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Numerical study of unsteady mixed convection stagnation point flow over a
stretching cylinder with sinusoidal surface temperature
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The paper provides the analysis of unsteady two-dimensional mixed convection stagnation point flow over a vertical stretching cylinder
with sinusoidal wall temperature. The governing partial differential equations are converted into dimensionless form by using suitable
transformations. For the numerical solution of dimensionless partial differential equations, an implicit finite difference scheme namely
Keller Box method is applied. The comparison is made to show the accuracy of our results with literature for some special cases. Graphs of
velocity and temperature profiles are plotted for assisting and opposing flow cases at fixed value of time. The assisting buoyant flow augment
the momentum boundary layer while opposing buoyant flow show opposite behavior. The thermal boundary layer thickness grows with the
passage of time. Skin friction and Nusselt number are plotted for unsteadiness parameter and amplitude of surface temperature oscillations
against time. It is apparent that as the values of surface temperature oscillations drops, the amplitude of oscillations in skin friction and
Nusselt number also drops. Furthermore, isotherms are drawn to exhibit the influence of the amplitude of oscillations on curvature parameter
with time.
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1. Introduction

The stagnation point encounters highest pressure, enhance-
ment of heat transfer and rate of mass deposition. Some
practical examples are cooling of electronic devices by fans,
cooling of nuclear reactors during emergency shutdown, heat
exchangers placed in a low velocity environment, solar cen-
tral receivers exposed to wind current and many others [1].
Due to these aspects, the study of stagnation point flow and
heat transfer has attracted many researchers and engineers.
Hiemenz [2] initiated the study of two dimensional stagna-
tion point flow over a stationary flat plate. He transformed the
Navier-Stokes equations into ordinary differential equations
by using similarity transformations and provided the exact
solution of the nonlinear differential equations. Homann [3]
extended this work to three dimensional problem of axisym-
metric stagnation-point flow. Schlichting and Bussmann [4]
provided numerical solution of Hiemenz problem and Eck-
ert [5] also extended the work of Heimenz [2] by incorporat-
ing heat transfer rate in the stagnation point flow. Ariel [6]
obtained the analytical solution by introducing suction in
flow field. Stagnation point flow over moving surfaces is
also significant in practical purposes including paper produc-
tion, the spinning of fibres, glass blowing, continuous metal
casting [7], manufacturing of sheeting material through ex-
trusion process especially in the polymer extrusion in a melt
spinning process, aerodynamic extrusion of plastic sheets [8]
etc. Chiam [9] investigated two-dimensional stagnation point
flow of a viscous fluid over a linear stretching surface. He
considered the situation where stretching velocity is equal to

straining (free stream) velocity and concluded that no bound-
ary layer exist in this case. Contrary to the Chiam [9], Ma-
hapatra and Gupta in [10,11], analysed the effects of magne-
tohydrodynamics and heat transfer respectively, in the region
of stagnation point flow towards a stretching surface. They
showed that the boundary layer is formed whena/c > 1 (ra-
tio of straining to stretching velocity) and inverted bound-
ary layer is emerge whena/c < 1. Unsteady analysis of
flow over a stretching sheet is reported by Nazaret al., [12].
Recently, Mustafaet al. [13], Bhattacharyyaet al., [14],
Sharma and Singh [15], Bhattacharyyaet al., [16], and Javed
et al., [17] reported the investigations on the stagnation point
flow over linear and non-linear stretching/shrinking sheets in
different aspects. Wang [18] did the pioneering work and
investigated the fluid flow due to stretching cylinder. Ishak
et al. [19,20] extended the work of Wang [18] by includ-
ing the heat transfer effects due to impermeable stretching
cylinder by considering suction and injection cases. They
produced numerical and perturbation solutions of the flow
problem. Inspired by previous work, many researchers per-
formed their analysis over stretching cylinder with Newto-
nian and non-Newtonian fluids [21-27] and incorporating in-
numerable physical configurations. In all aforementioned
studies, the investigations carried out with temporally con-
stant surface condition and the transient development of flow
and heat transfer over stretching cylinder is not extensively
studied. Merkin [28] stated that the value of surface temper-
ature does not remains constant, it often fluctuate about some
mean value. The influence of time dependent oscillations in
surface conditions has received very little attention to date.
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FIGURE 1. Physical Model of the problem.

