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The paper provides the analysis of unsteady two-dimensional mixed convection stagnation point flow over a vertical stretching cylinder
with sinusoidal wall temperature. The governing partial differential equations are converted into dimensionless form by using suitable
transformations. For the numerical solution of dimensionless partial differential equations, an implicit finite difference scheme namely
Keller Box method is applied. The comparison is made to show the accuracy of our results with literature for some special cases. Graphs of
velocity and temperature profiles are plotted for assisting and opposing flow cases at fixed value of time. The assisting buoyant flow augment
the momentum boundary layer while opposing buoyant flow show opposite behavior. The thermal boundary layer thickness grows with the
passage of time. Skin friction and Nusselt number are plotted for unsteadiness parameter and amplitude of surface temperature oscillations
against time. It is apparent that as the values of surface temperature oscillations drops, the amplitude of oscillations in skin friction and
Nusselt number also drops. Furthermore, isotherms are drawn to exhibit the influence of the amplitude of oscillations on curvature parameter
with time.
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1. Introduction straining (free stream) velocity and concluded that no bound-
ary layer exist in this case. Contrary to the Chiam [9], Ma-
The stagnation point encounters highest pressure, enhandeapatra and Gupta in [10,11], analysed the effects of magne-
ment of heat transfer and rate of mass deposition. Som@hydrodynamics and heat transfer respectively, in the region
practical examples are cooling of electronic devices by fanspf stagnation point flow towards a stretching surface. They
cooling of nuclear reactors during emergency shutdown, heg@howed that the boundary layer is formed whgn > 1 (ra-
exchangers placed in a low velocity environment, solar centio of straining to stretching velocity) and inverted bound-
tral receivers exposed to wind current and many others [1]ary layer is emerge whea/c < 1. Unsteady analysis of
Due to these aspects, the study of stagnation point flow anlow over a stretching sheet is reported by Neetal., [12].
heat transfer has attracted many researchers and enginedrgcently, Mustafeet al. [13], Bhattacharyyzet al, [14],
Hiemenz [2] initiated the study of two dimensional stagna-Sharma and Singh [15], Bhattacharysteal., [16], and Javed
tion point flow over a stationary flat plate. He transformed theet al., [17] reported the investigations on the stagnation point
Navier-Stokes equations into ordinary differential equationglow over linear and non-linear stretching/shrinking sheets in
by using similarity transformations and provided the exactdifferent aspects. Wang [18] did the pioneering work and
solution of the nonlinear differential equations. Homann [3]investigated the fluid flow due to stretching cylinder. Ishak
extended this work to three dimensional problem of axisym-€t al. [19,20] extended the work of Wang [18] by includ-
metric stagnation-point flow. Schlichting and Bussmann [4]ing the heat transfer effects due to impermeable stretching
provided numerical solution of Hiemenz problem and Eck-cylinder by considering suction and injection cases. They
ert [5] also extended the work of Heimenz [2] by incorporat-produced numerical and perturbation solutions of the flow
ing heat transfer rate in the stagnation point flow. Ariel [6] Problem. Inspired by previous work, many researchers per-
obtained the analytical solution by introducing suction informed their analysis over stretching cylinder with Newto-
flow field. Stagnation point flow over moving surfaces is hian and non-Newtonian fluids [21-27] and incorporating in-
also significant in practical purposes including paper produchumerable physical configurations. In all aforementioned
tion, the spinning of fibres, glass blowing, continuous metastudies, the investigations carried out with temporally con-
casting [7], manufacturing of sheeting material through ex-stant surface condition and the transient development of flow
trusion process especially in the polymer extrusion in a melgind heat transfer over stretching cylinder is not extensively
spinning process, aerodynamic extrusion of plastic sheets [gtudied. Merkin [28] stated that the value of surface temper-
etc. Chiam [9] investigated two-dimensional stagnation poin@ture does not remains constant, it often fluctuate about some
flow of a viscous fluid over a linear stretching surface. Hemean value. The influence of time dependent oscillations in
considered the situation where stretching velocity is equal teurface conditions has received very little attention to date.
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The boundary conditions of the assumed flow are

cz
0

¢ &
I l T=Ty(2) =T
U K'(Z) +T0(E)(l+€sinwt) at r=R,
7 T v—>Ve:al—Z, T—T, as r— oo. 4)

