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Additive and multiplicative noises acting simultaneously
on Ermakov-Ray-Reid systems

E. Cervantes-Ĺopez
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We investigate numerically the effect of additive and multiplicative noises on parametric oscillator systems of Ermakov-Ray-Reid type when
both noises act simultaneously. We find that the main perturbation effects on the dynamical invariant of these systems are produced by the
additive noise. Different from the separate action of the multiplicative noise when the dynamical invariant of these systems is robust, we also
find a weak effect that can be attributed to the multiplicative noise.
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Se investigan nuḿericamente los efectos de los ruidos aditivos y multiplicativos sobre los sistemas dinámicos de osciladores paramétricos
de tipo Ermakov-Ray-Reid cuando los dos tipos de ruidos actúan de manera simultánea. La mayor parte de la perturbación del invariante
proviene del ruido aditivo. A diferencia del caso cuando el ruido multiplicativo actúa por separado y el invariante dinámico presenta robustez,
encontramos que en la acción simult́anea de los dos ruidos hay también un efecto pequeño atribuible al ruido multiplicativo.

Descriptores: Ruido; aditivo; multiplicativo; sistema oscilante de Ermakov-Ray-Reid; invariante dinámico.
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Ermakov oscillator systems are couples of second-order os-
cillator equations of the same operatorial structure of which
one is linear and the other has an inverse cubic nonlinear-
ity. The integrability link between the two equations has been
known in Mathematics since the second half of the 19th cen-
tury [1, 2] and a general nonlinear superposition connection
between the solutions of the two equations has been found by
Chini [3] and rediscovered much later in a different format by
Pinney [4]. Another valuable feature of this type of systems
of differential equations is the existence of an invariant quan-
tity, usually known as the Lewis-Ermakov invariant, which
is expressed in terms of the solutions of both equations [5].
On the other hand, the Ermakov-Ray-Reid oscillator systems
have been introduced in [6] as an important generalization
and proved to have extended applications in nonlinear op-
tics [7,8], hydrodynamics [9–11], magnetogasdynamics [12],
and general relativity [13].

It is a fact of nature that oscillator systems, as any other
dynamical systems, are affected by noises and to evaluate
their effects is an important task [14]. Our previous paper [15]
was the first one in the classical context to include the effects
of the multiplicative noise upon Ermakov systems. For this

case there are no big difficulties since the multiplicative noise
can be treated as an intrinsic noise of the system associated
to the frequency [14]. In a second paper [16], we studied
the effect of the additive noise, which proved to be more
difficult than expected. Because of its additive feature, this
common noise acts like a forcing term and then the Ermakov
system should be extended with a second auxiliary nonlinear
equation which is more complicated than the standard auxil-
iary equation. Moreover, we noticed that the noisy system is
still tractable even if a forcing term of the Ermakov-Ray-Reid
(ERR) type were included. However, the situations encoun-
tered both in natural environments and laboratory display the
simultaneous presence of the two kinds of noise. Thus, in this
work, we evaluate the cumulative noise effect on the general-
ized Ermakov invariant of forced ERR systems. This is done
through the Euler-Maruyama numerical treatment used in our
previous works which is recasted in the appropriate form for
this more general case.

The starting point is the system of equations corre-
sponding to the ERR system with an arbitrary forcing term
f(t) [17]
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TABLE I. The dynamical invariants and their standard deviations for the cases considered here.

g(ρ/x) = 0 g(ρ/x) = ρ/x

Ω(t) = 2, αa = 0, αm = 0 I = 0.499955± 0.000032 I = 1.000000± 0.000000

αa = 0, αm = 0.1 I = 0.499954± 0.000036 I = 1.000000± 0.000000

αa = 0.1, αm = 0 I = 0.599299± 0.088445 I = 0.959079± 0.050927

αa = 0.1, αm = 0.1 I = 0.591198± 0.088984 I = 0.958036± 0.051410

Ω(t) = 2 sin(t), αa = 0, αm = 0 I = 0.500054± 0.000041 I = 1.000000± 0.000000

αa = 0, αm = 0.1 I = 0.500057± 0.000044 I = 1.000000± 0.000000

αa = 0.1, αm = 0 I = 0.329377± 0.146162 I = 1.014450± 0.132004

αa = 0.1, αm = 0.1 I = 0.331951± 0.145768 I = 1.011310± 0.128516

Ω(t) = 2t2, αa = 0, αm = 0 I = 0.501059± 0.00162 I = 1.000000± 0.000000

αa = 0, αm = 0.1 I = 0.500958± 0.001466 I = 1.000000± 0.000000

αa = 0.1, αm = 0 I = 0.381289± 0.140435 I = 0.972160± 0.070072

αa = 0.1, αm = 0.1 I = 0.352197± 0.152171 I = 0.969367± 0.063428

ẍ + Ω2(t)x = f (t) +
1

x2ρ
g(ρ/x) , (1)