The aim of this paper is to study the unsteady mixed convec-
tion stagnation point flow over a cylinder with sinusoidal time
dependent wall temperature. Graphs for velocity and temper-
ature profiles, skin friction coefficient, Nusselt number and
isotherms are plotted for various governing parameters.

2. Problem formulation

We consider two dimensional unsteady laminar boundary
layer fluid flow near the stagnation point over a cylinder as
shown in Fig. 1. The cylinder is of radius r is permeable and
continuously stretching with velocityVw(z) along its own
axis. To investigate the analysis, a cylindrical coordinate sys-
tem is considered as such that thez-axis is taken along the
axis of the cylinder and ther-axis is in the radial direction. It
is assumed that the stretching (Vw) and straining (Ve) veloc-
ities are proportional to distancez from the stagnation point
i.e., Vw = cz

/
l and Ve = az

/
l. The temperature at the

surface of cylinder(Tw) is considered to be sinusoidal and
the ambient fluid temperature isT∞ such that (Tw > T∞).
The unsteady boundary layer equations with Boussinesq ap-
proximation and viscous dissipation for continuity, momen-
tum and energy equations are given by

∂(rv)
∂z

+
∂(ru)

∂r
= 0, (1)
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The boundary conditions of the assumed flow are

v = Vw =
cz

l
, u = U0,

T = Tw(z) = T∞

+ T0

(z

l

)
(1 + ε sin ωt) at r = R,

v → Ve =
az

l
, T → T∞ as r →∞. (4)

whereu andv are the velocity components alongr andz di-
rections, respectively,T is the temperature of the fluid within
the boundary layer,ν is the kinematic viscosity,g is the ac-
celeration due to gravity,βt is the thermal expansion coeffi-
cient,α is the thermal diffusivity,µ is the dynamic viscosity
of fluid, ρ is the fluid density,cp is the specific heat constant,
U0 is the mass flux velocity,T0 is some temperature scale,t
is the time,ε is the amplitude of surface temperature oscilla-
tion andω is the frequency of the oscillation. Introducing the
following non-dimensional variables

η =
r2 −R2

2R

√
c

νl
, ψ =

√
νc

l
zRf(η, τ), τ

= ωt, T = T∞ + T0

(z

l

)
θ(η, τ) (5)

In which, η is the similarity variable,ψ is the stream func-
tion defined asu = r−1∂ψ

/
∂r andv = −r−1∂ψ

/
∂z which

identically satisfies Eq. (1),f(η, τ) is the dimensionless
function andθ(η, τ) is the dimensionless temperature field.
From relation (5), we obtain

u = −R

r

√
νc

l
f(η, τ), and v =

cz

l
fη(η, τ) (6)

Substituting Eqs. (5) and (6) into Eqs. (2) and (3), we get the
following dimensionless system of partial differential equa-
tions

(1 + 2γη)fηηη + 2γfηη + ffηη

+
(a

c

)2

− f2
η + λθ − βfητ = 0 (7)

(1 + 2γη)θηη + 2γθη + Pr(fθη − fηθ − βθτ ) = 0 (8)

The boundary conditions in Eq. (4) become

η = 0 : f(η, τ) = S,

fη(η, τ) = 1, θ(η, τ) = 1 + ε sin τ, (9)

η →∞ : θ(η, τ) = 0, fη(η, τ) =
a

c
, (10)

where γ =
√

νl
/
cR2 is curvature parameter,a

/
c is

the ratio of straining (free stream) to stretching veloci-
ties, λ = Grz

/
Re2

z is the mixed convection parameter
(Grz = gβtT0z

4
/
lν2) and (Rez = cz2

/
lν). It is impor-

tant to note thatλ = 0 corresponds to forced convection
flow, λ > 0 (T0 > 0) corresponds to assisting flow (i.e., the
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buoyancy forces acts parallel to free stream velocity),λ < 0
(T0 < 0) corresponds to opposing flow (i.e., the buoyancy
forces acts opposite to free stream velocity),β = lω

/
c is

unsteady parameter (arises due to temperature oscillations),
Pr= ν

/
α is Prandtl number,S is the suction/injection param-

eter withS > 0 represents suction case andS < 0 is for
injection case. The quantities of physical interest are the skin
friction coefficientCf and the local Nusselt numberNuz

which are defined as:

Cf =
τw

ρV 2
w

, Nuz =
qwl

kT0
(11)

in which the wall skin friction (τw) and the wall heat flux (qw)
are

τw = µ

(
∂v

∂r

)

r=R

, qw = −k

(
∂T

∂r

)

r=R

(12)