> whereu andv are the velocity components alon@gndz di-

V- — O rections, respectively, is the temperature of the fluid within
the boundary layety is the kinematic viscosityg is the ac-

l celeration due to gravityd; is the thermal expansion coeffi-
cient,« is the thermal diffusivityyu is the dynamic viscosity
of fluid, p is the fluid density¢,, is the specific heat constant,

4 (Z) Uy is the mass flux velocityl}, is some temperature scate,
is the timee is the amplitude of surface temperature oscilla-

’U:Vw: U:Uo,
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-
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v tion andw is the frequency of the oscillation. Introducing the
following non-dimensional variables
FIGURE 1. Physical Model of the problem. P R2 e e
= 1/J TZRf(n7 T)a T
The aim of this paper is to study the unsteady mixed convec-
tion stagnation point flow over a cylinder with sinusoidal time —wt, T =To + Ty (7) o(n, 7) (5)

dependent wall temperature. Graphs for velocity and temper-

ature profiles, skin friction coefficient, Nusselt number andin which, n is the similarity variabley is the stream func-

isotherms are plotted for various governing parameters. tion defined as = r*18¢/ar andv = —7"181/)/82 which
identically satisfies Eq. (1)f(n,7) is the dimensionless

. function andf(n, ) is the dimensionless temperature field.
2. Problem formulation From relation (5), we obtain

We consider two dimensional unsteady laminar boundary _ R Jvc _cz
layer fluid flow near the stagnation point over a cylinder as “= fO,7), and v==fy(n,7)  (6)

shown in Fig. 1. The cylinder is of radius r is permeable and _— .
continuously stretching with velocity,,(z) along its own Substituting Egs. (5) and (6) into Egs. (2) and (3), we get the

axis. To investigate the analysis, a cylindrical coordinate sys followmg dimensionless system of partial differential equa-

tem is considered as such that thexis is taken along the tions

axis of the cylinder and theaxis is in the radial direction. It

is assumed that the stretchinig,() and straining ;) veloc- (U290 Faps + 27 fn + £ F

ities are proportional to distan@from the stagnation point + (§)2 24N =B =0 @)
ie, V, = cz/l andV, = az/l. The temperature at the c K K

surface of cylindel(T,) is considered to be sinusoidal and (1 +29n)0, + 290, + Pr(f6, — f,0 — 36,) =0 (8)
the ambient fluid temperature B, such that T, > Tw.).

The unsteady boundary layer equations with Boussinesq ag-he boundary conditions in Eq. (4) become
proximation and viscous dissipation for continuity, momen-

tum and energy equations are given by n=0: f(n7)=5,
) =1 =1 31
8(7“1}) N 8(ru) 0 (1) fﬁ(7777-) 9 9(7]77-) + €SINT, (9)
=0, a
9z or n—oo: On7)=0, frn7)==, (10)
o, ov . ov OV

o or 0z 0z where v = /vl/cR? is curvature parameterg/c is
v 10v T_T 5 the ratio of straining (free stream) to stretching veloci-
+ ov2 + ror + 984 ) @) ties, A\ = Gr./Re? is the mixed convection parameter

(Gr. = gB;Toz*/lv?) and (Re. = c¢z?/lv). Itis impor-
tant to note thath = 0 corresponds to forced convection

oT oT oT <82T 1 8T> 3)
' flow, A > 0 (T > 0) corresponds to assisting flowe, the

o Mo e ~\eE Trar

Rev. Mex. Fis62 (2016) 290-298



292 A. MAJEED, T. JAVED, A. GHAFFARI, AND |. POP

buoyancy forces acts parallel to free stream velocityy; 0
(To < 0) corresponds to opposing flowe, the buoyancy TagLE I. Numerical values off,,, (0, 7) for various values of/c
forces acts opposite to free stream velocit§)= lw/c is wheny = XA = § = 8 = 7 = 0 with Mahapatra and Gupta [11]
unsteady parameter (arises due to temperature oscillationsgnd Nazaet al. [12].

