RESEARCH Revista Mexicana désica62 (2016) 310-316 JULY-AUGUST 2016

The Feng’s first integral method applied to the nonlinear mKdV space-time
fractional partial differential equation

H. Yépez-Marinez, J.F. ®mez-Aguilat*, 1.O. Sos4, J.M. Reye$, and J. Torres-Jigne#
2Universidad Aubnoma de la Ciudad de &kico,

Prolongacbn San Isidro 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, P.O. Box 09¥0d\D.F., Mexico.
bCentro Nacional de Investigamn y Desarrollo Tecndlgico, Tecnddgico Nacional de Mxico,
Interior Internado Palmira S/N, Col. Palmira, 62490, Cuernavaca, Morelogxigb.
°Profesor de la Maesta en Ingeniela Eléctrica, Instituto Tecndlgico Superior de Irapuato,
Carretera Irapuato-Silao km 12.5 Colonia El Copal. Irapuato, Guanajuatéxido.

*e-mail: jgomez@cenidet.edu.mx

Received 13 January 2016; accepted 4 April 2016

In this paper, the fractional derivatives in the sense of the modified Riemann-Liouville derivative and the Feng’s first integral method are
employed for solving the important nonlinear coupled space-time fractional mKdV partial differential equation, this approach provides new
exact solutions through establishing first integrals of the mKdV equation. The present method is efficient, reliable, and it can be used as an
alternative to establish new solutions of different types of fractional differential equations applied in mathematical physics.
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1. Introduction using the division theorem. This method in comparison with
other methods has many advantages; it avoids a great deal of
Fractional differential equations are generalizations of classicomplicated and tedious calculation and provides exact and
cal differential equations of integer order. In recent years€Xplicit traveling solutions with high accuracy. The Feng’s
nonlinear fractional differential equations (NFDEs) havefirst integral method [22-25] can be used to construct the ex-
gained considerable interest. It is caused by the developme@€t solutions for some time fractional differential equations.
of the theory of fractional calculus itself but also by their ap- Among the nonlinear PDEs there are some important
plications in various sciences such in physics, biology, engiexamples of fundamental interest in mathematical-physical
neering, signal processing, system identification, control themodels. For example, some types of coupled Korteweg de-
ory, finance and fractional dynamics and others areas [1-9)ries (KdV). The coupled KdV equation describes, in a gen-
A special class of analytical solutions, the so-called traveleral form, competition between the weak nonlinearity and the
ing waves for nonlinear fractional partial differential equa-weak dispersion in many physical systems. Since the first
tions (NFPDES), is of fundamental importance because se\coupled KdV system was presented by Hirota and Satsuma
eral physical models are often described by such wave phen 1981 [26] and have been carefully studied in Refs. [2]7
nomena. However, not all NFPDEs are solvable. As a resuliand [28]. Some important coupled KdV models have been
recently new techniques have been successfully developgstoposed [29-30]. In Ref. [31] the authors have introduced
to construct new solutions for fractional nonlinear partiala 4 x 4 matrix spectral problem with three potentials for the
differential equations of physical interest, such as the AdoHirota-Satsuma coupled KdV equation by which the coupled
mian decomposition method [10-11], the variational itera-modified Korteweg de-Vries (mKdV) equation was obtained
tion method [14-15], the homotopy analysis method [12-13],as a new integrable generalization of the Hirota-Satsuma cou-
the homotopy perturbation method [16-17], the Lagrangeled KdV equation. In general the KdV coupled equation de-
characteristic method [16-17], the fractional sub-equationscribes the interaction between two long waves with different
method [19], and so on. dispersion relations. It is a non-linear equation that exhibits
In Ref. [20], Jumarie proposed a modified Riemann-special solutions, known as solitons, which are stable and do
Liouville derivative. With this kind of fractional derivative not disperse with time [26].
and some useful formulas, we can convert fractional differ-  some kinds of coupled KdV equations have also been