Using the transformation (5) the skin friction coefficient and
the local Nusselt number can be written as

Re
1
/

2
z Cf = fηη(0, τ), Re

−1
/

2
z Nuz = −θη(0, τ). (13)

3. Numerical solution procedure

The nonlinear partial differential Eqs. (7) and (8) subject to
the boundary conditions (9) are solved by using an implicit fi-
nite difference second order accurate scheme known as Keller
Box method. The detailed method has explained in the book
by Cebeci and Bradshaw [29]. The main steps are follows:

Step I: Eqs. (8) and (9) are reduced into first order differ-
ential after letting

fη = U, Uη = V, θη = Q

as follows

(1+2γη)Vη+2γV +fV +(a
/
c)2+U2+λθ−βUτ=0,

(1 + 2γη)Qη + 2γQ + Pr(fQ− Uθ − βθτ ) = 0,

with boundary conditions

f(0, τ) = S, U(0, τ) = 1,

θ(0, τ) = 1 + ε sin τ, θ(∞, τ) = 0, U(∞, τ) = a
/
c

Step II: The derivatives inη andτ -direction are replaced by
central differences atj − 1

/
2 andn− 1

/
2 positions respec-

tively as follows

( )n

j−1
/

2
=

1
h

(
( )n

j − ( )n
j−1

)
,

( )
n−1

/
2

j =
1
k

(
( )n

j − ( )n−1
j

)
.

TABLE I. Numerical values offηη(0, τ) for various values ofa/c
whenγ = λ = S = β = τ = 0 with Mahapatra and Gupta [11]
and Nazaret al. [12].

a/c Ref. 11 Ref. 12 Present study

0.01 -0.998 -0.998

0.02 -0.9958 -0.9958

0.05 -0.9876 -0.9876

0.1 -0.9694 -0.9694 -0.9694

0.2 -0.9181 -0.9181 -0.9181

0.5 -0.6673 -0.6673 -0.6673

2 2.0175 2.0176 2.0175

3 4.7293 4.7296 4.7294

5 11.7537 11.7524

10 36.2687 36.2603

20 106.5744 106.5239

50 430.6647 430.1501

However, the values of the functions are replaced by its mean
value like

( )n

j−1
/

2
=

1
2

(
( )n

j + ( )n
j−1

)
,

( )
n−1

/
2

j =
1
2

(
( )n

j + ( )n−1
j

)
.

and as a result, the nonlinear system of algebraic equations is
obtained.

Step III: To handle the non-linearity of resulting system of
algebraic equations, Newton’s linearization process is imple-
mented. For(i+1)th iterations, we write for every unknown
functionf i+1

j = f i
j + δf i

j , we obtained the system of linear
equations.

Step IV: The obtained system of linear equations is solved
by block tri-diagonal technique. The edge of boundary layer
thicknessη∞ is chosen according to the values of the param-
eters. The iteration is continued for refinement in the solution
until we achieved the difference between two consecutive it-
erations is less than106. The employed technique is vali-
dated after comparing the numerical values offηη(0, τ) with
Mahapatra and Gupta [11] and Nazaret al. [12] as shown
in Table I as a limiting case. Table II gives the comparison
of −θη(0, τ) with Ishaket al. [28] for limited cases. These
results are in good agreement that gives us a confidence in
accuracy of the employed numerical technique.

4. Results and Discussion

The non-linear partial differential Eqs. (7-8) subject to the
boundary conditions (9) are solved numerically using very
efficient implicit scheme known as Keller Box method for
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TABLE II. Comparsion of−θη(0, τ) for various values ofλ and Pr
whenγ = a

/
c = S = β = ε = 0 with Ishaket al. [29].

λ Pr Ref. 29 Present study

0 0.01 0.0197 0.0198

0.72 0.8086 0.8086

1 1 1

3 1.9237 1.9237

7 3.0723 3.0723

10 3.7207 3.7208

100 12.2941 12.3004

1 1 1.0873 1.0873

2 1.1423 1.1423

3 1.1853 1.1853

FIGURE 2. Velocity profile forλ = 1 (assisting flow) andλ = −1

(opposing flow).