Pr= y/a is Prandtl numbeiSis the suction/injection param-

eter with S > 0 represents suction case afd< 0 is for a/c Ref. 11 Ref. 12 Present study
injection case. The quantities of physical interest are the skin  0-01 -0.998 -0.998
friction coefficientC'y and the local Nusselt numbeYu, 0.02 -0.9958 -0.9958
which are defined as: 0.05 -0.9876 -0.9876
l 0.1 -0.9694 -0.9694 -0.9694
Cp=—2,  Nu, = (12)
pV2 kTy 0.2 -0.9181 -0.9181 -0.9181
. . s 0.5 -0.6673 -0.6673 -0.6673
in which the wall skin friction ¢,,) and the wall heat fluxy,)
are 2 2.0175 2.0176 2.0175
9 aT 4.7293 4.7296 4.7294
Tw=pu 2 , o =—k|—=— (12) 5 11.7537 11.7524
or),._r or),._p
4 r 10 36.2687 36.2603
Using the transformation (5) the skin friction coefficient and 20 106.5744 106.5239
the local Nusselt number can be written as 50 430.6647 430.1501

1/2 —1/2
Rez/ Cr = f(0,7), Re: / Nu. = —0,(0,7). (13)  However, the values of the functions are replaced by its mean

value like
3. Numerical solution procedure )
n = — n T,
The nonlinear partial differential Eqgs. (7) and (8) subject to ( )j—1/2 2 <( i+ 1)
the boundary conditions (9) are solved by using an implicit fi-
nite difference second order accurate scheme known as Keller ( )7_1—1/2 _1 () ).
Box method. The detailed method has explained in the book J 2 J J

by Cebeci and Bradshaw [29]. The main steps are follows:
Step I: Egs. (8) and (9) are reduced into first order differ-and as a result, the nonlinear system of algebraic equations is

ential after letting obtained.
Step IlI: To handle the non-linearity of resulting system of

fn=U, U, =V, 0y, =Q algebraic equations, Newton’s linearization process is imple-

mented. Fofi + 1) iterations, we write for every unknown

as follows function f7*" = fi + 5/, we obtained the system of linear

9 o equations.

(1+2W)V"+27V+fv+(a/c) UG- BU-=0, Step IV: The obtained system of linear equations is solved
(1+2v)Qy +29Q + Pr(fQ — U6 — 36,) =0, by block tri-diagonal technique. The edge of boundary layer
thickness), is chosen according to the values of the param-
with boundary conditions eters. The iteration is continued for refinement in the solution
until we achieved the difference between two consecutive it-

f0,7)=25, U(,71)=1, erations is less thah0®. The employed technique is vali-

dated after comparing the numerical valueg,pf(0, 7) with
Mahapatra and Gupta [11] and Nazdral. [12] as shown

in Table I as a limiting case. Table Il gives the comparison
of —6,,(0, 7) with Ishaket al. [28] for limited cases. These
results are in good agreement that gives us a confidence in
accuracy of the employed numerical technique.

0(0,7) =1+esinT, 6(co,7)=0, U(oco,7)=a/c

Step II: The derivatives im andr-direction are replaced by
central differences at — 1/2 andn — 1/2 positions respec-
tively as follows

1
()" =<( )i — ( )?_1>,
/2 h 4. Results and Discussion
( );“1/2 = 1 (( )j = ( );?1) The non-linear partial differential Egs. (7-8) subject to the
k boundary conditions (9) are solved numerically using very

efficient implicit scheme known as Keller Box method for
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e=1,3=2Pr=1LA=10a/c=02,1=1H4

TaBLE II. Comparsion of-6,,(0, 7) for various values of and Pr v=0.0
wheny = a/c = S = 3 = e = 0 with Ishaket al. [29]. Y=02
=04
A Pr Ref. 29 Present study Y
0 0.01 0.0197 0.0198 >
0.72 0.8086 0.8086 S
1 1 1 ®
3 1.9237 1.9237
7 3.0723 3.0723
10 3.7207 3.7208 N
100 12.2941 12.3004 6 7
1 1.0873 1.0873 ) .
FIGURE 4. Temperature profile for various valuespatS = 0.5
1.1423 1.1423 (suction) andS = —0.5 (injection).
1.1853 1.1853