ential equations into integer-order differential equations byintroduced in the literature, as a model describing two res-
variable transformation. onantly interacting normal modes of internal-gravity-wave
Feng [21] has introduced a reliable and effective methodnotion in a shallow stratified liquid [32-33]. In princi-
called the Feng’s first integral method to look for traveling ple, many of other coupled KdV equations are introduced
wave solutions of NFPDEs. The basic idea of this methodnathematically because of their integrability [34]. Recently,
is to construct a first integral with polynomial coefficients by some quite general coupled KdV equations have been derived
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in real physical areas, such as in two-layer fluid of atmo-method is presented, in Sec. 3 we present the applications and
spheric dynamical system [35] and in a two-component Bosegive conclusions in Sec. 4.
Einstein condensate [36]. A quite general coupled mKdV
equation in a two-layer fluid system has been used to describe
the atmospheric and oceanic phenomena, and it has been de-
rived by using the reductive perturbation method [37]. 2. The Modified Riemann-Liouville Derivative
The present work investigates the applicability and ef- and the Feng's First Integral Method
fectiveness of the Feng’s first integral method to obtain new

exact analytical solutions for the nonlinear space-time frac- . . . .
y P In this section we present the main ideas of the Feng’s first

tional coupled mKdV equation [31], which has been ana-. . . ) i
lyzed applying the sub-equation method in the integer Ordeg]tegral method. This method considers the Jumarie modi-

imit case, called the extended tanh-funcion method [38-40]1e0 Riemann-Liouvile fractional derivative of order we
We will show that the Feng's first integral method allows St give some CEtinitions and properties of the modite

to obtain new analytical solutions for the mKdV space—time&/frr;ann'L'OUV'”e derivative which are used further in this
fractional partial differential equation, that have not been ob- :

tained in previous works [41-43]. Assume thatf: R — R, x — f(x) denotes a continu-
The paper is structured as follows, in Sec. 2 the modifiedPus (but not necessarily differentiable) function. The Jumarie

Riemann-Liouville derivative and the Feng's f“stintegra|rn0dmed Riemann-Liouville derivative of orderis defined

| by the expression [20]

- Of@s — O A - FOldE, a <,
PIO=Y i e -9 lr© - folde. 0<a<t, @
For@, m<a<a+l, w>l

Some properties of the fractional modified Riemann-

Liouville derivative are wherelU’ (€) = dU (€) /dt.
Do — L(y+1) 2 ) We assume that Eq. (7) has a solution in the form
¢ Fy+1-a) ’
Dz (f(2)g(x)) = g()(Dg f(2)) + f(x)(Dzg(2)), (3) U(&) = X() ®)
Dz flg@)] = f;[g(x)]Dgg(x) and introduce a new independent variablé) = X'(¢),
= (D flg(x))) (g’ (). (4)  Wwhich leads to the following system of nonlinear ordinary

: . o differential equations
Now in order to introduce the Feng’s first integral

method [21], let us consider the space-time fractional differ-
ential equation with independent variables o, ..., x,,,t
and dependent variable Y'(€) = G(X(£),Y(6)). 9)

F(u,D{u, D3 u, D, uD3 u, ..., D2y,
Now, let us to introduce the central idea of the Feng’s first

2ae 2a 2a
Dy, Dyu, Dy, - = 0. ) integral method. By using the division theorem for two vari-
Using the variable transformation ables in the complex domain which is based on the Hilbert-
Nullstellensatz theorem [44], we can obtain one first integral
w(@1, @2, T, t) = U(E), to Eq. (9) which can reduce Eq. (7) to a first-order integrable
k1x§ + kox§ + ... + ko, + ct® ordinary differential equation. An exact solution to Eqg. (5) is
= I(1+a) ’ (6)  then obtained by solving this equation directly.

wherek; andc are constants to be determined later: the frac-  D1Vision Theorem: Suppose th&(z, y) and@Q(z, y) are

tional differential equation (5) is reduced to a nonlinear ordi-Plynomials inClz, y], and P(z, ) is ireducible inClz, y].
nary differential equation If Q(z,y) vanishes at all zero points dt(z,y), then there

exists a polynomiaH (z, y) in C[z, y] such that
H=HU(£).U'(£),U"(),.-.), @)