FIGURE 3. Velocity profile for different values ofγ at S = 0.5

(suction) andS = −0.5 (injection).

various values of emerging dimensionless parameters
namely, curvature parameter (γ), velocity ratio parameter
(a/c), mixed convection parameter (λ), suction/injection pa-
rameter (S), unsteadiness parameter (β), Prandtl number (Pr)

FIGURE 4. Temperature profile for various values ofγ atS = 0.5

(suction) andS = −0.5 (injection).

FIGURE 5. Temperature profile for various value ofa/c at time
τ = 0 andτ = π/2.

and amplitude of oscillation in temperature (ε). The numeri-
cal results are computed in terms of velocity and temperature
profiles, skin friction coefficient and Nusselt number. Fig-
ure 2 exhibits the velocity profile for different values ofa

/
c

for assisting case (λ = 1) and opposing case (λ = 1) at dif-
ferent time steps levels (τ = 0, π

/
4, π

/
2 ). It is observed

that velocity increases for increasing values of time (τ ) in as-
sisting flow case (λ = 1) and opposite behavior is observed
in opposing flow case (λ = −1). This is due to the reason
that in assisting flow, buoyant force assist the flow and in op-
posing flow, buoyant force delays the flow. Figures 3 and 4
show the velocity and temperature profiles for various values
of curvature parameter (γ) and suction/injection parameter
(S). In Fig. 3, it is noted that the velocity profile decreases
near the surface of cylinder and increases far away from the
surface with increase in curvature parameter (γ) for both suc-
tion (S = 0.5) and injection (S = −0.5) parameter. It is
also observed that in case of injection (S = −0.5), the veloc-
ity and momentum boundary layer thickness become higher
as compare to suction (S = 0.5). This is because injection
enhances the flow near the surface. In Fig. 4 for both values
of suction/injection parameter (S), the temperature profile in-
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FIGURE 6. Temperature profile for various values ofτ .

FIGURE 7. Velocity profile for various values ofγ.

FIGURE 8. Temperature profile for various values ofγ.

creases with increase in curvature of the cylinder. It is fur-
ther noted that, thermal boundary layer thickness can be in-
creased with increase in curvature parameter (γ) both for in-
jection/suction cases. Figure 5 demonstrates the effects on
temperature profiles for various values of velocity ratio pa-
rameter (a

/
c) at different time step levelsτ = 0 andπ

/
2.

The temperature profile increase with the increasing value of

FIGURE 9. Variation of skin friction coefficient against time for
different values ofβ.

FIGURE 10. Variation of local Nusselt number against time for
different values ofβ.

FIGURE 11. Variation of skin friction coefficient against time for
different values ofε.

time (τ ) for all values ofa
/
c. It is further important to note

that the temperature profile decreases due to velocity ratio
parameter (a

/
c) and hence thermal boundary layer thickness

become smaller for large values of velocity ratio parameter
(a

/
c). In Fig. 6, the temperature profile increases within

the boundary layer for increasing time steps levels in both as-

Rev. Mex. Fis.62 (2016) 290–298
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FIGURE 12. Variation of local Nusselt number against time for
different values ofε.

sisting and opposing flow cases. In opposing flow case the
thermal boundary layer thickness is larger as compared to as-
sisting flow case for all time steps levels (τ = 0, π

/
4, π

/
2).

Influence of curvature parameter (γ) on velocity and temper-
ature profile for (assisting flow) and (opposing flow) is shown
in Figs. 7 and 8, respectively. As curvature parameter (γ) in-
creases the surface of cylinder squeezes due to which surface
area reduces. As a result velocity of the fluid increases with
increase in curvature parameter (γ). Similarly temperature of
the fluid also enhances within the boundary layer region due

FIGURE 13. Variation of local Nusselt number against time for
different values of Pr.

to increase in curvature parameter (γ). In addition, momen-
tum boundary layer augments in case ofλ = 0.5(assisting
flow) in comparison withλ = −0.5(opposing flow) but very
little change is observed in momentum boundary layer for
λ = 0.5 (assisting flow) andλ = −0.5(opposing flow) cases.
Figures 9 and 10 illustrate the variations in skin friction co-
efficient and Nusselt number against time (τ ) for different
values of unsteadiness parameter (β). Due to sinusoidal na-
ture of temperature, the amplitude of skin friction enhanced
with backward phase shift against time (τ ) with increase in
unsteadiness parameter (β). Figures 11 and 12 show the val-

FIGURE 14. Isotherms for different values of curvature parameterγ.
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FIGURE 15. Isotherms for different values of amplitude of temperature oscillationsε.