A=1,8=02¢e=1,p=2Pr=1y=02

a/c = 0.2

¥=02B=2¢e=1Pr=1
ale =10

a/c =12

1.2F

A= 1 (assisting case)

Y A ST A = —1 (opposing case)

8(nt)

o _
=4 a/c =1
“wF
a/c =0.8
4 5
3 3.5 4

FIGURE 5. Temperature profile for various value af ¢ at time

FIGURE 2. Velocity profile for A\ = 1 (assisting flow) and = —1 7 =0andr = /2.

(opposing flow). and amplitude of oscillation in temperatued.(The numeri-
cal results are computed in terms of velocity and temperature
; e=1,B=2Pr=0LA=1ac=021=1/4 profiles, skin friction coefficient and Nusselt number. Fig-
¥Y=0.0 ure 2 exhibits the velocity profile for different valuesaa/fc
y=02 for assisting case\(= 1) and opposing case\(= 1) at dif-
| Al ferent time steps levels-(= 0,7/4,7/2). Itis observed

that velocity increases for increasing values of timgil§ as-
sisting flow caseX = 1) and opposite behavior is observed
in opposing flow caseN = —1). This is due to the reason
that in assisting flow, buoyant force assist the flow and in op-
posing flow, buoyant force delays the flow. Figures 3 and 4
show the velocity and temperature profiles for various values
of curvature parameter) and suction/injection parameter
70 I (S). In Fig. 3, it is noted that the velocity profile decreases
near the surface of cylinder and increases far away from the
FIGURE 3. Velocity profile for different values ofy at.S = 0.5 surface with increase in curvature parametgif¢r both suc-
(suction) andS = —0.5 (injection). tion (S = 0.5) and injection § = —0.5) parameter. It is
also observed that in case of injectigh£ —0.5), the veloc-
various values of emerging dimensionless parameteridy and momentum boundary layer thickness become higher
namely, curvature parametet)( velocity ratio parameter as compare to suctior5(= 0.5). This is because injection
(a/c), mixed convection parameteX)( suction/injection pa- enhances the flow near the surface. In Fig. 4 for both values
rameter §), unsteadiness parametg)(Prandtl number (Pr) of suction/injection parametef], the temperature profile in-

fn (nt)
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§S=02¢e=1,p=2,Pr=1a/c=02,v=0.2 e=1al=02y=02Pr=1S=05A=]

A = 1 (assisting case)
"""""" A = —1 (opposing case)

1.5

0(nt)

T=0,t/4, /2

0.5¢

M 0 1 2 3 4 5 0
FIGURE 6. Temperature profile for various values-af FIGURE 9. Variation of skin friction coefficient against time for
different values of3.

e=1,p=2,Pr=1,5=0.5a/c=021=nA4
1 o e=1alkc=02,vy=02,Pr=1,85=05Ar=1
A = 0.5 (assisting case) dr

........... A = —0.5 (opposing case)

£, (n)

FIGURE 7. Velocity profile for various values of. FIGURE 10. Variation of local Nusselt number against time for
different values of3.
e=1,Bp=2Pr=18=05 a/c=021=pi/

1.6 A = 0.5 (assisting case) Or p=1 akc=02Y=02 Pr=15=054=1
........... A = —0.5 (opposing case) SN e=0.0 N
—0.2}4 N ’ LN
: K \ ——=--e=05 1 \
; : y
Y S e=10 [ Y
e —e=201 A
Q Ad A hd A
me_o.g- BN ,<_.’c [ .
VoS e el N7
[ b ) I! ‘_\
—-1.2} v / A i
1 7 \ [
A 3 7
—1.4} \ ,j \_\‘ ;
N ~.7
6 7 8 9 Ry . . . . . .
0 2 4 6 . 8 10 12
FIGURE 8. Temperature profile for various values-pf FIGURE 11. Variation of skin friction coefficient against time for

different values ot.
creases with increase in curvature of the cylinder. It is fur-
ther noted that, thermal boundary layer thickness can be irtime () for all values Ofa/c. It is further important to note
creased with increase in curvature parameigbth for in-  that the temperature profile decreases due to velocity ratio
jection/suction cases. Figure 5 demonstrates the effects qmrameterc(/c) and hence thermal boundary layer thickness
temperature profiles for various values of velocity ratio pa-become smaller for large values of velocity ratio parameter
rameter ¢/c) at different time step levels = 0 and7/2.  (a/c). In Fig. 6, the temperature profile increases within
The temperature profile increase with the increasing value ahe boundary layer for increasing time steps levels in both as-