Q(z,y) = P(z,y)H(z,y). (10)
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3. Applications By adding the two Egs. (16), the next equation is obtained
The aim of this work is to obtain analytical solutions, by ap- 3cu’ (&) = 3k*Bu” (€) — 3k (u/(€))?)
plying the Feng’s first integral method [20], for the space- , ,
time fractional coupled mKdV equation + 6kBu(&)u' (€ + 3k(A + Bu(&))u'(€)
— 3ku? (€)' (€) — BNk (€). (17)

1
Diu = iDgo‘u — 3u*D%u
3 We can rewrite the above equation to obtain
+ 5Dfﬁu +3D%(uv) — 3ADSw, (12) . 1 , /
u’(&) = =5 [(c+ Ak — kA) — 3kBu(&) + ku®(€)] ' (€)
D&y = —D3*y — 3uD%v — 3(DSu)(D%v)

+3uD3v + 3ADSv, + 5 W) (18)
t>0, 0<a<l, (12) now using Egs. (8) and (9), Eq. (18) is equivalent to

the two-dimensional autonomous systefg) = X (&) and
where D¢ and Dy are the Jumarie’s modified Riemann- Y (€) = X'(€), where

Liouville derivatives. \ is a constant and. is the parame-

ter describing the order of the fractional derivatives.0f, t) dX(§) Y (€) (19)
andv(z,t). The obtained solutions would be important for ¢ ’
previous works where approximated methods [45-47] have dY(g) 33
been applied to solve the coupled mKdV equation. & [ﬁé - ?X(g) + BX (€)Y (€) + kY (€)%,
By considering the traveling wave transformation
with
u(z,t) = u(f), v(z,t) = v(§), ) ) .
kx® + ct® k=35 ﬁzBik: 5:%+>\—A. (20)

with: &= m, (13)
Now, the solution of the Eqg. (19) can be investigated by
wherek andc are constants, substituting (13) into Eq. (11), applying the Feng's first integral method. According to the

we can reduce the Eg. (11) into an ordinary differential equaFeng’s first integral method, we suppose thdt) andY (¢)

tion (ODE) are nontrivial solutions of Eq. (19), ar@l(X,Y") is an irre-
13 5 ducible polynomial in the complex domalfy such that
e (€) = u"(€) + SK(©) m |
QIX(£),Y(§) = p_ai(X(§)Y'(§) =0, (21)
+ 3k(u(€)v(€))" — 3ku®(E)u'(€) — 3aku/(€), ;
' (&) = —k*0"(€) where the coefficients;(X)(i = 0,1, ...,m) are polynomi-

als of X anda,,(X) # 0. Due to the division theorem, there
exists a polynomial(X) + ~(X)Y in the complex domain
C[z, y], such that

= 3ku(§)v'(€) — 3k’ (€)v'(€) + 3akv'(€). (14)

For our purpose, we can consider the following&ns

v(§) = A+ Bu(®) 1) -t

whereA and B are coefficients to be determined. The above m 4

transformation was first considered by Fan as one of possible = (9(X) + h(X)Y (€)Y a:i(X)Y*(€) =0. (22)
anstz to obtain analytical solutions of the coupled mKdV i=0

Eq. (14), when the extended tanh-function method [38] was  \yie consider the case where — 1in Eq. (21), by
applied. Substituting (15) into (14), the Eq. (14) are trans- "equating the coefficients af(i = 2,1,0) on both sides of
formed into the following ordinary differential equations for Eq. (22), we have

the functionu(¢), i.e.

2l (€) = KA (€) + 32 Bu (€) ail(i) i a1;X)(h;X) —hni,( . (23)
+ 6k(2Bu(&) + A — u?(€) — M/ (€), ) = gXm ) +35( Jaolt)

cv/(€) = —k>u"(€) — 3h(ku'(€) Sa ()R- X4 0XC). @4

+ (A+ Bu(§)) —u?(€) = Nu'(§).  (16) 0 = ao(X)g(X), (25)
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sincea;(X)(¢ = 0,1) are polynomials ofX. Balancing
the degrees of(X) and ao(X), from Eq. (23) it can be
concluded that; (X) is constant and(X) = « = 1/B.
For simplicity, we takea;(X) = 1. Substitutinga;(X),

