can

onance expansion to calculate the probability density angse ghown along the same lines as in [15], that the resonance

lyzing its convergence at different times within the trans'e”texpansion for the rescaled wave function is given by,

regime, as well as in the asymptotic long time regime (sta-

tionary limit). In the short time regime, it is found that the 1 (0) un (2
main contribution to the solution comes from higher reso- (', k") = ik’ m; 0<z' <1, (A5)
nancesN > 1 instead of from the ground stafé = 1, in n=—00 n (K = k)

contrast to the stationary case where the lower state provide ) ]
the main contribution. The above occurs as a consequend¥ich has the same form as Eq. (7), and hence is also in-
of the different time scale at which the resonance state cont@rant under the above rescaling. Here, the rescaled eigen-
tributes to the buildup of the wave function. The tunnelingfunctionsu, (z’), obey the Sctidinger equation with com-
in these early stages is dominated by the higher resonancBX eigenvalues’, = hzkf/?m = &, —il"/2, where
(N > 1) in a filtering process that privileges the passagefn = knL. Also from the relation betweeh and %’ given
of the faster components of the incident wave. In the limitty (A-3), it is straightforward to show that the energies are
of very long times, the time-dependent probability density'elated byE” = EL?, whereE’ :.hzka/Qm- Similar rela-
evolves towards the stationary value, and becomes indistirfilons hold for the position and width of the resonandss,
guishable from the stationary case. As a final remark, wén = enL? andl;, = FHLZ_- Notice that (A.5) also holds for
emphasize the fact that RSE approaches provide us with i finite number of terms in the expansiare it also holds
ternative ways to obtain reliable solutions in quantum transfor the approximate solutiopy (z, k).
port problems. In addition to the above, we also have the Since [¥n(z,k)[> = [¢n(2/,K)[* and [p(z,k)]> =
advantage of deriving analytical expressions that allows us tb?(z’, k')|?, it follows straightforwardly thag? is also invari-
analyze more deeply the underlying physics of the dynamiant under the rescalinge.,
cal processes. In the particular problem studied here, we can
analyze separately the contribution of the individual resonant fOL [|¢(m, k) = on (x, k)ﬂ dx
states to the buildup time scales. = 17 3

Jo 1o(z, k)" dx

Appendix Jy [lo k)P = lon @' )P do’
= =¢*. (A.6)
A. Jo 16 k) da
Let introduce the dimensionless variabledefined by With this result, we have shown in general that all systems
, T with the same combination of parametens ') will have
=17 (A1) the same value qf for a givenV.

This leads in a natural way to the definition of two dimen-Of the regularity exhibited by the family of systems A, B
sionless parameters, and C of Fig. 5 (sharing the same parameigrwe need

om to show that all systems share the same paraniéteiVe
a= ﬁ)‘L (A.2) do this by considering another relevant property of the sys-
tem. Consider two different double-delta resonators, (
and L%) and (\*, L) with the same value ofr, whose cor-
k' =EL. (A-3) responding off-resonance incidence energies are given by
With the above definitions the Sdtinger equation can be E® = 2 + AE?, andE® = b + AE", whereAE? and
rewritten as AE? are their deviations from resonance. Since the sys-
4 $(a’, k') /2 ) . tems are arbitrary, it is clear that their correspondingiwave—
Qg2 T (k2 = V()] ¢(a', k') =0,  (A4)  numbersk® = [2mE*]Y/2/h, andkb = [2mE"]"/2/h will
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