Rev. Mex. Fis62 (2016) 290-298



NUMERICAL STUDY OF UNSTEADY MIXED CONVECTION STAGNATION POINT FLOW OVER A STRETCHING CYLINDER... 295

B=1 a/c=02,v=02Pr=15=05Mk=1

e=1Bp=1a/c=027y=025=05x%=1

T RN &= o —Pr=07 o~
N fN o--g=05 N PPN
4F ! \ 7 \ TtET
’.’ \ i FRERRENT e=1.0
3t % H Vo -£=20
=" R 1o :"\
QZ 2k - \\;,'\4 ‘1{),’ \\\“
5 S P ™~ pl
o R /._.'7 [N
< FO Y -
- \ T
0 ‘.\ I_’ [
iy N ’ ‘\ il
\(\' 'I * ~ /"
-2 il :
0 2 4 6 8 10 12 0 2 4 6 8 10 12
T T

o ] ] FIGURE 13. Variation of local Nusselt number against time for
FIGURE 12. Variation of local Nusselt number against time for gifterent values of Pr.

different values ot.

to increase in curvature parametesj.(In addition, momen-
sisting and opposing flow cases. In opposing flow case theim boundary layer augments in case)of= 0.5(assisting
thermal boundary layer thickness is larger as compared to afiow) in comparison withh = —0.5(opposing flow) but very
sisting flow case for all time steps levels £ 0,77/4,7r/2). little change is observed in momentum boundary layer for
Influence of curvature parametey)(on velocity and temper- X = 0.5 (assisting flow) and = —0.5(opposing flow) cases.
ature profile for (assisting flow) and (opposing flow) is shownFigures 9 and 10 illustrate the variations in skin friction co-
in Figs. 7 and 8, respectively. As curvature parametgin-  efficient and Nusselt number against timeg for different
creases the surface of cylinder squeezes due to which surfagalues of unsteadiness paramet&). (Due to sinusoidal na-
area reduces. As a result velocity of the fluid increases withiure of temperature, the amplitude of skin friction enhanced
increase in curvature parametej.(Similarly temperature of  with backward phase shift against time) (vith increase in
the fluid also enhances within the boundary layer region duensteadiness parameté) ( Figures 11 and 12 show the val-

8:],B=],a/620.2,520.5,K:],Pr:]

S\

(d)

N \\\

0 2

T

FIGURE 14. Isotherms for different values of curvature parameter
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Y= 0.2,[3:], d/c:O,Z,S:O.j’K:]’ Pr=1
3
e=0 (@) £=05 (b)

2 2
=y =y
= / ]
0 7 4 6 0 2 1 6
T T

FIGURE 15. Isotherms for different values of amplitude of temperature oscillations

ues of skin friction and Nusselt number against for dif-  ture is reported. The governing partial differential equations
ferent values ofd). It is noted that amplitude of oscillations are transformed into dimensionless form. The obtained par-
in the values of skin friction and Nusselt number increasedial differential equations are solved by an efficient and accu-
with increase inq). It is also perceived that as the values rate finite difference scheme known as Keller box method. It
of (¢) drop, the amplitude of oscillations in skin friction and is noted that the assisting buoyant flow increases the veloc-
Nusselt number also diminish fo¢ & 0), the case of con- ity profile and opposing buoyant flow decreases the velocity
stant surface temperature is recovered. The effect of Prandtrofile. It is apparent that as the amplitude of temperature
number (Pr) on heat transfer rate is observed in Fig. 13. Thescillation drop, the amplitude of oscillations in skin friction
heat transfer rate enhances due to increase in Prandtl numtsard Nusselt number also diminish. The heat transfer rate in-
(Pr) and amplitude of oscillation become larger for large val-creases due to increase in Prandtl number and amplitude of
ues of Prandtl number (Pr) against timg.(Figures 14 and oscillation also increases with passage of time. Most impor-
15 demonstrate the isotherms for curvature paramejand  tantly, this phenomenon of maximizing heat transfer near the
amplitude of temperature oscillationg.(Due to increase in  stagnation point flow over a stretching cylinder can be en-
curvature parametety] and amplitude of temperature oscil- hanced by introducing the sinusoidal heat at the surface of
lations €), a pattern of increasing behavior in sinusoidal na-the cylinder.