313

The general solution for the space-time fractional mKdV
Eqg. (11) is obtained by solving the first order differential
equation (32), which can be written as follows

andh(X) into (24) and (25), and setting all the coefficients dx(§) _ r 4+ pX 4+ gX? (36)
of powers of X to be zero, a system of nonlinear algebraic dg ’
equations have been obtained, from these equations, we get
g(X) =0, and Where

1 Jé; 1

io(X) = ao — ay (66 -V +5X2), (26) i=—p=— r=d(0-)
1/B*> ¢ q B

wherea((X) can be expressed as follows =7 (2 — k)’ p= = (37)

a0(X) = Ao+ ByX +2x7, (27)
and A, and B, are given by
By = g,
Ay = A (5 - 12>7 (28)
K K
and therefore
ap(X) = p <5 - 12> - %X + éXQ, (29)
K K K K
by taking into account the condition:
0=0Q(X,Y) = ao(X) + a1 (X)Y (X)), (30)

and the relatiom; (X) = 1, from Eq. (29), it follows that
1
Y(§)<ﬁ(5n2) g ﬂXz)'

— - =X+-= (31)
R
Combining this first integrat” (), with the two-dimensional

K K2

autonomous system of the Eq. (9), the exact solutions to the

second order differential equation (18) can be obtained, andX7(£):2— (—p+
considering the relation (15), then the exact traveling wave q
solutions to the mKdV system (11) can be written in terms of

the solution of the following first order differential equation
aX(§) _ _(Brs_1\_ By, B
d¢ ( (6 ) K2 K

K K2
If we substitute this last result into any one of the
Egs. (16)(u(¢) = X(S)) i.e.

2eu/(€) = K*u" (€) + 3k2Bu" (€) + 6k(Bul(€)
+ (A+ Bu(§)) —u?(&) — M/ (€),

the following condition required for the adiz of the Eq. (15)
is obtained

X+

X2>. (32)

(33)

B2
A= -5t A
in order that the solutiom(¢) = X (&) satisfies the coupled

mKdV equation, with

(34)

2

1 c B
0= —+ —.
k+2

§7

1

7= Bk

R =

(35)

and X (¢) satisfies the generalized Riccati equation (36). The
generalized Riccati equation (36) has twenty seven solu-
tions [48], which can be expressed as follows.

Family 1: Whenp? — 4¢gr < 0 andpgq # 0 (or rq # 0),
the solutions of Eq. (36) are

Xi(6) = 2%( —p+htan (%hf))

Xa(€) = f%q (p+ oot (%hs))

Xa(6) = 5 (=p-+ hltan(he) £ sec(h)))

Xa(€) = =50 (b + hlcot(he) + csc(he)).

X;,(f)z% (~2p+h(tan th)— cot th)))

(e ST et
T )

with h = \/4qr — p?, whereM andN are two non-zero real
constants and satisfies the conditiaitf — N2 > 0.

Xa(6) = — —12rcos(%h§) __
hsin(1h¢) + pcos(Lhe)
Xol8) = — Sm(_;;:;)ii(ii?s(;hs)’
Hro(8) = hsin(h;ficgig;aﬁ) +h
Xu(§) =— sin(hz‘; inlilzii(hﬁ) +h’
() 4r sin(1he) cos(Lhe) . (39)

—2psin(;h&) cos(hE)+2h cos?(3hE)—h

Family 2: Whenp? — 4¢gr > 0 andpgq # 0 (or rq # 0),
the solutions of Eq. (36) are

Rev. Mex. Fis62(2016) 310-316
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v ()
oo Ve (V)

X15(6) = =52 (p-+ V=12 (tanh(V/=R26) £ isee h(v/=1%6)) ).
X16(6) = =5 (p+ V2 (eoth(v/R%€) i csch(v/~1%) ) ).
)=~ o /T (1) s ().

q
i(_p_’_ /(M2 + N2)(—h?2) — M~/—h2 cosh(v/— h2§))