ρ̈ + Ω2(t)ρ =
k

ρ3
, (2)

ψ̈(t) + Ω2(t)ψ(t) = ρ2ḟ(t) + 3ρρ̇f (t)

+
1

x3ρ
g (ρ/x) ψ. (3)

wherek is an arbitrary real constant andg(ρ/x) is an arbi-
trary function of argumentρ/x. Functionρ is the Ermakov
auxiliary function while theψ function is a second auxiliary
function that should be introduced in the forced oscillator
case. The dynamical invariant of this type of systems is given
by [17]

I =
kx2

2ρ2
+

1
2

(ẋρ− ρ̇x)2 + ψ̇x− ψẋ

+

t∫
ψ (τ) f (τ) dτ − ρ2xf (t) +

ρ/x∫
g(τ)dτ. (4)

By means of this extension to the forced case, it is possible to
study the ERR systems with additive noise, taking the noise
as the forcing termf(t) [16,18]. On the other hand, the mul-
tiplicative noise can be included as a part of the parametric
frequencyΩ(t) [15]. Following the same steps as in our pre-
vious works, the equations are solved numerically by means
of the Euler-Maruyama method [19–21] rewriting the system
(1), (2), and (3) in the form

dYt = a
Yt

(t)dt + b
Yt

(t)dBat + c
Yt

(t)dBmt, (5)

whereBat andBmt are the stochastic variables for the cases
of additive and multiplicative noise, respectively.dYt stands
for the following two-component vectors

dXt =
(

dx
dẋ

)
, dρt =

(
dρ
dρ̇

)
, dψt =

(
dψ

dψ̇

)
(6)

and the coefficients are given by

aXt =
(

ẋ
−Ω2x + g

x2ρ

)
,

bXt =
(

0
αa

)
, cXt =

(
0

αmx

)
(7)

aρt =
(

ρ̇
−Ω2ρ + k

ρ3

)
,

bρt =
(

0
0

)
, cρt =

(
0

αmρ

)
(8)

aψt =

(
ψ̇

ρ2ḟ + gψ
x3ρ − Ω2ψ

)
,

bψt =
(

0
3αaρρ̇

)
, cψt =

(
0

αmψ

)
, (9)

whereαa andαm are the amplitudes of the additive and mul-
tiplicative noises, respectively [22]. It is worth mentioning
that different stochastic variables are used for each type of
noise since their origin resides in different physical effects:
while the additive noise comes from external fluctuations
with respect to the system, the multiplicative class are generic
for the intrinsic fluctuations which can alter the frequency.

For the numerical calculations, we consider the same
examples as in [15, 16] with the same initial conditions
x(0) = 1, ẋ(0) = 0, ρ(0) = 1, ρ̇(0) = 0, ψ(0) = 1,
ψ̇(0) = 0. For the same reasons as presented in [16], the
termρ2ḟ has not been taken into account in the calculations.
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FIGURE 1. Plots of the dynamical invariant (4) for the case
g(ρ/x) = 0 in the intervalt ∈ [0, π]. Top panel: the case with
Ω(t) = 2; middle – for the caseΩ(t) = 2 sin(t); bottom – for
the caseΩ(t) = 2t2. (blue) noiseless case with bothαa = 0
andαm = 0; (magenta)αa = 0.1 andαm = 0; (green) noises
αa = 0.1 andαm = 0.1 together. The caseαa = 0 andαm = 0.1
is not shown because it is similar to the noiseless case.

In Fig. 1, we display the dynamical invariants in the case
g(ρ/x) = 0 for the frequenciesΩ(t) = 2, Ω(t) = 2 sin(t),
andΩ(t) = 2t2. The curves in the blue color correspond to
the noiseless cases, those in magenta are forαa = 0.1 and
zero multiplicative noise, and finally the green color corre-
sponds to the amplitude of the additive noiseαa = 0.1 and
multiplicativeαm = 0.1. In Fig. 2, the same cases are dis-
played forg(ρ/x) = k′ρ/x. The numerical calculations are

FIGURE 2. Same plots as in Fig. 1 but for the caseg(ρ/x) = ρ/x.

performed by choosingk = k′ = 1. In Table I, we show the
mean values and the standard deviations of the invariant for
each of the cases.

These results lead us to conclude that for ERR systems,
the additive and multiplicative noises can be included in the
usual way,i.e., placing the additive noise in the position of
the forcing term and the multiplicative one as a perturbation
of the frequency parameter of the system. The two noises
should be treated as independent stochastic processes when
they are included simultaneously in a parametric system. We
notice that the dynamical invariant is sensitive to the additive
noise as already found previously [16] and robust to the in-
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clusion of the multiplicative noise [15] when the two noise
effects are considered separately. However, when they act si-
multaneously, we find out a weak effect of the multiplicative

noise. Finally, we notice that ERR systems are slightly more
robust when the external forcing term is of the Ray-Reid type,
g(ρ/x) = ρ/x.
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