ture of isotherms is clearly visible. Table Il is constructed to

exhibit the behavior of sundry parameters on skin friction co-

efficient (Rel/*>C;) and local Nusselt numbeRe; /> Nu.,).

It is important to mention that negative values of local Nus-

selt number represent that heat is transferred from surface of

cylinder to the fluid.

5. Conclusion

In this paper, unsteady mixed convection stagnation point
flow due to stretching cylinder with sinusoidal wall tempera-
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TABLE Il Values ofRel/*C; and (Re: '/* Nu.) for various parameter/c, v, A, ¢, 3, S and Pr.

Re! 2Cf, (Rez_l/ZNuz)

Pr 5 alc A 15 € S
/ t=0 t=m/4 /2 t=m
0.7 0 0 1 1 1 0.5 -0.7657 -0.5798 -0.3786 -0.6515
0.2 1 -0.8034 -0.5861 -0.411 -0.6803
' (1.1508) (2.3036) (2.4750) (0.8097)
0.2 -0.714 -0.4985 -0.328 -0.6007
(1.1857) (2.3446) (2.5236) (0.8530)
0 -0.2075 -1.2075 -1.2075 -1.2075
(1.1158) (2.2353) (2.3479) (0.7137)
15 -0.2075 -1.2075 -1.2075 -1.2075
' (1.1158) (2.3632) (2.418) (0.5696)
15 -0.2075 -1.2075 -1.2075 -1.2075
' (1.1158) (2.987) (3.0691) (0.2965)
10 1 -1.7312 -1.9999 -2.278 -2.1029
(1.3039) (3.529) (3.5352) (0.1079)
04 -1.8222 -2.0928 -2.3769 -2.2172
' (1.3628) (3.6805) (3.7137) (0.1349)
1 -0.3432 -0.5936 -0.8064 -0.4937
(1.7024) (4.1352) (4.3674) (0.8606)
2 -0.3432 -0.5706 -0.7776 -0.5163
(1.7024) (4.3265) (4.4671) (0.6346)
5 -0.3432 -0.6465 -0.9241 -0.5777
(1.7024) (5.1987) (5.3753) (0.2686)
7 15 05 0.353 0.6352 0.899 0.5762
' (1.977) (7.683) (6.9611) (-1.4708)
06 0.3526 0.6346 0.8982 0.5761
' (2.0626) (7.8986) (7.2232) (-1.3965)
12 0.6807 0.9606 1.2176 0.8896
(2.1204) (7.9825) (7.3444) (-1.2899)
Nomenclature Tw Temperature at the surface of cylinder
Dimensionless constant Too Ambient fluid temperature
a‘7 c . .
R Radius of cvlinder u Radial velocity component
s Y - Ve Free stream velocity
Cy Skin friction coefficient . . .
- V Stretching velocity of cylinder
Cp specific heat at constant pressure . .
) ) ; v Axial velocity component
f Dimensionless stream function . .
o _ z Axial coordinate
k Thermal conductivity of fluid Greek symbols
reference length 16 Unsteady parameter
Nus Nusselt number Bt Thermal expansion coefficient
p Pressure v Transverse curvature
Pr Prandtl number € Amplitude of temperature oscillation
cp specific heat at constant pressure n Similarity variable
qu Surface heat flux 0 Dimensionless temperature
Re, Local Reynolds number v Kinematic Viscosi[y
r Radial coordinate i Dynamic viscosity
T Fluid temperature
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T Time

Tw Surface shear stress

p Density
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