ues of skin friction and Nusselt number against (τ ) for dif-
ferent values of (ε). It is noted that amplitude of oscillations
in the values of skin friction and Nusselt number increases
with increase in (ε). It is also perceived that as the values
of (ε) drop, the amplitude of oscillations in skin friction and
Nusselt number also diminish for (ε = 0), the case of con-
stant surface temperature is recovered. The effect of Prandtl
number (Pr) on heat transfer rate is observed in Fig. 13. The
heat transfer rate enhances due to increase in Prandtl number
(Pr) and amplitude of oscillation become larger for large val-
ues of Prandtl number (Pr) against time (τ ). Figures 14 and
15 demonstrate the isotherms for curvature parameter (γ) and
amplitude of temperature oscillations (ε). Due to increase in
curvature parameter (γ) and amplitude of temperature oscil-
lations (ε), a pattern of increasing behavior in sinusoidal na-
ture of isotherms is clearly visible. Table III is constructed to
exhibit the behavior of sundry parameters on skin friction co-
efficient (Re

1/2
z Cf ) and local Nusselt number (Re

−1/2
z Nuz).

It is important to mention that negative values of local Nus-
selt number represent that heat is transferred from surface of
cylinder to the fluid.

5. Conclusion

In this paper, unsteady mixed convection stagnation point
flow due to stretching cylinder with sinusoidal wall tempera-

ture is reported. The governing partial differential equations
are transformed into dimensionless form. The obtained par-
tial differential equations are solved by an efficient and accu-
rate finite difference scheme known as Keller box method. It
is noted that the assisting buoyant flow increases the veloc-
ity profile and opposing buoyant flow decreases the velocity
profile. It is apparent that as the amplitude of temperature
oscillation drop, the amplitude of oscillations in skin friction
and Nusselt number also diminish. The heat transfer rate in-
creases due to increase in Prandtl number and amplitude of
oscillation also increases with passage of time. Most impor-
tantly, this phenomenon of maximizing heat transfer near the
stagnation point flow over a stretching cylinder can be en-
hanced by introducing the sinusoidal heat at the surface of
the cylinder.
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TABLE III. Values ofRe
1/2
z Cf and (Re

−1/2
z Nuz) for various parametera

/
c, γ, λ, ε, β, S and Pr.

Pr γ a/c λ β ε S
Re

1/2
z Cf , (Re

−1/2
z Nuz)

t = 0 t = π/4 π/2 t = π

0.7 0 0 1 1 1 0.5 -0.7657 -0.5798 -0.3786 -0.6515

0.2 1
-0.8034 -0.5861 -0.411 -0.6803

(1.1508) (2.3036) (2.4750) (0.8097)

0.2
-0.714 -0.4985 -0.328 -0.6007

(1.1857) (2.3446) (2.5236) (0.8530)

0
-0.2075 -1.2075 -1.2075 -1.2075

(1.1158) (2.2353) (2.3479) (0.7137)

1.5
-0.2075 -1.2075 -1.2075 -1.2075

(1.1158) (2.3632) (2.418) (0.5696)

1.5
-0.2075 -1.2075 -1.2075 -1.2075

(1.1158) (2.987) (3.0691) (0.2965)

1.0 -1
-1.7312 -1.9999 -2.278 -2.1029

(1.3039) (3.529) (3.5352) (0.1079)

0.4
-1.8222 -2.0928 -2.3769 -2.2172

(1.3628) (3.6805) (3.7137) (0.1349)

1
-0.3432 -0.5936 -0.8064 -0.4937

(1.7024) (4.1352) (4.3674) (0.8606)

2
-0.3432 -0.5706 -0.7776 -0.5163

(1.7024) (4.3265) (4.4671) (0.6346)

2
-0.3432 -0.6465 -0.9241 -0.5777

(1.7024) (5.1987) (5.3753) (0.2686)

7 1.5 -0.5
0.353 0.6352 0.899 0.5762

(1.977) (7.683) (6.9611) (-1.4708)

0.6
0.3526 0.6346 0.8982 0.5761

(2.0626) (7.8986) (7.2232) (-1.3965)

1.2
0.6807 0.9606 1.2176 0.8896

(2.1204) (7.9825) (7.3444) (-1.2899)