XlS(g) = 2q MSlIlh(\/ig) +N ’
Lo \/(N2 M?2)(—h2) + M+/—h?2 blnh(\/ h2€)
Xi9(8) = Qq( P oo (VT 1 ) (40)
whereM andN are two non-zero real constants and satisfies the conditfon M2 > 0
2r cosh (%\/—725)
X20(§) = 7
\/—7h2$inh (% ) pCOSh (%\/_7]125)
2r sinh (%\/Th%)
X - 9
21(§) v/—h? cosh (%\/Th%) — psinh (%\/ifﬂg)
21 cosh (\/—7h2§)
X - )
22(§) /—hZsinh (\/W&) — pcosh (\/—7]125) +ivV/—h2
2r sinh (\/Thzf)
X =_ 7
23(5) —p sinh (\/W&) -+ \/WCOSh (\/_7h2€) + \/—7h2
2r sinh ( 1v/—=h2¢) cosh ( 1v/—=h2¢
X24(§) = <4 ) <4 ) (41)

—2psinh (4v/=R%¢) cosh (1v/=R2€) + 2072 cosh® (Ly/=R2¢) - §)

Family 3: Whenr = 0 andpg # 0, the solutions of

Eq. (36) are ] ) )
For the nonlinear space-time fractional coupled mKdV
—pd Eg. (11), we have found twenty seven solutions that can be
X25(§) d . .
qld + cosh(p€) — sinh(p)]’ obtained from the solutions (38), (39), (40), (41), (42) and
) 43) the relations (15), (37) and the condition (34).
oty pleosh(pe) + sinh ()] o (19), (57 and )
26(§) = — : : (42) It is worth noting that solution (38) and (39) are not of
qld + cosh(pg) + sinh(p¢)] : g —
] ] the soliton type, because they are periodical-type solutions in
whered is an arbitrary constant. . the variablet. Moreover, for the solutionX,;(€) it can be
Family 4: Wheng # 0 andr = p = 0, the solution of  shown that this one does not correspond with the traveling
Eq. (36) is . wave solution, since the condition= p = 0, together with
Xo7(€) = — , (43) the relation (37) give as a result that= 0 and thenX»7(¢)
g€+ is not an analytical solution of the traveling wave type for the
wherec; is an arbitrary constant. coupled mKdV equation.
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However, the solutions (40), (41) and (42) correspond to  We notice that for this particular solutiar{¢) = X;3(&),
the traveling wave type soliton solutions. It can be shown thatve have recovered the previously well known solution (50),

for the special case of the solution
1 1
Xi3(8) = =5 (p +V/—h? tanh (2\/—h2§>>, (44)

when we take into account the relation = /4qr — p?,
where the coefficientg, ¢ andr are given by Eq. (37), then
the solutionX3(£) can be rewritten as

X13(8) = — {p—i-Mtanh %\/pQ — 4qr£} (45)

2q 2q

Substituting (37) in order to simplify the expression

\/p? — 4qr, we obtain

M:;M=% (46)

_3kB® 42
4 1

v =+/p% —4qr. (48)

Therefore the solution (45) simplifies to

and

c (47)

where

B vk ¥
X1(§) = 5 + 5~ tanh (3¢, (49)
taking into account the relatiom(§) = X(£) and the

that have been found in Ref. [43], but to the best of our
knowledge the general solutions: (40), (41) and (42), that
correspond to the travelling wave type soliton solution, have
not been obtained previously in the literature. Since the
coupled mKdV equation describes approximately the motion
phenomena appearing in a two-layer fluid system [35], the
new analytical solutions (40), (41) and (42) would be useful
in the study of the physical behavior of these fluid systems.

4. Conclusions

In this paper, the Feng’s first integral method was applied suc-
cessfully to obtain new exact analytical solutions of the non-
linear space-time fractional mKdV equation (11). The perfor-
mance of the Feng'’s first integral method is reliable and ef-
fective to obtain new solutions. This method has more advan-
tages: itis direct and concise. Thus, the proposed method can
be extended to solve many systems of nonlinear fractional
partial differential equations in mathematical and physical
sciences. Also, the new exact analytical solutions, Eq. (40),
(41) and (42), obtained for the coupled mKdV equation can
be very useful as a starting point of comparison when some
approximate methods are applied to this nonlinear space-time
fractional equation.
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