Nomenclature

a, c Dimensionless constant

R Radius of cylinder

Cf Skin friction coefficient

cp specific heat at constant pressure

f Dimensionless stream function

k Thermal conductivity of fluid

l reference length

Nuz Nusselt number

p Pressure

Pr Prandtl number

cp specific heat at constant pressure

qw Surface heat flux

Rez Local Reynolds number

r Radial coordinate

T Fluid temperature

Tw Temperature at the surface of cylinder

T∞ Ambient fluid temperature

u Radial velocity component

Ve Free stream velocity

Vw Stretching velocity of cylinder

v Axial velocity component

z Axial coordinate

Greek symbols

β Unsteady parameter

βt Thermal expansion coefficient

γ Transverse curvature

ε Amplitude of temperature oscillation

η Similarity variable

θ Dimensionless temperature

ν Kinematic viscosity

µ Dynamic viscosity
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τ Time

τw Surface shear stress

ρ Density

ψ Stream function
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w Conditions at the surface

∞ Conditions at infinity

1. G.I. Burde, J. Fluids Eng.117(1995) 189-191.

2. K. Heimenz,Dinglers Polytechn J.326(1911) 321-324.

3. F. Homann,Z. Angew. Math. Mech.16 (1936) 153-164.

4. H. Schlichting, and K. Bussmann,Luftfahrtforschung, Ser. B,7
(1943) 25.

5. E.R.G. Eckert,VDI-Forschungsheft,416(1942) 1-24.

6. P.D. Ariel,J. Appl. Mech.61 (1994) 976-978.

7. T. Altan, S. Oh, and H. Gegel,Metal Forming Fundamentals
and ApplicationsAmerican Society of Metals, (Metals Park,
Michigan, USA, 1979).

8. E.G. Fisher,Extrusion of Plastics(Wiley, New York, USA,
1976).

9. T.C. Chiam,J. Phys. Soc. Jpn.63 (1994) 2443-2455.

10. T. R. Mahapatra, and A.S. Gupta,Acta Mechanica152 (2001)
191-196

11. T. R. Mahapatra, and A.S. Gupta,Heat Mass Transfer38
(2002) 517-521.

12. R. Nazar, N. Amin, D. Filip, and I. Pop,Int. J. Eng. Science42
(2004) 1241-1253.

13. M. Mustafaa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat,Int.
J. Heat Mass Transfer54 (2011) 255588-5594.

14. K. Bhattacharyya, S. Mukhopadhyay, and G.C. Layek,Int. J.
Heat and Mass Transfer54 (2011) 308-313.

15. P.R. Sharma, and G. Singh,Journal of Applied fluid mechanics
2 (2009) 13-21.

16. K. Bhattacharyya, and K. Vajravelu,Commun. Nonlinear Sci.
Num. Simulation,17 (2012) 2728-2734.

17. T. Javed, A. Ghaffari, and H. Ahmad,Canadian Journal of
Physics93 (2015) 1138-1143.

18. C.Y. Wang,Physics of Fluids31 (1988) 466-468.

19. A. Ishak, R. Nazar, and Ioan Pop,Convers Manage49 (2008)
3265-3269.

20. A. Ishak, R. Nazar, and Ioan Pop,Applied Mathematical Mod-
elling, 32 (2008) 2059-2066.

21. S. Mukhopadhyay,Journal of Petroleum Science and Engineer-
ing 96 (2012) 73-78.

22. Z. Abbas, A. Majeed, and T. Javed,Heat Transfer Research44
(2013) 703-718.

23. N. Bachok, and A. Ishak,Malaysian J. Mathematical Sci.,4
(2010) 159-169.

24. H. R. Ashorynejad, H. R. Ashorynejad, M. Sheikholeslami, I.
Pop, and D.D. Ganji,Heat and Mass Transfer,49 (2013) 427-
436.

25. T. Javed, I. Mustafa,Asia-Pacific J. Chem. Eng.10 (2015) 184-
192.

26. A. Majeed, T. Javed, A. Ghaffari, and M. M. Rashidi,Alexan-
dria Engineering Journal54 (2015) 1029-1036.

27. T. Javed, A. Majeed, and I. Mustafa,Rev. Mex. Fis.61 (2015)
450-457.

28. J. H. Merkin and I. Pop,Int. J. Heat and Mass Transfer43
(2000) 611-621.

29. A. Ishak, R. Nazar, and I. Pop,Meccanica44 (2009) 369-375.

30. T. Cebeci and P. Bradshaw,Physical and Computational As-
pects of Convective Heat Transfer,Springer New York (1984).

Rev. Mex. Fis.62 (2016) 290–298


